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Abstract 

B a s i c  c o n c e p t s  abou t  t h e  c reep  b e h a v i o r  o f  n o n h o l o -  
n o m i c  c o n s t r a i n e d  (NC) s y s t e m s  w e r e  d i scussed  in [5]. 
Two f u n d a m e n t a l  t y p e s  o f  c reep  k i n e m a t i c s  w e r e  pro- 
posed a n d  t h e  h y b r i d  o n e s  cou ld  be m a d e .  In this w o r k ,  
w e  e x t e n d  t o  t h e  c reep  d y n a m i c s  o f  t y p i c a l  NC s y s -  
t e m s  such a s  t h e  d i sk ,  s l e igh  a n d  whee l .  First, c e r t a i n  
reduc t i ve  m o d e l s  o f  c o n s t r a i n e d  m o t i o n  s u c h  a s  idea l ,  
r e la t i ve ,  p a i r ,  a n d  genera l -pa i r  m o d e l s  a re  explored a n d  
related.  S e c o n d l y ,  by  t h e  i n v a r i a n t  m a n i f o l d  m e t h o d  of  
s i n g u l a r  p e r t u r b a t i o n ,  f u n d a m e n t a l  r o t a t i o n a l  a n d  t ra -  
v e r s e  c reep  d y n a m i c s  a n d  a h y b r i d  o n e  are  calculated 
in a n  a p p r o x i m a t e  w a y .  T h e y  c a n  be c lose  t o  t h e  c o m -  
p l e t e  s y s t e m  a s  poss ib l e .  T h e r e f o r e ,  t h e  br idge  b e t w e e n  
reduc t zve  a n d  i n v a r i a n t  a n a l y s e s  c a n  be m a d e  by  t h e  
m o d e l  of genera l -pa i r  c reep  a n d  c a n  h e l p  us u n d e r s t a n d  
p h y s i c a l  i m p l i c a t i o n s  beh ind  t h e  a p p r o x i m a t e  s o l u t i o n -  
s. It i s  p r o v e n  t h a t  a d v a n c e d  v e h i c l e  t e c h n i q u e s ,  s u c h  
a s  t h e  an t i - lock  brak ing  s y s t e m  a n d  a spec ia l  t r a c k i n g  
c o n t r o l  s y s t e m ,  c a n  be real ized b y  t h e  proposed  q u a s i  
cons t ra ined  creeps.  

1 Introduction 

The dynamical formulation of quasi constrained 
motion [SI for typical NC systems is represented here 
by two fundamental creep models been described in 
[5]. It is understood that creeps arise from the natural 
sources of viscous frictions [2]. Relaxations are allowed 
against the constraints to certain extent. Namely, the 
infinitesimal movements are pseudoly rather than ab- 
solutely restricted. Even that,  the governed equations 
of motion can be still reduced. Namely, original con- 
straint manifold can be converted into a q u a s i  one. In 
spite it is not easy to obtain directly, we could find an 
approximate one. 

For a constrained dynamical description, there are 
usually two ways to formulate it.  One is the La-  
grange  m u l t i p l i e r  method, the other is the e l i m z n a t i o n  
of  d e p e n d e n t  var iab le s .  The former can be handled 

by various algebraic techniques [l] and can get the 
constrained force directly. The  latter is a reductive 
scheme and has more analytical implications [3]. Our 
quasi analysis belongs to the latter. We first explore 
certain specific kinematical motions such as the i dea l ,  
r e la t i ve ,  p a i r  and genera l -pa i r  models. They will be 
related to the subsequent construction of an approxi- 
mated quasi manifold. 

By the invariant manifold method of singular per- 
turbation [4], the creep  d y n a m i c s  of various order ap- 
proximation can be obtained as long as the viscos- 
i ty  parameter of friction is sufficiently large. There- 
fore, quasi wheels can be governed by a model of creep  
of genera l -pa i r ,  which bridges the specifically reduced 
and the singularly perturbed schemes. 

In spite many studies [3] focused on the nonideal- 
ly constrained problems, this is the first time, to our 
best knowledge, to make use of creep  m o d e l s  in the 
dynamical formulation of NC systems. From the ana- 
lytical derivation, the creep model can be recognized 
as a modification of those ideal results. Fig. 1 shows 
a half-saturation friction model and a creep model. 
Note that only the small linear regions are considered. 
Friction force f is proportional to the normal speed 
WN with slope b.  W N O  and eo are respectively an offset 
value and a constant slope to tangential speed WT. 

