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This paper describes an algorithm for 
determining the optimal placement of a robotic 
manipulator within a workcell for minimum time 
coordinated motion. The algorithm uses a 
simple principle of coordinated motion to 
estimate the time of a joint interpolated motion. 
Specifically, the coordinated motion profile is 
limited by the slowest axis. Two and six degree 
of freedom (DOF) examples are presented. In 
experimental tests on a FANUC S-800 arm, the 
optimal placement of the robot can improve cycle 
time of a robotic operation by as much 2s 25%. 
In high volume processes where the robot motion 
is currently the limiting factor, this increased 
throughput can result in substantial cost savings. 

Introduction 

Industrial robots are often used in high volume 
manufacturing processes where meeting a 
specified cycle time is vital to the piofitability of 
the process. Examples include loading a press, 
inserting electronic components, or spot welding 
a workpiece. Many times the speed of the robot 
between taught points is a limiting factor in the 
process. A good robot programmer can often 
reduce the cycle time by changing the trajectory 
of the robot or by changing acceleration/ 
deceleration times. However, an often 
overlooked point is that where a robot is mounted 
to the floor can substantially affect the cycle time 
between a sequence of points. 
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The problem of time-optimal control along a 
specified path has been investigated for several 
years [1,2]. The objective of these optimizations 
has been to find a miuimum-time path of a robot 
(with a fixed base) which passes through a set 
number of points. These algorithms account for 
the robot's non-linear dynamics, actuator 
saturation characteristics, joint limits, and, more 
recently, the presence of obstacles in the 
workspace [3,4]. 

This paper addresses a new problem: finding the 
optimal position of the robot base given a fixed 
set of points in a world space which the robot 
endeffector must reach. The proposed 
optimization algorithm uses only the robot 
kinematics and the maximum acceleration of each 
joint as defined by the trajectory generator. For 
most industrial robot applications, the dynamic 
effects are negligible for payloads that are less 
than the robot's nominal payload; therefore, full 
robot dynamics are not considered here. 

As demonstrated in some of the off-line graphical 
simulation packages [5], one way of finding the 
optimal base position is to perform an exhaustive 
search of the entire (x,y,z) position and (roll, 
pitch, yaw) orientation space of the base with 
respect to the world coordinate system. This 
approach may be reasonable if the search space is 
restricted to just (x,y) space. However, for a full 
6 DOF search space, a gradient search method is 
much more efficient at finding local minimums. 
This paper will discuss the results of using a 
steepest descent method as applied to a two link 
manipulator and a full 6 DOF manipulator. 

t This work was performed at Sandia National Laboratories and supported by the U.S. Department of Energy under contract DE-ACW 
94AL85000. 
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Theory 

It is assumed that a task has been defined where 
the robot arm is to move between a starting and 
ending point as shown in Figure 1. 
Homogeneous transformations (4x4 matrices 
representing both position and orientation (pose)) 
are used to represent the starting pose "T , and 
ending pose wTe with respect to the world 
coordinates w. The pose of the stating and 
ending positions are stationary because of 
constraints on the factory floor; therefore, T , W 

and wTe are constant matrices. Also, it is 
assumed that the transformation from the robot 
end-effector mounting plate to the tool coordinate 
frame has already been used to compute "T , and 
wT,. The pose of the robot base with respect to 
the world cootdinates is denoted as wTb. The 
objective is to move wTb so as to minimize the 
time required to move between "T , and wTe . 

[Figure 1. Starting ind ending points with respect 
to the world coordinates are fixed; but the robot 
base is allowed to move. 

Most all industrial robots are joint coordinated 
devices, meaning that all joints will complete 
their motion at the same time. If we assume that 
the maximum acceleration profile for the slowest 
axis i is a first order acceleration/ deceleration as 
shown in Figure 2, then the time of the motion 
for joint i is 

where qei - qsi is the joint distance moved and 
is the maximum acceleration of the axis. 

For n joints, the time of a coordinated move is 

t =2  [ Jm] . 
i=l, ..., n Qmaxi 
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Figure 2. Velocity Profile of Slowest Joint 

The vector qe - qs is the distance traveled by 
each joint and is given by 

b b where T, and T, are the homogeneous 
trmsformations of the starting and ending pose 
with respect to the robot base, and K-' (0) 

represents the robot's inverse kinematics. The 
expressions for the homogeneous 
transformations can be written as 

and 

where the p)-' denotes a matrix inversion. 

