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Abstract This paper presents an adaptive fuzzy computed-
troque controller, that enhances fuzzy controllers with an
embedded adjustable two-stages credit assignment and self-
learning capability, for uncertain robots, to on-line track a pre-
scribed trajectory. An adaptation law for the parameters of
controller is combined with the dead-zone technique to guaran-
tee a given attenuationregion of tracking error in the presence of
torque disturbance. Simulations of a two-link robot carrying a
heavy load illustrate the effectiveness and attenuation capability
of the controller for on-line trajectory tracking in the presence
of inertial parameters uncertainties and torque disturbances.

1. Introduction

Motion control of uncertain robots has attracted a lot of re-
searches (see e.g. [1]) and a lot of tracking controller design
methods, ranging from traditional computed-torque controller,
independent joint PID controller, robust or variable structures
controllers [7], [8], model-based or parameter adaptive con-
trollers to more recently intelligent controllers (such as iterative
learning controllers [11], radial basis, multilayered, feedback-
error-learning neural networks [4], [9], [16], [17] or fuzzy logic [4]
based controllers) have been proposed to treat the robot track-
ing problems of varying degree requirements. Advances in the
robot controllers design are mainly for developing methods that
could adapt to variations of robot dynamics and payloads to im-
prove performance for tracking the desired trajectory as closely
as possible over a wide range of configurations. Previous work
has shown that certain physical properties, e.g. passivity prop-
erty, linear-in-parameter property, skew-symmetric property of
robot dynamics are of use in designing robust and adaptive
robot controllers and in proving the stability. However, in the
presence of unstructured uncertainties or torque disturbance,
the adaptive approaches can’t guarantee the tracking perfor-
mance or even the stability [6] due to their sensitivity of robot
dynamics properties. In addition, to exploit the nonlirear map-
ping capability of neural networks to learn the inverse dynamics
of uncertain robots, neural network based robot controllers re-
quire a tedious training phase for a given trajectory. Moreover,
their generalization capability for different trajectories is not
fully investigated. Also there are difficulties in choosing appro-
priate testing trajectories which contain sufficient information
for learning the inverse dynamics. Only local stability around
the operating points is ensured for tracking error dynamics.

On the other hand, fuzzy mehtods provide an efficient way to
cope with uncertainties. The goal of this paper is thus to con-
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struct for uncertain robots a learnable controller-an adaptive
fuzzy control system—to guarantee the tracking performance:
achieve satisfactory on-line trajectory tracking in the presence
of imperfect knowledge by meeting the requirement that the
tracking error is attenuated to a prescribed region. Our ap-
proach is to employ fuzzy technique which could implement
on-line computed-torque control that computes the necessary
torque to move along a given desired trajectory, without de-
tailed information of robot dynamics.

The organization of the paper is as follows. In Section 2, a
fuzzy logic implementation of computed-torque control for robot
motion tracking is presented. To train the controller network,
its parameters are tuned. A modified update law for parame-
ters using dead-zone technique is given in Section 3. The track-
ing performance and stability of the closed-loop robot system
are investigated in Section 4. Simulations of a two-link robot
carrying a heavy payload are given to illustrate the controller
performance in Section 5. Section 6 is the conclusion.

2. Uncertain Robot Dynamics

The dynamics of n-link robots is expressed as [1]
M(q)q+ c(g,4) +9(q) = v +d(q.4,1) (1)

with ¢ € R™ joint variable, M(q) the symmetric positive- def-
inite inertia matrix, ¢(q,¢) the Coriolis and centrifugal forces,
g(q) the gravitational force, and u is the input torque. The
combined effect of friction and external torque disturbance is
represented by d(g, ¢,t).

(1) can be put in the form
i = f(z) + G(z)u+ v(z,1) (2)
with 27 = (qT,q'T),f =M ~c-g),G=M"1v=M"1d.