Creep has much practical sense. Advanced vehicle 
techniques, such as the anti-lock braking system (AB- 
S) and a special tracking control system (TCS), can 
be proven feasible. 

Fact (Common NC Motions) 

Most NC systems have the common motions in Fig. 
2 with rolling (r), longitudinal translating (1) and z-  
axis orienting (z) .  The traverse motion (t)  is often 
limited. In fact, case (a), (b) and (c) are motions of 
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disk, sleigh and wheel respectively. U 

Fig. 1 Friction and creep models of quasi NC 
systems. 

Fig. 2 Common nonholonomic motions. 

2 Rotational Creep Dynamics 

Consider the 1D rolling disk shown in Fig. 3. It 
has mass m, polar inertia J ,  radius r and subjects 
to external forces E d  = [El,E,It and control forces 
u d  = [ui,u,It. The disk motion can be expressed by 
the derivative of longitudinal speed v , ~  and rotational 
angular speed w,, V d  = [vl,w,jt, 

D d V d  = Ed + f d  + U d  (1) 

u x  
A vA IfR 

Fig. 3 Dynamic model of disk. 

where D d  = diag(m, J ) ;  fd = [ f ~ ,  --r.f&; f R  denotes 
the constraint force acted at contact point A .  Ex- 
ternal forces, such as  air and bearing resistance, are 
dissipative El, E,. with parameters hi, h,, 

Control forces U I  and U ,  are considered constant here 
for the dynamical discussion. 

The constrained reaction belongs to tractive force 
occurred from the horizontal line. The pseudo- 
violated behavior appears whenever fR arises from the 
viscous friction, 

Note thitt b R  is a sufficiently large parameter. The 
slipping and skidding are not taken into account here. 

Let us introduce the dimensionless coordinates, o- 
riginated from [3] and extended here, with a subindex 
'O', 

:mu, J hr b R  6; = - U,o = -- ; p 2 q  ' ay = - +hl f YB = 7;; (4) mr2 ' 
and write = xb = dzo/dto, w , ~  = 0' = d0 /d to .  The 
relations of velocity, acceleration and Lagrangian are 
respectively vi0 = mvl/(rhi), vio = mz61/(rh;), Lo = 
inL/(r?ft?), etc ... Note th,at the creep coefficients 
are dimensionless themselves. Hence, the constraint 
becomes W I O  - w,o - Z)AO = 0 and the Lagrangian of 
the disk equals to LO = (vf + a~w,2,)/2. Complete 
equations can be re-written 21s 

Theorem (Specifically Kinematical Motions) 
When the instantaneous speed ZIAO at the contact 

point of the disk is specified as (i) zero ( i d e a l ) ,  or (i- 
i) a constant value v A ~  (relaf ive) ,  or (iii) proportional 
to the rotational angular speed w , ~  (pair ) ,  or (iv) a 
constant ' v A ~  plus a linear w,O term (generabpair), the 
disk maltion can be expressed by using only one differ- 
ential eiquation together with this kinematic relation. 

The governed equations of ideal (i) and general-pair 
0 
(iv) cases are shown below : 

(1 t ( Y J ) &  = -(1 + ,Or)wro + uio (ideal) (6) 
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Cases (ii)-(iv) explicitly depict a speci f ic  constraint 
manifold about the pseudo violated disk, which char- 
acterizes a slight modification of the ideal manifold 
b f d  in case (i). The ideal case can be proven valid [2] 
for a free disk rolling as the parameter TR approaches 
infinity since vA1 and ero approach zeros. 

Corol la ry  (Quas i  Constraint Manifold) 
If there exists a generally kinematical relation be- 

tween the instantaneous speed W A O  and angular speed 
WrO, 

vAO = gd(w,O), gd E C' (continuous) (8) 

only one differential equation is required. U 
(2) can be recognized as a real quas i  constraint 

manifold Md of disk, which is difficult to accurate- 
ly obtain. However, a simplaj ied manifold f i d  can be 
approximated by the specific motion of (7) with suit- 
able parameters G A ~ ,  &. This will be explained later. 

