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Abstract  This paper presents an adaptive fuzzy computed- 
troque controller, that enhances fuzzy controllers, with an 
embedded adjustable two-stages credit assignment and self- 
learning capability, for uncertain robots, to on-line track a pre- 
scribed trajectory. An  adaptation law for the parameters of 
controller is combined with the dead-zone technique Lo guaran- 
tee a given attenuationregion of trackingerror in the presence of 
torque disturbance. Siinulations of a two-link robot (carrying a 
heavy load illustrate the effectiveness and attenuation capability 
of the controller for on-line trajectory tracking in the presence 
of ineflial parameters uncertainties and torque disturbances. 

1. Introduction 
Motion control of uncertain robots has attracted a. lot of re- 

searches (see e.g. [I]) and a lot of tracking controller design 
methods, ranging from traditional computed-torque controller, 
iudependcnt joint PID controller, robust or variable structures 
controllers [7 ] ,  [SI, model-based or parameter adaptive con- 
trollers to more recently intelligent controllers (such as iterative 
learning controllcrs [Ill, radial basis, multilayered, feedback- 
error-learning neural networks [4], [9], [16], [17] or fuzzy logic [4] 
Lased controllers) have been proposed to treat the robot track- 
ing problems of varying degree requirements. Advan,:es in the 
robot controllers design are mainly for developingrnethods that 
could adapt to variations of robot dynamics and payloads to im- 
prove performance for tracking the desired trajectory as closely 
as possible over a wide range of configurations. Previous work 
has shown that certain physical properties, e.g. passivity prop- 
erty, linear-in-parameter property, skew-symmetric property of 
robot dynamics are of use in designing robust and adaptive 
robot, controllers and in proving the stability. However, in the 
presence of unstructured uncertainties or torque disturbance, 
the adaptive approaches can't guarantee the trackin.g perfor- 
mance or even the stability [6] due to their sensitivity of robot 
dynamics properties. In addit,ion, to exploit the nonlirtear map- 
ping capability of neural networks to learn the inverse (dynamics 
of uncertain robot,s, neural network based robot controllers re- 
quire a tedious training phase for a given trajectory. Moreover, 
their generalization capability for different trajectories is not 
fiilly investigated. Also there are difficulties in choosing appro- 
priate testing trajectories which contain sufficient information 
for learning the inverse dynamics. Only local stability around 
the operating points is ensured for tracking error dynamics. 

On the other hand, fuzzy mehtods provide an efficient way to 
cope with uncertainties. The goal of this paper is thus to con- 

struct for uncertain robots a learnable controller-an adaptive 
fuzzy control system-to guarantee the tracking performance: 
achieve satisfactory on-line trajectory tracking in the presence 
of imperfect knowledge by meeting the requirement that the 
tracking error is attenuated to a prescribed region. Our ap- 
proach is to employ fuzzy technique which could implement 
on-line computed-torque control that computes the necessary 
torque to move along a given desired trajectory, without de- 
tailed information of robot dynamics. 

The organization of the paper is as follows. In Section 2, a 
fuzzy logic implementation of computed-torque control for robot 
motion tracking is presented. To train the controller network, 
its parameters are tuned. A modified update law for parame- 
ters using dead-zone technique is given in Section 3 .  The track- 
ing performance and stability of the closed-loop robot system 
are investigated in Section 4. Simulations of a two-link robot 
carrying a heavy payload are given to illustrate the controller 
performance in Section 5. Section 6 is the conclusion. 

2. Uncertain Robot Dynamics 
The dynamics of n-link robots is expressed as [l] 

with q E R" joint variable, M ( q )  the symmetric positive- def- 
inite inertia matrix, c(q,  q )  the Coriolis and centrifugal forces, 
g ( q )  the gravitational force, and U is the input torque. The 
combined effect. of friction and external torque disturbance is 
represented by d ( q ,  4, t ) .  

(1) can be put in the form 

i = f(z) + G(z )u  + v(z,t) ( 2 )  

withzT = ( q T , ~ T ) , f = M - l ( - c - g ) , G = l l / l - l , v =  M-ld .  