Given a desired trajectory gqq(t) € R™, denote the ith
joint tracking error state as e; = [gi — qiq,di — ¢ia]’ and let
e=1[ef, -, eI1T. The robot motion tracking problem treated
here is to design an adaptive fuzzy controller for uncertain
robots such that e is attenuated to a given region in the pres-
ence of lumped uncertainties and bounded torque disturbances.
For this purpose, this paper presents an adaptive fuzzy system
for on-line learning the computed-torque control to guarantee
the tracking performance. This is presented in Fig.1. Details
about the design are described in the following section.
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Figure 1

3. A Fuzzy Controller for Trajectory
Tracking

As a preliminary, we introduce basic fuzzy concepts [10], [12].
Let s = (s1,- - S2n) Tepresents the input (vector e or ) of the
fuzzy system. Denote R, ; the fuzzy if-then rules for the ith
joint of the robots. In general, the jth rule in the ¢th knowledge
rule base, either R ; for robot position and velocity or R, ; for
robot tracking error, of the fuzzy system is defined by a set of
linguistic rules of the following form:

Rl :IF s1 is A, AND.--AND sz, is Al 3)
THEN u; is Bl.

where Af, , reference antecedent fuzzy set of si, and Bf refer-
ence consequent fuzzy set of the outputs of the fuzzy system.
This set of fuzzy if-then rules forms a control rule base whose
antecedent parts are related to the measurement and whose con-
sequent parts determine the control action. The quality of the
control action is inferred by a fuzzy inference engine and is eval-
uated by the credit assignments mechanism. Fig. 2 shows the
concepts of the novel approximate reasoning fuzzy system em-
bedded with adjustable two-stages credit assignment for fuzzy
if-then rules (3).

3.1 Two-Stages Credit Assignment

The basic idea of rule credit assignment is to reward good
rules by increasing their certainty of the consequent fuzzy set
while punish bad ones by decreasing their certainty. There are
two rule credit assignment stages presented in the fuzzy system
of Fig. 2. First, at stage I, we reshape the consequent fuzzy
set Bf of the original fuzzy rule base. This paper uses LR
parametrization [12] as the consequent membership functions.
Thus after stage I rule credit assignment, those membership
functions become Bf

By fuzzy implication inference, the corresponding output ac-
tion (recommendation) of each rule is defined as [9], [13]

Al o R, (s,u) = SupueulAi(s) = [(41(s), Bl (w))]  (4)

where A!(s) is an arbitrary fuzzy set input to the fuzzy system,

A2(5) = A2 (1) oA

! 5 (52n) denotes the matching degree,
* is the T-norm [12], I the implication function and Ef(ul) is
a reshaped Bf(ui) in original rule base (3) as a consequence
of stage I credit assignment. On the other hand, the stage II
credit assignment is imposed on the fuzzy output where we have
determined the corresponding output action of each rule. Here,
we refine them by giving a credit assignment, w?;, to the jth
rule. Then the output fuzzy set becomes:
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H Credit Assignment

= THEN Stage il
part part Credit Assignment
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Figure 2

W), » Afo R(s,u) (5)
is the multiplication operation.

”n

where
3.2 A fuzzy computed-torque controller

Similar to the center-average defuzzification method [9], the
defuzzification of a multi-input multi-output fuzzy system with
credit assignment is defined as

-1

AT Al J oAl
Tjwy 4y LjwinAy Ljwi Ay -8
w=| L
T J An Jooad L&l
E] w'nlAn ij”nAn ijnnAn ’ Cu,n

(8)
where Ei ; denotes

& . =the centroid of the set{u: Bl (u) > Al(s)} (7)

u,l

(using the LMOM method [5]), w?,

7; represents the credit as-

signed to RJS ; for joint 1, while wfk, i # k, is used to counteract
the dynamic interactions between the robot joints i and k.,

Fig. 3 shows four different types of processing nodes in the
network. Each corresponds, respectively, to a substage shown
in Fig. 2:

o Input Layer: The two inputs to the fuzzy system are e;,
the tracking error of ¢th joint, and z, the position and
velocity of the robot.