Theorem ( R o t a t i o n a l  C r e e p  Dynamics) 
The quasi constrained disk can be approximated by 

the r o t a t i o n a l  c reep  d y n a m i c s  described by only one 
differential equation as long as the viscous coefficient 
7R is sufficiently large. Such approximation can be as 
close as possible whenever it is needed. 
(proof): Firstly, take a small parameter E = l/yR and 
transfer (5) into a singularly perturbed form 

VAO PrWro UrO 

f f f J  f y J  f f J  
+ -. (singular) (9b) Wro = - - - 

When E = 0 (YR = a), (9a) gives W A O  = 0 and (9b) 
becomes identical to the ideal (6). When 7R is finite 
and sumciently large, assume that the quasi constraint 
manifold Md in (8) can be expressed as a power series 
form, 

vAO = gR(wr0, f )  = gRO + EgR1 + e2gR2 + . . . . (10) 

By the invariant manifold method [4], (10) is plugged 
into (9) and obtains the PDE condition, 

Equating the expanded 6 coefficients, it  is found 

where = Q J  - p p  and 2130 = ff$u~o - 2 f f J U , O  - u , ~ .  
gRO = 0,  is consistent with the ideal disk. We also 
notice that the h e a r  w, terms occur in gR1 and gR2. 

By ignoring high order (> 2) terms, the 1st and 
2nd order approximated speeds equal t o  .io = 6gR1, 

6 i o  = EgRl + f2gR2. Substituting G i o  into (9b), the 
resultant 1st order creep equation (denoted by creepl) 
happens identical to the ideal (6) .  But, the speed ijio 
does not vanish any more. If G i o  is taken into account, 
the 2nd order creep dynamics can be obtained as 

Corol la ry  ( C r e e p  D y n a m i c s  of Genera l -Pa i r )  
Quasi constrained disk can be approximated by the 

creep  of genera l -pa i r  motion like (7)  with suitable 1st 
order and 2nd order replaced parameters, denoted by 
cgpl and cgp2 respectively, 

U 
The above corollary gives a br idge  between reduc- 

tive specific and invariant analyses. Eq. (14) can be 
obtained directly by equating = GAl - i 7 ~ o w r ~ ,  i = 
1,2. Note that the creep dynamics is a form of singular 
perturbation and the 'cgp' ones are forms of specifi- 
cally kinematical motions. We also notice from (14) 
that the constant inputs d i rec t l y  affect the G L 1  and 
o n l y  viscous parameters occur in the Z:o. 

3 Traverse Creep Dynamics (gRO $- EQR1 + E29R2 + . . . PrWrO %O 
+-) = -(t+l+-) -- 

CLYJ Q J  Q J  @ J  

2 Consider the sleigh shown in Fig. 4 with speeds 
U t ,  U,]* of contact point A along the moving frame tWrO+--. (11) (gRO $. EgRl+ E gR2 +. . .) + ( pr - 1) cu20 

f f J  f f J  
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at, 

x 
Fig. 4 Dynamic model of slleigh. 

The mass and inertia of sleigh are m and I 
with a reference length r .  Under the external force 
[El, Et, E,It and constant control [ul, ut, U,]*,  the 
sleigh evolves as 

vi0 = vtowzo - 010 + 2110 

vi0 = -vIOwzO - (Pt + 7T)vtO + ut0 

ffrw:o = - P z w z o  + 2120 (complete)o (15) 

with friction f ~ o  = --L)"~v:o. Notice that the orient- 
ing behavior is uncoupled. Additional dimensionless 
relations are used in (15), 

Specifically kinematical motions of sleigh can be de- 
rived. For a general-pair motion (vi0 = v t l  + etOvIO), 

only two differential equations are needed, 

vio = (vt l  + etOvlO)wzO - V I O  + '1110 (general-pair) (17) 

where the orienting component remains the same as 
preceding. At this time, true creep colefficient is equal 
to et = et0 + vtl/vm. 