Given a desired trajectory q d ( t )  E Rn, denote the it11 
joint tracking error state as e ,  = [q2  - q 2 d ,  it - q;dlT  and let 
e = [e:, . . . , .TIT. The robot motion tracking problem treated 
here is to design an adaptive fuzzy controller for uncertain 
robots snch that e is attenuated to a given region in the pres- 
ence of lumped uncertainties and bounded torque disturbances. 
For this purpose, this paper presents an adaptive fuzzy system 
for on-line learning the computed-torque control to guarantee 
the tracking performance. This is presented in Fig.1. Details 
about the design are described in the following section. 
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Figure 1 

3. A Fuzzy Controller for Trajectory 
Tracking 

As a preliminary, we introducebasic fuzzy concepts [lo], [12]. 
Let s = (SI,. . . szn)  represents the input (vector e or x) of the 
fuzzy system. Denote RS,% the fuzzy if-then rules for the ith 
joint of the robots. In general, the j t h  rule in the ith knowledge 
rule base, either Rz,c for robot position and velocity or Re,, for 
robot tracking error, of the fuzzy system is defined by a set of 
linguistic rules of the following form: 

where AS,k reference antecedent fuzzy set of S k ,  and BI refer- 
ence consequent fuzzy set of the outputs of the fuzzy system. 
This set of fuzzy if-then rules forms a control rule base whose 
antecedent parts are related to the measurement and whose con- 
sequent parts determine the control action. The quality of the 
control action is inferred by a fuzzy inference engine and is eval- 
uated by the credit assignments mechanism. Fig. 2 shows the 
concepts of the novel approximate reasoning fuzzy system em- 
bedded with adjustable two-stages credit assignment for fuzzy 
if-then rules ( 3 ) .  

3.1 Two-Stages Credit Assignment 

The basic idea of rule credit assignment is to reward good 
rules by increasing their certainty of the consequent fuzzy set 
while punish bad ones by decreasing their certainty. There are 
two rule credit assignment stages presented in the fuzzy system 
of Fig. 2 .  First, at stage I, we reshape the consequent fuzzy 
set BZ of the original fuzzy rule base. This paper uses LR 
parametrization [12] as the consequent membership functions. 
Thus after stage I rule credit assignment, those membership 
functions become BZ. 

By fuzzy implication inference, the corresponding output ac- 
tion (recommendation) of each rule is defined as [9], [13] 

where A : ( s )  is an arbitrary fuzzy set input to the fuzzy system, 
Ai(.) := AS,l (SI)*.. .*AZ,2n(s2n) denotes thematchingdegree, 

* is the T-norm [12], I the implication function and B ~ ( u , )  is 
a reshaped B:(u%) in original rule base ( 3 )  as a consequence 
of stage I credit assignment. On the other hand, the stage I1 
credit assignment is imposed on the fuzzy output where we have 
determined the corresponding output action of each rule. Here, 
we refine them by giving a credit assignment, wz,, to the j t h  
rule. Then the output fuzzy set becomes: 

Figure 2 

w:, .AI o R:(S ,U)  (5) 
where " ." is the multiplication operation. 

3.2 A fuzzy computed-torque controller 

Similar to the center-average defuzzification method [9], the 
defuzzification of a multi-input multi-output fuzzy system with 
credit assignment is defined as 

(6) 

u ( t )  = 

where Et,, denotes 

E;,t E the centroid of t he  set{u : Bl(u) 2 A ; ( s ) }  ( 7 )  

(using the LMOM method [5]), U:, represents the credit as- 
signed to R:,, for joint i, while w : ~ ,  i # k ,  is used to counteract 
the dynamic interactions between the robot joints i and k., 

Fig. 3 shows four different types of processing nodes in the 
network. Each corresponds, respectively, to a substage shown 
in Fig. 2: 

Input Layer: The two inputs to the fuzzy system are e, ,  
the tracking error of zth joint, and x, the position and 
velocity of the robot. 

