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Abstract: 

For a number of years, robotics researchers have 
exploited hierarchical representations of geometri- 
cal objects and scenes in motion-planning, collision- 
avoidance, and simulation. However, few general 
techniques exist for automatically constructing them. 
We present a generic, bottom-up algorithm that uses 
a heuristic clustering technique to produced balanced, 
coherent hierarchies. Its worst-case running time 
is O(N2ZogN), but for non-pathological cases it is 
O(NZogN), where N is the number of inputprimitives. 

We have completed a preliminary C++ implemen- 
tation for input collections of 3D convex polygons and 
3D convex polyhedra and conducted simple experiments 
with scenes of up to 12,000 polygons, which take only 
a few minutes to process. We present examples using 
spheres and convex hulls as hierarchy primitives. 

1 Introduction 

1.1 Overview 

For a number of years, the robotics community has uti- 
lized hierarchical geometric representations to avoid all 
pairs comparisons in distance computations and col- 
lision detection, with motion planning being the main 
application. (For example, see [FT87, Qui941.) The 
automatic generation of hierarchical geometric repre- 
sentations, however, is still a research area, especially if 
one wants to control properties such as spatial balance, 
structural balance, coherence, and tightness. 

This  research was supporkd by DOE Contract DEACO4- 
94AL85000, and by the Laboratory Directed Research and Devel- 
opment Office of Sandia National Laboratories. 

We present a practical generic algorithm for gener- 
ating hierarchical representations. Our algorithm is 
generic in that it can be applied to collections of any con- 
vex primitive, e.g., a scene of composed of convex poly- 
gons or polyhedra. The core of the algorithm is a greedy 
bottom-up clustering technique that constructs a tree of 
sets. Tuning parameters allow control of the balance 
of desirable properties. A hierarchy of convex solids 
is then constructed by walking the tree. Our algorithm 
is practical in that is runs in time roughly O(N log N); 
our preliminary C++ implementation takes less than five 
minutes to construct hierarchical groupings from inputs 
of over 10,000 polygons. Building a hierarchy of solids 
takes seconds to minutes, depending on the solids and 
the desired tightness of the geometrical approximation. 

1.2 Context 
Geometric query algorithms (e.g., distance) frequently 
take tree-structured representations as input. A typical 
representation is a tree whose nodes each contain a ge- 
ometricprimitive, such as a sphere, convex polygon, or 
convex polyhedron. The subtree rooted at a node repre- 
sents the union of the primitives at its leaves. We require 
that each node of a hierarchical geometric representa- 
tion contain a conservative approximation, or wrapper, 
of the object represented by its subtree. 

A typical branch-and-bound algorithm to answer a 
query about the geometric object represented by such a 
tree does a partial traversal, making a local query about 
the wrapper or primitive at each node it visits. Thus, a 
optimal tree would minimize 

cr(~>P(a>s (1) 
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where q(a) is the cost of answering the local query to 
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a and p ( a )  is the probability that a local query at a will 
be made in answering a global query. The catch is that 
even the relative probabilities are generdly not known. 

There are, however, several applicable heuristic prop- 
erties. First, a structurally balanced tree is suited for 
the divide-and-conquer nature of distance computation. 
Second, it is intuitive that the probability that a node 
is “relevant” to a query would grow with its volume. 
This leads to the principle that a tree should be spa- 
tially balanced. Third, we desire spatially coherent 
trees, in which represented geometric objects that are 
spatially close are also structurally close. Not only are 
spatially coherent trees intuitively good according to the 
expression above, but because they agree with human 
intuition, algorithms that make use of the them would 
be more likely to perform as expected. 

1.3 Our Results 

We present a generic algorithm for the following prob- 
lem. Given a collection of N geometric primitives for 
which convex wrappers can be efficiently computed, 
construct a hierarchy of convex geometric primitives 
such that (a) its leaves cover the input primitives, and 
(b) each node contains a wrapper for the objects at the 
leaves of the subtree rooted at it. We assume that the 
diameter of the largest primitive in the input is at most 
N orders of magnitude greater than that of the smallest. 

Our approach has two parts. First, in the Grouping 
Phase, we construct a binary tree of sets, with edges cor- 
responding to the subset relationship. This tree is called 
the Subset Tree. Second, in the Geometrical Construc- 
tion Phase, we construct a structurally identical Wrap- 
per Tree, in which each node contains a convex wrapper 
that spatially covers the union of the set elements at the 
corresponding node in the Subset Tree. Each Wrap- 
per Tree leaf contains the geometric primitive from the 
corresponding Subset Tree leaf. 