The 1st and 2nd order traverse creep dynamics of 
sleigh can be obtained as 

.io = Ew2o(uto - viow,o) - 010 + W O  (creepl) (18) 

Since the orientation is uncoupled, a desired value, 
wzd0, can be easily assumed. Therefore, the general- 
pair creep motion of sleigh can be derived as (17) with 
the following parameters, 

4 Hylbrid Creep Dynamics 

A single wheeled vehicie with mass m, equatorial 
inertia 1 and polar inertia J on a plane is depicted in 
Fig. 5. When external force [El,  E,, E,, ErIT and con- 
trol [ U / ,  lilt, ut, urIt are applied, the complete governed 
equations are 

vi[) = vtOWz0 - (1 7 R ) V I O  + YRwrO + U10 
vi0 = -vIO%O - (Pt + 7T)vtO + ut0 

.I& = -P2&0 + 2120 

.Jw:0 '= YRVlO-(Pr +YR)WrO+%O. (21) 

with frictions f ~ o  = - - y ~ v A o  = - ? ~ ( v I o  -wro), fTo = . .  

--YT 'Vt 0 .  

Y 

Fig. 5 Dynamic model of wheel. 

By the similar procedure, derivation results are de- 
picted 'below. First, the general-pair motion model 
of wheel is derived as (VAO = 0 ~ 1  - erowro, vt0 = 
'ut1 + e t o [ v ~ i  + (1 - ero)wro]), 

(1+ffJc)w:o = (011 + e tO[vAl+ (1 -erO)~rO]}~zO -vA1 

--(I + P r e ) W r o  + 2~10. (general-pair) (22) 

The seeond one is the hybrid creep dynamics of second 
order. 

The third is the general-pair creep model of wheel with 
parameters : 
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+"."]}/(1 - e;,> 
f f l  

5 Simulations 

Let us consider the inertial motion of sleigh under 
the case of c # 0 [3], i.e., the vertical noncoincidence 
of center C and contact A points. External force E, 
and control U, are not considered here. Complete and 
ideal equations of motion are 

IAbTVi . bTCVi  , w z = -  

(complete) (25) 
61 = U:, ut = 0 ,  c K 2 b Z  + V ~ W ,  = 0 (ideal) (26) 

where the inertial parameter K 2  = I ~ / ( m c ' )  = 1 + 
l / (mc2>.  According to [3], the ideal sleigh has an 
asymptotic solution under vt11=0 = vtlt=o = 0 ,  

I 
V l  = V t W z  + cw:, vi = -VIWz - - 

ml 

(27) 
KT 

2 
y = 3: tan - + constant. 

The ideal dash-dot results (IC = 1,1.5,2,2.5) in Fig. 
6 indeed behave such tendency. 

The approximated quasi manifold M, can be ob- 
tained as 

Hence, the dynamics of creepl and creep2 are cal- 
culated. Creep2 is simulated closer to the complete 
one than creepl. The simulation data are : m = IO 
(Kg), c = 0.5 (m), bT = 100 (nt. sec/m) , = 0.01, 

( W ~ , U ~ , U ~ ) ~ ~ = ~  = (O,O, 1) (rad/sec). All of them are 
assumed to stay inside a small viscous region. 

K= 1,1.5,2,2.5(com- ide-. crel- cre2) 

h 

E x 

Fig. 6 Inertial motions of sleigh. 

Next one is the rolling wheel. Related data are 
m = 1 (Kg), T = 0.5 (m),  I = 0.5 (Kgm2), J = 1 
(Kgm') and (z,y,d,Q)It=o = ( O , O , O , O ) ,  vllt=o = 1 
(m/sec), 2 i t / t=0  = 0, wrIt=o = 2 (rad/sec), VAU = 0.1 
(m/sec), and f ~ u  = f ~ u  = 1 (nt). Fig. 7 shows the 
x - y, er and ei results of hybrid creep dynamics and 
creep of general-pair. Both them prove the validity of 
bridge relations. 

The 10 Hz braking torque U, in an ABS and the 20 
Hz steering in a special TCS in Fig. 8 are used to 
demonstrate the applications of creep. Fig. 9 shows 
that V A  and ut can only be limited within a small 
region under the action of ABS or TCS. Otherwise, 
slipping will occur and i t  is dangerous. 

6 Conclusions 

The proposed creep model can be suitably used to 
account for most quasi constrained behaviors. By the 
creep parameters, the pseudo violated speeds could be 
approximated as close as possible even under a kine- 
matical motion analysis without considering the sys- 
tem dynamics. This is the core contribution of creep 
analysis. 
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Fig. 8 ABS and TCS control torques. 
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Fig. 7 Hybrid creep and general-pair simulations. Fig. 9 Simulations of ABS (#,re) and TCS (cgp). 
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