Rule Matchzng Layer: Each node here obtains the rule 
matching degree $ ( s )  = A1) ( s ) .  To make (6) a form of 
computed-torque control, two types of antecedent mem- 
bership functions are used. For s = x, Ai,L is the Gaussian 
membership function defined by 

For s = e ,  we choose a special class of bell-shape member- 
ship functions that satisfy 

C36: ( e t )  = 1 (9) 

where the summation is over the number of Re,% rules for 
ith joint. 

Fuzzy Implication Layer: Each node in this layer obtains 
a singleton implication fuzzy set and compute its location 
",, by 
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Figure 3 

where c",; is the center of A i ,  pi,i the stage I credit of BI 
ai = - a&,,, the difference of left and right spread 
of fuzzy membership function A i .  On the other hand, 
the Rd rules are chosen to be of Takagi-Sugeno type. Its 
consequelit membership function BI is a sing1.eton with 
support represented as the form of synthesis input 

.T 
c3 a71 . = iji,d - a: ei, (11) 

where CL: r: ( k i i ,  k i i ) T .  Suppose the credits of all these 

rules are assigned to be 1, then we have 

De,furziJication. Layer: This layer contains n nodes which 
compute the on-line computed-torque control according to 

Let CL: = a, for all j in (11) and for convenience, we choose 

pft = l / w i I  such that the credits of all rules at  joinit i are as- 
signed simultaneously in stages I and I1 and the number of 
adjust.able parameters could be reduced. Accordingly, using 
(lo),  (11) and (12), the equation(6) resolvesinto thecomputed- 
torgue form 

u ( t )  = D-l (z,d")) (F(z,dCa)) + h ( e , t ) )  

= 

(6). 

(12) 

where 

! I  W l I G l ( I )  + c11 ... WlnGl(I) -t C 1 n  

wnlGn(~) + cnl ... W m G l  ( I )  -k cnn 

*p ~ Gld - aTei 

fn qnd - aKen 

b D (1,8(")) = 

F ( z , d C a ) )  = [ - ; f1 ] ,h(e, t )  = [ ; ] 
with d W )  = (8!W),...,8p))T, Si"' = ( W % I , . . . , W , ~ ) ~ ,  

Wtl = (Wt , ,  . . .  , w t , )  na T , j i  = ($ , - . .  ,6?)*, d c a )  = 
@a), ' ' ' , & q T ,  @a' = ( W t i C t , .  . . , W i t  m cu m a t ,  ~. . , a y ,  

f," = ( ~ ~ , . . . , ~ ~ , ~ ~ , . . . , ~ ~ ) ~ ,  with ,f: = -G:,  and .fl = 
G i  ((ii)-' - 1)1/2 where m is the number of Rz,z rules. In the 
above, C := ( c ; ~ )  is a bias matrix. 
Remark: As a funct,ion approximator, the fuzzy system uses 
the term w,,Gt + cil to learn the (i,j) element of matrix G, 

and the term 8$ca'T f, ~ to learn f, in vector f. It c : a n  there- 
fore be easily seen that the fuzzy system tries to on-line learn 

a computed-torque control in the presence of uiicertainties in 
robot dynamics. 

4. Learning algorithm 

Referring to the controller network in Fig.3, the connections 
linking from the second layer to the output layer and the pa- 
rameters in the nodes of the third layer (i.e., wZr, c',,, and a:)  

are adjustable. Define 8, = ( B ! " " ) , 8 ~ w ) ) .  Let the parameter 8, 
be updated according to 

= 80,  + A@z(t) (13) 
where 8,, is the initial parameter value. 

4.1 Adaptation law 

Plugging (13) into (2), subtracting Du(t)  and adding its 
identity ( F ( Z , ~ ( ' ~ ) )  + h(e, t ) )  to the right hand side of ( 2 )  we 
have 

ijc = ijrd-aaet+ ft - Q ! c Q ) ~ ~ ~ )  + ~ 7 = ,  ( g t j  - W : G ~  - c13) '11, 

(14) 

(15) 

( 
Substituting (3) into (4) and after some manipulations, the 
tracking error equation for ith joint can be written as 

6 ,  = A l e ,  - b,wTA%, + b z c ,  

where 

In this paper,an adaptation law for tuning the parameters 
of fuzzy controller for each joint is given by 