o Rule Matching Layer: Each node here obtains the rule
matching degree §7(s) = Al(s). To make (6) a form of
computed-torque control, two types of antecedent mem-
bership functions are used. For s = z, Ag 5 1s the Gaussian
membership function defined by ,

Hao=mlm-0]

For s = e, we choose a special class of bell-shape member-
ship functions that satisfy

EJ;:J{(EZ'): 1 (9)
where the summation is over the number of R, ; rules for
ith joint.

o Fuzzy Implication Layer: Each node in this layer obtains

a singleton implication fuzzy set and compute its location
=7
Cui by

_ 1 An— 1/2
ai=cli— E:szgaf ((gf) b 1) (10)
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where cf‘ ; is the center of A{, ﬁgi the stage I credit of B;f

al = O‘JL,i — ag;, the difference of left and right spread

of fuzgy membership function A{ . On the other hand,
the R{ rules are chosen to be of Takagi-Sugeno type. Its
consequerit membership function B} is a singleton with
support represented as the form of synthesis input

. s

Cui = Gia—al e (1)
where a{ = (k; . k2)T. Suppose the crec‘ﬁt.s of 4all these
rules are assigned to be 1, then we have E{; i = ‘:f.,i'

o Defuzzification Layer: This layer contains n nodes which
compute the on-line computed-torque control according to
(8).

Let a! = a; for all j in (11) and for convenience, we choose
ﬁfl- = 1/wf-’- such that the credits of all rules at joint 7 are as-
signed simultaneously in stages I and II and the number of
adjustable parameters could be reduced. Accordingly, using
(10), (11) and (12), the equation (6) resolves into the computed-
torgue form

u(t) = D7 (2,00) (F(x,80°V) + h(e, ) (12)

where

wiida(z) + enn wing1{z) + cin

D (z,6(«)) =
wn1dn(z) + cn1 Wnnd1{(x) -+ cnn
-—95‘:‘2)1;1 dra — af e
F(z,0(%) = Jhle, t) =

68 £, Gna—aken
with 6 = (68, 0lNT, 6 = (Wi, win)T,
wij = (Whe Wt do= @l T, 6y =
(f’gca)s v yegzm)va _95%) = (wgici, T sz"?CLﬂ: Q'zv o 19';”)7‘7
JEo= (e g fl e ST with f] = =5, and f] =
F1((37)~* ~ 1)*/2 where m is the number of Ry ; rules. In the
above, C' 1= (c;j) is a bias matrix.

Remark: As a function approximator, the fuzzy system uses
the term w;;g; + ¢i; to learn the (7,7) element of matrix G,

T .
and the term 056‘1) fi to learn f; in vector f. It can there-
fore be easily seen that the fuzzy system tries to on-line learn
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a computed-torque control in the presence of uncertainties in
robot dynamics.

4. Learning algorithm

Referring to the controller network in Fig.3, the connections
linking from the second layer to the output layer and the pa-
rameters in the nodes of the third layer (i.e., wfr, ¢, ; and a‘})
are adjustable. Define 6; = (ng),égw)). Let the parameter 6;
be updated according to

0i(t) = bo, + AG;(t) (13)

where 0o, is the initial parameter value.
4.1 Adaptation law

Plugging (13) into (2), subtracting Du(?) and adding its
identity (F(z,0(°®) + h(e,t)) to the right hand side of (2) we
have

T .
i =Gig—al eit (fi - g fi) +2701 (965 — whi — ciy) w
(14)

Substituting (3) into (4) and after some manipulations, the
tracking error equation for ¢th joint can be written as

é = Aje; — b,w,TA& + bi&: (15)

where
0 1 0 fi
Ai=[ }yb'—':,: },wlz w )
_kpi —kyi : 1 'LUE )
T .
&= (fi - OE,fa) fi) + 270 (945 %Tijg,- —cij)uj +vi  (16)
with wgw) = g;u.