(4) 

(5)  

The pose can also be represented as a 6x1 
column vector "xb with elements x, y, z, yaw, 
pitch, and roll. The mapping between the 



homogeneous transform and wxb will be 
represented as 

The problem can then be stated as the 
minimization of time tin Equation (2) while 
moving the robot base wTb (or wxb ). 

To minimize Equation (2) subject to the 
constraints in Equations (3), (4), and (5), a 
steepest descent algorithm can be used to 
iteratively converge to the solution. 

The constant &k in more elaborate algorithms 
such as Newton's method and Davidon-Fletcher- 
Powell method also includes the inverse Hessian 
relationship [6]. For simplicity, a k  was set to a 
large number (104) at the beginning of the search 
and decreased when the gradient increased time 
instead of decreased time. 'The partial of time 
with respect to the robot base pose is given by 

This suggests that the gradient used,in the kth 
iteration of the search should be along the joint 
which is going to take the longest time to 
complete it's motion. In implementation, we 
ranked the joints motion time from longest to 
shortest, and began the search using the gradient 
of the longest. When the local minimum along 
that axis was reached, the next longest ranking 
joint was used. This was repeated until a local 
minimum was reached for all joints. 

The gradient along joint i may be computed as 
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where the partial 2%- is the differential change 

in joint angles given a differential change in the 
robot base pose. 

This partial is related to the inverse manipulator 
Jacobian as follows. First notice that since the 
starting and ending pose do not change, the 
differential change of these points with respect to 
the world coordinates is zero. 

aWxb 

Here, wxn is the pose of the robot end-effector 
with respect to the world coordinates. Therefore, 
the partial of the joint angles with respect to the 
base pose is a function of the inverse manipulator 
Jacobian with respect to the world coordinates 
[7] and the Jacobian relating changes in base 
pose to changes in world coordinates. 

Often, it is easier to express the manipulator 
Jacobian with respect to tool coordinates [SI. 
Therefore, the above expression can be written as 

where - is the manipulator Jacobian as 

given in [SI, and 
a4 



The variable " Rn is the 3x3 rotation matrix with 
column vectors "nn, on, and "an. The matrix 
"S, is given by 

W 

"s, = [( wPnx"nn) ( wPnxw%) ( "PnXwan)] 

(14) 

where "pn is the position vector of end-effector 
with respect to the world coordinates. The 
superscript Tis a transpose operator. 

In summary, the steepest descent algorithm (7) in 
conjunction with Equations (9), (12), (13), and 
(14) can be used to solve for local minimums of 
Equation (2). 

Two Degree of Preedom Example 

Insight into the optimal placement problem can be 
gained by first analyzing a two DOF problem as 
shown in Figure 3. A task has been defined 
which requires the 2 link robot arm to move 
between two points (70,100) mm and (20,SO) 
mm. With the base of the arm at (0,O) mm, the 
change in joint angles between the starting and 
ending points are (-8.80,43.99) degrees. The 
length of each link is 100 mm, and the maximum 
acceleration of each joint is 100 mm/s2. The * 

motion execution time with the base at (0,O) mm 
is 1.3264 seconds. i 

. 

The steepest descent algorithm converged to a 
local minimum of 1.0804 seconds (a 18.5% 
improvement) at a base position of (44.56, 
5.23). Figure 4 shows a contour plot of time 
verses robot base position, and the path traveled 
by the steepest descent algorithm. In the figure, 
darker regions correspond to shorter motion 
time. The algorithm converged to 4 decimal 
places in time in 19 iterations. At this optimal 
base position, the change in joint angles is 
(29.18,29.18) degrees. Since the accelerations 
and link lengths of each degree of freedom are 
equal, the optimization moves the robot base so 

that the distance traveled by each joint is the 
same. 