A%, = R,'w,b~P,e, (17) 

where P, = PT > 0 is the solution of the following Riccati-like 
equation 

(18) 
1 

PIAt + ATPz + -PlbtbTP, + Ql = 0 
P2 

with Ql > 0 , p  > 0 and 

R,  = Block diag (RIC), RS"', R(") 1 )  

R!W) = Block dzag (R:'), . . . , Rln)) 
(19) 

(20) 

4.2 A dead-zone modification of adaptat ion law 

A continuous version of (7) could be expressed as 

e, = R ~ l w , b ~ P , e ,  (21) 

In practice, bounds on the components of the desired param- 
eters vector are generally known, so that unboundedness of 
vector 8 , ( t )  can be avoided by suitably modifying the adap- 
tation policy. Furthermore, to counteract the modeling error 
and the parameter estimation errors, a deadzone of size do is 
employed in the adaptation law. Let 6 % ~  = 8, f (8 , ( .  Define P = 
Block dzag   PI,...,^,), and B = Block drag  (bl,...,b,) . 
Suppose B , ( t )  is required to be inside a set MQ, , then the mod- 
ified adaptationlaw [13] is : 6, = 0, for eTPbbTPe < dg, oth- 
erwise we have 

6, = ( I  - dhl(8~)Bt~BLTI)R;l2u,bTP,e,  (22) 
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where the distance measure d ~ ( 8 , )  = 0 for 
8T(R;'w,bTP,e,) 5 0, 
otherwise 

d ~ ( 6 ' ~ )  = mzn[l,dist(6',,Me,)/~*] , E *  > 0. (23 )  

4.3 Adaptation law for symmetric G 

First, note that the lower component of 8, is 8 j w ) ( t )  = 0 for 
eTPbbTPe 5 dg,  otherwise we have 

4, = ( I  - dryr(8,)8118T;)R( ,W)-1wjW'bTP~e1 (24) 
Since G is symmetric, we let wZJ = w J r  in the network. In 

this case, we modify the continuous adaptation law as follows: 
The adaptat,ion algorithm for symmetric G replaces it"' of (27) 

by another $ ! w ) ,  where 

) (25) 
1 
2 

4;"' := it/l T O W  Of - (d") + 8 ( w ) T  . 

4.4 Selection of adaptation gains 

It is interesting to observe that the matrices (R!C), Rr"'), 
R;") represent the inverse of adaptation gains of 8!'"), 8:"': 
respectively. Since for robot dynamics the variation of the com- 
ponents of G is usually smaller than those o f f ,  the adaptation 
gains of 8:"' (and thus 4;")) could be smaller than that of 6:""'. 
This provides us a guideline to choose controller parameters. 

5. Guaranteed tracking performance 

Assume t,hat there exist parameters e ; ,  . . . , Q A  such that sat- 
isfactory approximation accuracy of on-line computed-torque 
input can be achieved, or 

Define the parameters estimation error as 8, = 8, - e,*. Then 
the error equation (5) can be rewritten as 

where the coupling effects between robot joints and the com- 
bined effect of approximation error and disturbance are 

5.1 Feasibility of controller 

Denote 8") = 8(") - d W ) * .  In the case there exist e and 6 
small enough such that cg 5 6 and l l !8w)112 5 6, we can show 
that D (z, d W J )  exists, which in turn, guarantees the feasibility 
of computed-torque controller (12). Let \iG(z)112 2 g > 0 in 
robot dynamics. Since 

llD (z, d" ) )  - G(z)112 5 6 + E 

if 6 and E are small enough. Then, using matrix properties [2] 
we have I, + G-'(z)(D(z,B(")*)G(z!) is invertible which im- 
plies that G(z)(l,+G-' ( z ) (D(z ,S(" ' )  ) -G(z)))  = D ( z ,  d")' ) 
is invertible. 