In this paper,an adaptation law for tuning the parameters
of fuzzy controller for each joint is given by

Af; = Ry w;bT Pe; a7

where P; = PiT > 0 is the solution of the following Riccati-like
equation

PA; + ATP + ;)%Pibib:'rpi +Qi=0 (18)
with Q; > 0,p > 0 and

R = Block diag (R, R{*), R(“)) (19)

R) = Block diag (R$",---, R{™) (20)

4.2 A dead-zone modification of adaptation law

A continuous version of (7) could be expressed as
9.,' = Ri_lwib;‘-rPiei (21)

In practice, bounds on the components of the desired param-
eters vector are generally known, so that unboundedness of
vector 8;(t) can be avoided by suitably modifying the adap-
tation policy. Furthermore, to counteract the modeling error
and the parameter estimation errors, a deadzone of size dy is
employed in the adaptation law. Let 0;, = 6;/|8;|. Define P =
Block diag (P1,-+,Pn), and B = Block diag (b1, "+,bn).
Suppose 6;(t) is required to be inside a set My, , then the mod-
ified adaptation law {13] is : 6; = 0, for eT PbbT Pe < dg, oth-
erwise we have

0 = (I — dpg(6:)0; 1 67, )R i b] Prey (22)




where the distance measure dps(6;) = 0 for
0F (R w;bT Pies) < 0,
otherwise

dpr(8:) = min[1,dist(8;, Mg;)/e*],e* > 0. (23)

4.3 Adaptation law for symmetric G

First, note that the lower component of é, is 95"’)(3&) = 0 for
eT PbbT Pe < d%, otherwise we have

by = (I — dps (0:)0: L 0T R T (T Pey  (24)

(NS
Since G is symmetric, we let w;; = wj; in the network. In
this case, we modify the continuous adaptation law as follows:
The adaptation algorithm for symmetric G replaces 95‘”) of (27)

by another d;(iw), where

(w . 1 N w H(w

gbg )= ith row of 3 (9( )46l )T> . (25)
4.4 Selection of adaptation gains

It is interesting to observe that the matrices (REC), REu)),

REW) represent the inverse of adaptation gains of égw),é’:%w),
respectively. Since for robot dynamics the variation of the com-
ponents of G is usually smaller than those of f, the adaptation

gains of (95“’) (and thus égw)) could be smaller than that of §(°*)

R
This provides us a guideline to choose controller parameters.

5. Guaranteed tracking performance

Assume that there exist parameters 8}, - - -, 0, such that sat-
isfactory approximation accuracy of on-line computed-torque
input can be achieved, or

mazs||f () = F(e,609")]]2 < ¢
maze||G(z) — D (a:, 6("’)’) [l2 <€ eg.

Define the parameters estimation error as §; = 6; — 6*. Then
the error equation (5) can be rewritten as

é = Aiei = biwl 8 + big; (26)

where the coupling effects between robot joints and the com-
bined effect of approximation error and disturbance are

T, W7
£ = <f1_ B QECG) fi> + X7 <g,] - w; gilw) - c.‘;‘) uy + v
(27)
5.1 Feasibility of controller

Denote 6(%) = g(«) — §(«)*  In the case there exist € and 6
small enough such that g < € and ||§{*)||, < §, we can show

that D (1‘, g(w)) exists, which in turn, guarantees the feasibility

of computed-torque controller (12). Let {G(z)|ls > ¢ > 0'in
robot dynamics. Since

D (2,647) = G(2)ll2 < 6 + ¢

then we have
G~ (z) (D(z,6)) - G(z)) ||
<G @)l |D(z, 60) = G(=)|

(1/9)(6 + )
1

IA A

if § and ¢ are small enough. Then, using matrix properties [2]
we have I, + G~ (z)(D(z,6(“)")G(x)) is invertible which im-
plies that G(z)(In+ G~ (z)(D(z,6()" ) = G(x))) = D(z,6(«)")

is invertible.
5.2 Initial parameters for better tracking performance

In practice, nominal knowledge about the manipulator dy-
namics is available. Hence, an "approximation” to G(z), de-
noted by Gg(z|nominal robot parameters), is known a priori.
This knowledge could be employed to satisfy the accuracy re-
quirement of § small enough, by selecting a suitable initial pa-
rameters Géw)A This is done here by using the least square
(LS) algorithm [14]. Our approach is based on the element-
by-element minimization of the approximation error through a
sufficient number of training data {z(*)}:

E(woi;) = Zi|(Go (#{*nominal robot parameters)
=DM, 6%))5 (28)

where the set {z{¥)} contains either the sampled feature points
on or the points close to the desired trajectory. Furthermore,
the same technique can also be used to satisfy the approxima-
tion accuracy requirement for f.