We first describe a generic algorithm for the Grouping 
Phase. This algorithm represents the spatial extent of a 
set of geometric primitives with a convex p-set wrap- 
per,which can be any solid geometric primitive, and uses 
a heuristic clustering technique to pair up nodes to be 
siblings. Our description treats creating and merging of 
p-set wrappers as bottom-level operations. Parameters 
to a cost function can be used to control the relative em- 
phases on structural balance, spatial balance, and spatial 
coherence. We present an informal analysis for the case 
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in which the p-set wrappers are axis-aligned bounding- 
boxes. The analysis yields a worst case running time is 
O(N2 log N), with an O(N logN) expected case under 
certain assumptions. We also show that using convex 
hulls for p-set wrappers yields an O(N2 102  N) worst 
case, with O(N2 log N) expected. 

Recall that any convex primitive can be used for the 
wrapper type in constructing the Wrapper Tree. We 
describe three straightforward techniques for the Con- 
struction Phase: an O(N2 log N) method using convex 
hulls as primitives, an O(N) bounding sphere technique, 
and an O(N log N) bounding sphere technique that pro- 
duces much tighter hierarchies. 

We have implemented the grouping algorithm and 
both the sphere and convex-hull Wrapper Tree construc- 
tions in C t t .  A 12,000-polygon scene takes less than 
five minutes to process from scratch if the input prim- 
itives are not too packed. This time can be cut by 
orders of magnitude if instead of starting from scratch 
(1) component objects are pre-grouped and processed 
separately first, and (2) repeated component groups are 
processed separately and then copy-moved. Construct- 
ing the Wrapper Tree from the Subset Tree takes sec- 
onds to minutes, depending on the wrapper-type used. 
We provide illustrative examples. 

1.4 Previous and Related Work 
There is much previous work in hierarchical represen- 
tations of geometrical objects. A good starting point 
reference on the use of hierarchical representations in 
collision avoidance is Faverjon F S 7 ,  Fav891. Work 
on the construction of the hierarchical representations 
falls into three categories: progressive refinement hi- 
erarchies, space subdivision, and constructive solid ge- 
ometry (CSG). While CSG [ReqSO] is not related to our 
work, the other two are. 

Notable early work in progressive refinement hierar- 
chies includes that of Clark [Cla76], who describes no 
constructions but introduces a recursive-descent algo- 
rithmic paradigm and other important concepts. Rubin 
and Whitted [RWSO] suggest a sort of clustering for 
automating the hierarchy construction from primitives. 
Weghorst, Hooper, and Greenberg [WHGS4] describe 
an optimality measure for these hierarchies for ray- 
tracing, but require construction by the user. Goldsmith 
and Salmon [GS87] present an implemented method for 
automatically generating hierarchies of convex bound- 
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ing volumes. Their algorithm is similar to a “top-down” 
version of ours, but it has less control over the structural 
and spatial balance and depends on randomization for 
protection against “badly ordered data”. One motiva- 
tion for the presented work was to ensure desirable tree 
properties. 

To speed collision detection, Quinlan [Qui941 con- 
structs hierarchies of spheres using a divideand- 
conquer method off-line. Earlier work by DelPobil, 
et al [dPSL92] constructs a representation with a given 
number of spheres, but restricts the input. Hubbard 
[Hub941 directly optimizes the tightness of the approx- 
imate representation at each level and includes bounds 
on the distance between each sphere and the object. His 
use of a medial-axis computation slows the method con- 
siderably, but it appears useful for off-line processing. 

Related spatial-subdivision algorithms fall into two 
categories: those based on binary space partitioning 
(BSP) trees [FKN80] and those based on octrees. BSP 
trees and variants such as Vanecek‘s B-Rep Index have 
been used effectively in clash detection and modeling 
BADO, Nay92, Van911. However, these structures 
have not yet been shown to be efficient for distance 
computation or the creation of general progressive 
refinement hierarchies. Octrees for representing 3D g e  
ometric objects have been in the literature for at least a 
decade and a half; see [Man881 for a review. Extended 
octrees (see [BN90], for example) are more economi- 
cal and permit exact representations. Octrees have also 
been used to create initial structures in generating other 
hierarchies [Hub93]. Non-uniform hierarchical space 
subdivisions based on balancing the number of primi- 
tives on each side of a cutting plane have also been used 
to create hierarchies, as reported by Zachmann and Fel- 
ger [ZF95]. Although this type of partitioning is very 
fast, our previous experiments with a similar algorithm 
showed that the hierarchical representations were more 
prone to grouping artifacts than what we present here. 