5.2 Initial parameters for better tracking performance 

In practice, nominal knowledge about the manipulator dy- 
namics is available. Hence, an "approximation" to G(z) ,  de- 
noted by Go (xlnominal robot parameters), is known a priori. 
This knowledge could be employed to satisfy the accuracy re- 
quirement of 6 small enough, by selecting a suitable initial pa- 
rameters 0:'. This is done here by using the least square 
(LS) algorithm [14]. Our approach is based on the element- 
by-element minimization of the approximation error through a 
sufficient number of training data {x'~)}: 

E ( w o t J )  = C k  I (Go ( ~ ( ~ ) l n o m i n a l  robot pnra?neters) 

- D ( z ( ~ ) ,  8 ( w ) ) ) z 3  l2 (28) 

where the set {z('j'> contains either the sampled feature points 
on or the points close to the desired trajectory. Furthermore, 
the same technique can also be used to satisfy the approxima- 
tion accuracy requirement for f .  

In addition, since the inertiamatrix (thus G matrix) is lower 
and upper bounded [l], the bias matrix C call Le select,ed with 
an aim to meet the bounds requirement of G in the process of 
LS minimization. 

5.3 Tracking performance 

The following shows the tracking performance of adaptive 
fuzzy controller for uncertain robot manipulators. 

Theorem. Consider the robots (2)  with unknown but bounded 
f , (z) ,  v,(z!t) andg,(z) # 0,i = l,...,n . Assume that t,hecon- 
troller (12) is adopted with the adaptation policy ( 2 4 ) .  Then 
in the bounded state space z E R = {z : llzll 5 r}, we have 
8; and the control input are bounded. Let 
Q = Block d i a g  (Ql, ' .  . , Q n )  and assume that there exists 
< =  up^,,^,^ Zt[l<t(8t, z , t ) ( j 2 ,  then e converges t,o the residual 
set {e : eTQe 5 p2[  or eTPbbTPe 5 d i } .  Moreover, for e t  and 
e9 small enough such that E 5 d o / 2 p 2 ,  then e converges to the 
deadzone { e  : eTPbbTPe 5 d i } .  

Proof: Let Ve be a positive-definite function of the form 

= ( E l , .  . . , 

1 

2 
v, = -cy=loe,Te, 

VQ = ET=.=, O F e t  5 0. Therefore, we can guarantee the bound- 
edness of O i .  Thus the arguments 8%,z in (12) are hoimded, in 
view of the assumption of z E 0.  S o  we have U bounded. 

Next, for the whole error system, define the Lyapunov func- 
tion candidate as V = VI + V, + . . . + V, where for each joint 
we deihe the Lyapunov function 

(29) 
V, = I d ;  + $aTR,6,, if eTPbbTPe 5 d z  

= $eTP,e, + +i?~,i , ,  otherwise 

Taking the time derivative of Vi, we readily obtain V, = 0 for 
eTPbbTPe 5 d g ,  otherwise we have 
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In the case d M ( 8 , )  # 0,Q, will be in the exterioi of Met and 
O T ( R ~ ' w , b ~ P , e , )  > 0 which implies Q ~ l ( R ~ 1 w l b f P 8 e t )  > 0. 
Suppose Mot is appropriately selected such that 8: is in the 
interior of Me, ,  then we have 

so we have 
. 1  1 

V 5 --eTQe 2 + - p 2 (  2 (32)  

Thus e converges t,o the residual set { e  : eTQe 5 
p2c or eTPbbTPe 5 d g } .  

Finally, consider the case t.hat ~f and E~ are small enough 
siich that 5 rlo/2p2 for eTPbbTPe > dg .  Thus 

V = --eTQe - -p2eTPbbTPe + cbTPe 
I 1 
2 2 

5 -;eT&, 1 - ( :p21/eTPbll - () llbTPell 

(33)  
1 5 --eTQe 
2 

Then, following the arguments of [16] we can conclude that e 
conveqes to the deadzone { e  : eTPbbTPe 5 d i } .  

C). E.  D.  
Corollary. Consider t.he robot (2) with a symmetric G matrix. 
Then all properties described in Theorem also hold for the robot 
corit,roller (1 a)-( 25) .  