In addition, since the inertia matrix (thus G matrix) is lower
and upper bounded [1], the bias matrix C can be selected with
an aim to meet the bounds requirement of G in the process of
LS minimization.

5.3 Tracking performance

The following shows the tracking performance of adaptive
fuzzy controller for uncertain robot manipulators.

Theorem. Consider the robots (2) with unknown but bounded
fi(z), vi(z,t) and g;(z) # 0,2 = 1,---,n. Assume that the con-
troller (12) is adopted with the adaptation policy {24}. Then
in the bounded state space z € Q = {z : ||z|| < v}, we have
6; and the control input are bounded. Let E = {&, - ,§7)T,
@ = Block diag (Qi1, --,Qn) and assume that there exists
& = supg, . . Xill&i(6:, z,t){|2, then e converges to the residual
set {e:eTQe < p2¢ or T PbbT Pe < dg}. Moreover, for ey and
£4 small enough such that ¢ < do/2p?, then e converges to the
deadzone {e : eT PbpT Pe < d2}.

Proof: Let Vy be a positive-definite function of the form

1=1"

1
V= 52:’% 67e;

Vg = E?zlﬁz.T(?., < 0. Therefore, we can guarantee the bound-
edness of §;. Thus the arguments 6;,z in (12) are bounded, in

view of the assumption of z € 2. So we have » bounded.

Next, for the whole error system, define the Lyapunov func-
tion candidate as V = V; + V5 4+ ...+ V,; where for each joint
we define the Lyapunov function

Vi = Ld2+ 16T R,

_ if eTPbbTPe < d2
= -2'6?})1'6{ + %Q?Rlﬂi,

29
otherwise (29)

Taking the time derivative of V;, we readily obtain V; = 0 for
eT PbbT Pe < d2, otherwise we have

Vz‘ = ﬁiTPiéi + §,T (I - dM(ei)Q,'J_S’gl) wiber,’ei

1

= 56? (ATP + PiAi) ei + b7 Pie;
—dpr(6)87 6,1 0, wib¥ Pre;

z
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In the case dps(8;) # 0,0; will be in the exterior of Mp; and
67 (R wibY Pie;) > 0 which implies 07, (R; wib! Pie;) > 0.
Suppose Mg, is appropriately selected such that 6} is in the
interior of Mp,, then we have

076;, = 076, —6:76;, (30)
= 161 ((6r -0:)> +02-6:2) >0
Thus,
Vi < %cliT(TAiTP; + ll"i-;h)ei 'Zfib,rpi e @1)
< -6 Qiei+ 50° | & ]

so we have L L
V< -zefQet —o% (32)
Thus e converges to the residual set {e eTQe <

p2¢ or eTPubT Pe < d2}.

Finally, consider the case that ¢; and ¢4 are small enough
such that ¢ < do/2p? for eTPbbT Pe > d2. Thus

. 1 1
vV = ——Z-eTQe—gpzeTPbbTPe—}—{bTPe
1
< =3e7Qe = (3ol PHI~ €) 17 Pe
< —%eTQe (33)

Then, following the arguments of [16] we can conclude that e
converges to the deadzone {e : eT PbbT Pe < d2}.

Q.E.D.

Corollary. Consider the robot (2) with a symmetric G matrix.
Then all properties described in Theorem also hold for the robot
controller (12)-(25).

Proof: Note that the derivative of Lyapunov function (29) can
be decomposed as

Vi = TPty + &8 R O%u, + a7 R + 897 R (34)
Substituting (25) into (4), we have

. T .