2 Building Hierarchies Via A Clus- 
tering Technique 

2.1 Basic Idea: A Hierarchical Clustering 
Technique 

We now describe the Grouping Phase of our algorithm. 
Recall that the general idea is to use a heuristic clus- 

tering technique to build a Subset Tree whose leaves 
contain the input primitives. Because of the need to 
handle inputs of size lo3 to size lo5, we must rule out 
any algorithm with an expected runtime of O(N2) or 
more. While we can’t minimize cost (1) because of un- 
known distributions, we still want to have some control 
over spatial balance, structural balance, and coherence. 
Intuitively, this points to some sort of bottom-up con- 
struction. 

Specifically, we had the following basic idea: 

0 Maintain a collection of nodes without parents. 

0 Until this collection contains just one node (the 
root of the Subset Tree), do the following: consider 
the convex hulls of the contents of pairs of nodes, 
and make a parent for the pair whose convex-hull 
diameter is minimal. 

We call making two nodes the children of a new node 
merging them. This also entails conceptually combining 
the sets that corresponding to the node and creating a 
new p-set wrapper for the resulting set. 

One problem with this approach is it appears to be 
at least O(N2 log N) because of the number of node 
pairs that need to be considered. In addition, it lacks 
control over coherence; it ignores the heuristic that it 
is qualitatively better to merge two nodes if they are 
spatially contiguous or close than if they are slightly 
smaller but not contiguous. 

Our solution to both problems is based on the obser- 
vation that the diameter of new parent grows monotoni- 
cally. Let us assume that the primitives are not long and 
skinny (or flat) and not closely packed like uncooked 
spaghetti. Then, suppose we set a diameter limit, and 
only consider pairs of nodes with p-set wrappers that 
have smaller diameters and centers that are closer than 
this diameter; when the queue is empty, we simply dou- 
ble the diameter limit. If the limit is set appropriately, 
this greatly cuts the number of nodes any given node 
could merge with. In fact, if we bound the aspect ra- 
tios of the primitives, then each node can merge with at 
most a constant number of others. This cuts the length 
of the queue of pairs of parent-less nodes to O(N). 
Furthermore, by spatially hashing the parent-less nodes, 
we make constant the time it takes to determine which 
nodes another node can merge with. 
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2.2 The Clustering Algorithm 
There are other factors we might want to consider in 
determining the priority of merging a pair of nodes. We 
define the Balance of a node to be the greater ratio of 
diameters of its children. We define the Fill of a node to 
be the ratio of its diameter to the sum of the diameters of 
its children. These measures can be used in assigning the 
Cost of merging a pair of nodes. The cost is associated 
with the p-set wrapper of the would-be new node. We 
have been experimenting with a Cost of the form: 

Cost = diametefl x ( B  x Fill + C x Balance), (2)  

where A, B, and C, are non-negative constants. 
Roughly, increasing A improves spatial balance of the 
hierarchy. B and C are used to tune the emphases on 
spatial coherence and structural balance. 

To speed the algorithm, instead of using convex hulls 
for the geometric extent of nodes and L2 distance to 
measure gaps, we can use axis-aligned bounding boxes 
and L, distance. We will use the term body to refer to 
a node, its p-set wrapper, and the set contained by that 
node. We now sketch the algorithm. 

1. 

2. 

3. 

4. 

Let GLimit be the maximum gap allowed between 
two bodies to be merged. This must be positive 
if the data may contain more than one connected 
component. Let DLimit be the maximum diameter 
of bodies eligible for merging. 

If there is only one parent-less body, return it; it 
is the root of the Subset Tree. Otherwise, let the 
set of active bodies ABods be the set of parent-less 
bodies that obey DLimit. Let rest of the parent-less 
bodies form the set of dormant bodies DBods. 

Let CSize = DLimit + GLimit. Subdivide the 
bounding box of the input into voxels of edge 
length CSize to create a body-center occupancy ar- 
ray. Then scan in the centers of the active bodies to 
determine possible eligible pairs, and use the gap 
limit GLimit to filter these to obtain the queue of 
eligible pairs MPairs sorted by increasing Cost. 

Until MPairs is empty do the following: 

(a) Pop off the first pair in MPairs, and remove 
other pairs that share an element with this 
pair. Create a merged body from this pair. 
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(b) If this body meets the DLimit criterion, then 
add it to the set ABods and determine which 
other members ofABods it is eligible to merge 
with, using and updating the array from step 
3. Enqueue the new eligible pairs in MPairs. 