Now suppose that the acceleration of joint 1 is 
half that of joint 2 (50 mm/s2 instead of 100 
mrn/s2). The motion execution time with the 
base at (0,O) mm is still 1.3264 seconds because 
joint 2 is still the limiting joint. Using the 
steepest descent algorithm, the optimal base 
position is (31.87,1.36) with a motion time of 
1.1807 seconds (1 1.0% improvement). 
Convergence to 4 decimal places in time occurred 
in 18 iterations. At this optimal base position, 
the change in joint angles is (17.42,34.85) 
degrees. 

I 
Figure 3. Two link arm example. 
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Ygure 4. Contour plot of time verses 2 DOF 

robot base position. 



Six Degree of Freedom Example 

Next, let us consider the optimal base placement 
of a six degree of freedom FANUC S-800 robot 
arm. A maneuver between two points will be 
discussed. The maneuver is from a starting pose 
of (x, y, z; w, p, r) = (1040, 0, 634; 160, -90, 
19) to an ending pose of (x, y, z; w, p, r) = 
(1616,0,789; 160, -90, 19). The position units 
are in mm, and the orientation units are in 
degrees. This motion i s  a simple translation of 
the robot end-effector in the positive x and z 
directions. The change in joint angles between 
these two points is (-0.10,47.89, 6.30, -2.09, 
6,28,2.17) degrees. Assuming the maximum 
acceleration of each joint is 80 degrees/second, 
the estimated time of the motion is 1.547 
seconds. 

Using the steepest descent algorithm, the optimal 
base position relative to it's initial position is at 
(x, y, z) = (-1, -160,730). The orientation was 
not allowed to change appreciably by lowering 
the values of ak for the orientation components. 
Convergence to 3 decimal places in time occurred 
in 163 iterations. By comparison, an exhaustive 
search of this precision over a 2000x2000x1000 
mm volume would require approximately lo6 

time verses the x, y, and z positions. Again, 
darker regions correspond to shorter motion 
times, and black corresponds to points which are 
unreachable. The new starting and ending poses 
are (1042, 153, -102; 8, -90, 170) and (1619, 
149,50; 8, -90, 170), and the change in joint 
angles between these two points is (-4.42, 
24.28, 24.28, 2.72, 24.20, 3.33) degrees.. The 
estimated time of motion is reduced to 1.102 
seconds (a 29% improvement). Notice that the 
limiting joint's travel (joint 2) has b&n nearly 
halved. The reduction in joint 2's travel was 
made up for by an increase in the travel of joints 
3 and 5. In the optimal position, joints 2,3, and 
5 have approximately equal travel times. 

The motions in Figures 5 and 6 were 
experimentally tested. The non-optimal motion 
took 1.456 seconds, while the optimal motion 
took 1.176 seconds (a 19% improvement). 
While the estimated and actual motion times are 
relatively inaccurate, the fact that the optimization 
does result in shorter cycle times is important. In 
fact, improvements in the 20-25% range typically 
have been seen in other experiments. 

I iterations. Figures 5 and 6 show contour plots of 
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Figure 5. Contour plot of time verses robot x 
and y base positions. 
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Figure 6. Contour plot of time verses robot y 
and z base positions. 

There are several reasons for the discrepancies 
between the estimated times and the actual 
experimental times. The first is that every robot 
vendor performs trajectory generation differently. 
On the FANUC controller [9], the trajectoxy is 
specified by a minimum acceleration time and 
maximum joint velocities. In addition, an 
exponential filter is used to smooth the trajectory. 
In our case, this fdter adds approximately 0.1 
seconds to the motion time. To improve the 
accuracy of the motion time estimate, equation 
(1) and it's partial would need to be changed to 
the particular algorithm used by that vendor. 

Second, we have not taken into account dynamic 
effects which may increase the settliig time. 
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This report was prepared as an account of work sponsor& by an agency of'the 
United States Government. Neither the United States Government nor any agency 
thereof,.nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or. responsibility for the accuracy, completeness, or, use- 
fulness of any information, apparatus, prdduct, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, process, or servict by trade name, trademark, manufac: 
turer, or otherwise does not necessarily constitute or imply its endorsement, ncom- 
mendation, or favoring by the United States Government or aiy agency thereof. 
The views and opinions of authors exprrssed'hercin do not nectssady state or 
reflect those of the United States Government or any agency thereof. 
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