Proof: Not,e that. t,he derivative of Lyapunov function (29) can 
be decomposed as 

i: = e?P& + E.;,Ryi.,, + qRpiL;  + 8 $ " ) ' R y p  (34)  

v, = e T P  ,e ,  ' + E ~ , R : C ' ~ ~ ,  + C T R ! ~ ) ~ ~  + B ~ W ) ' R { W ) ~ ! W )  (35)  

In  view of t,lw properties: (i)Gt3 = CJ,,, due to lwi3 = u3ir 

(ii)R:3) = RI", one can verify that 

Substituting ( 2 5 )  into (4), we have 

6. Simulation 

+ m z T l r z s i n ( q z ) d z  + m z h c o ~ ( q ~  + 4 2 )  = u2 + d2 

where the combinedeffects of friction and the external torque 
disturbance are 

d l  = 2.0sin(1jl) + 2.5sin(&) + 0.5sin( t )  

dz = 5.0sin(d.1) + 4.0sin((iz) + 0.4sin( t )  

and 11 = 2, 12 = 1.6, r1 = 0.511, r2 = 0.512, 5 1  = 5 2  = 5 ,  
mi = 0.5, m z  = 6.35. The excessive ratio between ml and mg 
is to emphasize the payload effect. 

For each joint position or velocity, only four linguistic labels 
{NB, N S ,  E'S, P B }  are used with membership functions 

NB : f ( r )  = l / ( l + e z p ( 5 ( r + l ) ) ) ,  N S  : f ( ~ )  = e z p ( - ( ~ + 0 . 6 ) ~ ) ,  

P S  : f ( r )  = e~p(-(r-0.6)~) ,  P B  : f ( ~ )  = i / ( l + e q ( - 5 ( r - l ) ) ) .  

where T is the joint position or velocity. Moreover, we let a i  = 
a; = 0 for all j ,  i.e., the left and right spreads of the consequent 
membership function are equal in the adaptation period. We 
consider there are no fuzzy control rules. We set bias cIJ = 1 
for all i , j .  The initial parameters cul (0) and cu2 (0) are chosen 
randomlyin the interval ( -50,50) .  To obtain a set of appropriate 
initial parameters QP), in (28)  we use 32 testing points on the 
desired trajectories over one period [0,8]. The following nominal 
inertia parameters are used in LS minimization: 5; = 4.8, 

= 5.1, m(: = 0.48, mi = 6.30. 
The other controller parameters are chosen as &1 = Q 2  = 

1012, E* = 0.05, C Y ~ J  = L Y Z J  = 100, a1 ,2  = 0 1 2 , ~  = 65 and 

R1 = Block d i a g  (0.0051256,3000I25@, 20001256), 

R2 = Block d i a g  (0.00251256,2000I256,3OO01256) . 

Two cases with different p values are simulated for 

q x d ( t )  = ~ / 1 2 s i n ( 0 . 5 ~ t )  

92d(t) = 2 . 5 ~ / 1 2 ~ 0 ~ ( 0 . 5 ~ t )  4- 2.5~/24co~(0.25~t). 
with the initial state q l ( 0 )  = -1.5, qz(0)  = -1.2, q l ( 0 )  = 
i z ( 0 )  = 0. They are compared, with the responses shown in 
Fig. 4((a) position error (b) velocity error (c) control input) 
where solid line and dotted line denote p1 = p2 = 0.01 and 
p1 = p2 = 0.5, respectively. The tracking errors for the last 
joint are relatively small, whereas larger tracking error are ob- 
served in the first joint. In both simulation cases, the tracking 
errors are gradually within a tolerable accuracy region as the 
learning progresses. 

7. Conclusion 

For trajectory tracking of uncertain robotic manipulators, 
we have proposed a learnable controller for on-line learning of 
the compuled-torque control to adapt to changing environment 
characterized by imperfect knowledge. The controller consists 
of a fuzzy system embedded with adjustable credit assignments 
and supervised by the desired trajectory. A combination of coli- 
troller parameter adaptation law with a dead-zone technique is 
used to guarantee the stability and the attenuation of tracking 
error to a prescribed region. Simulations of a two-link robot 
manipulator have demonstrated that the controller is efficient 
in achieving satisfactory tracking accuracy in the presence of 
significant uncertainties. Simulations also show how a priori 



knowledge about the robot dynamics can be applied in an aux- 
iliary manner to speed up the learning process and to improve 
the tracking accuracy. 
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