Vi= el Pidy + &, RO cu, +aTRa 4 8 RG (35)
In view of the properties: (i)@;; = @j;, due to w;; = wyi,
()R = R, one can verify that

T w ST lw
S, BT RO = s BT ROKD o
Thus,

B3 Vi latong(25)= =LV latong(24) (37)
so that (32) and (33) holds.

Q.E.D.

6. Simulation

Simulation is done for a two-link robot manipulator with dy-
namics [9]:

((m1 + mz)rié —+ 177,21-% + 2marir — 2cos(gz) + J1)§1
+ (mar3 + moriracos(g2))dz — morirasin(e2)(d1 + d2)
+ (m1 4+ m2)licos(qz) + malscos(qr + q2) = uy + dy

(mar3 + mariracos(q2))d1 + (mar3 + J2)d2

1933

+ mari1728in(g2)d2 + malacos(qr + q2) = uz + da

where the combined effects of friction and the external torque
disturbance are

d1 = 2.0sin(q1) + 2.5s1n(d2) + 0.5sin(t)
dz = 5.0sin(g1) + 4.0sin(gz) + 0.4sin(t)

and [y = 2,1 = 1.6, 71 = 0.51, v = 0.5, J;, = J» = 5,
my = 0.5, my = 6.35. The excessive ratio between m, and m»
is to emphasize the payload effect.

For each joint position or velocity, only four linguistic labels
{NB, NS, PS, PB} are used with membership functions

NB: f(r) = 1/(1+ezp(5(r+1))), NS : f(r) = exp(—(r+0.6)?),
PS: f(r) = exp(~(r—0.6)?), PB: f(r) = 1/(1+exp(—5(r—1))).

where r is the joint position or velocity. Moreover, we let a{ =
a = 0for all j, i.e., the left and right spreads of the consequent
membership function are equal in the adaptation period. We
consider there are no fuzzy control rules. We set bias cij = 1
for all ¢,j. The initial parameters cy, (0) and cu, (0) are chosen
randomly in the interval (-50, 50). To obtain a set of appropriate
initial parameters ng), in (28) we use 32 testing points on the
desired trajectories over one period [0,8]. The following nominal
inertia parameters are used in LS minimization: Jf = 4.8,
J3 =51, m? =048, mJ=6.30.

The other controller parameters are chosen as Q1 = Q> =
10, &* =0.05, o1, = a1 =100, o032 = az2 = 65 and

Rl = Block diag (0.005[256,30001256, 2000[256) )
R2 = Block dzag (O~0025[2567 2000[256730001256) .

Two cases with different p values are simulated for
q1a(t) = 7/12sin(0.57t)
g2a(t) = 2.57/12c0s(0.57t) + 2.57/24cos(0.257t).
with the initial state ¢1(0) = —~1.5, ¢2(0) = —1.2, ¢1(0) =
g2{(0) = 0. They are compared, with the responses shown in
Fig. 4((a) position error (b) velocity error (c) control input)
where solid line and dotted line denote p; = py = 0.01 and
p1 = p2 = 0.5, respectively. The tracking errors for the last
joint are relatively small, whereas larger tracking error are ob-
served in the first joint. In both simulation cases, the tracking

errors are gradually within a tolerable accuracy region as the
learning progresses.

7. Conclusion

For trajectory tracking of uncertain robotic manipulators,
we have proposed a learnable controller for on-line learning of
the computed-torque control to adapt to changing environment
characterized by imperfect knowledge. The controller consists
of a fuzzy system embedded with adjustable credit assignments
and supervised by the desired trajectory. A combination of con-
troller parameter adaptation law with a dead-zone technique is
used to guarantee the stability and the attenuation of tracking
error to a prescribed region. Simulations of a two-link robot
manipulator have demonstrated that the controller is efficient
in achieving satisfactory tracking accuracy in the presence of
significant uncertainties. Simulations also show how a priori




knowledge about the robot dynamics can be applied in an aux-
iliary manner to speed up the learning process and to improve
the tracking accuracy.
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