(c) Otherwise, add the new body to DBods. 

5 .  Double DLimit and GLimit. Go to 2. 

2.3 Subset n e e  Analysis 
We now present an informal analysis of the algorithm. 

Since the hierarchy is a binary tree with N leaves, 
exactly N - 1 interior nodes are created, and at most 
N bodies (nodes) are active at any time. Let us assume 
that during the construction no body is eligible to merge 
with more than k other bodies for some constant k that 
depends on how “pathological” the input is. We justify 
the assumption by considering the case in which input is 
uniformly sized and uniformly distributed and in which 
(2) is simplified to be diameter. The key observation is 
that because DLimit doubles in step 4 and the ordering 
of MPairs favors the creation of roughly cuboid bodies, 
doubling the DLimit and GLimit in step four does not, 
on average, increase the number of bodies any one body 
is eligible to merge with. 

The assumption justified, it follows that the maxi- 
mum length of the queue MPairs is kN, and at most 
kN queue operations are performed. These operations 
take total time O(kN(1ogk + logN)) time. Further- 
more, consulting the array of lists in steps 3 and 4(b) 
also takes a constant amount of time dependent on k for 
each body. We note that the array can be implemented 
virtually with a spatial hash table, using array coordi- 
nates as keys and cell contents as data; thus, the storage 
for the array only really need be size O(N). The other 
operations are constructing the geometric extents of the 
bodies, merging them, and determining the diameters 
and gaps. Assuming that we use axis-aligned bounding 
boxes, each takes constant time. Since all other indi- 
vidual operations are constant time, the total running 
time is then O(kN(1ogK + logN), or O(N log N )  for 
a given quality of input. In the worst case, with “patho- 
logical” inputs such as a box of spaghetti, the constant 
k is replaced by N .  Thus the worst case running time 
is O(N210gN). Finally, ordering of MPairs also bal- 
ances the tree to be of O(1og N )  depth, with the constant 
depending on the Cost function and the quality of the in- 
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put; the assumption about the ratio between greatest and 
least diameters among the input primitives also comes 
into play. 

We note that if convex hulls are used to model g e  
ometric extent, then each merge takes time O(n1ogn) 
for a pair with O(n) vertices. However, if we assume 
the input primitives each have a constant-bounded num- 
ber of vertices, then the overall running time would be 
O(N l o g  N) because of the balance of the tree. 

2.4 Building a Geometric Hierarchy 
To construct the Wrapper Tree for the output of our al- 
gorithm, we do a depth-first traversal of the Subset Tree, 
assigning a wrapper to each node once we’re done with 
its descendents. There are two ways we can assign a 
wrapper to a parent node. The first option is to geomet- 
rically merge the wrappers at its children. The second is 
to create a wrapper that geometrically covers the primi- 
tives at the leaves of its subtrees -Le., the members of 
the set at the corresponding node in the Subset Tree. If 
we use convex hulls for the wrapper type, then these op- 
tions are geometrically identical, costing O(N l o g  N) 
overall. However, if we use bounding spheres, bounding 
boxes, bounding ellipsoids, or any other sort of convex 
object for wrappers, then the second option results in 
geometric hierarchies that cover the collection of input 
primitive much more tightly. 

The apparent advantage of the first option is that for 
bounding spheres, bounding boxes, and bounding el- 
lipsoids, the cost of merging a pair is constant, so that 
the overall time for this phase would be O(N). How- 
ever, for axis-aligned bounding boxes, the constructions 
are identical. In addition, we note that computing an 
approximately minimum bounding sphere or rectangu- 
lar prism for n points takes time O(n) [wu92]. Fur- 
thermore, a bounding sphere or bounding prism of the 
vertices of a collection of convex polygons and convex 
polyhedra bounds the collection itself. Recalling that 
we assume a constant-bounded number of vertices on 
each input primitive and that the Subset Tree will be 
of depth O(1og N), we see that the cost of computing a 
Wrapper Tree of bounding-spheres or rectangular prisms 
directly from the corresponding nodes in the Subset Tree 
is O(N log N), which is perfectly acceptable since the 
constant is small and this complexity matches the cost of 
constructing the Subset Tree with axis-aligned bounding 
boxes as p-set wrappers. 

3 Implementation and Examples 

3.1 Implementation 

We have completed a preliminary implementation of our 
algorithm in C++. By “preliminary” we mean that we 
have not yet attempted to optimize our code, e.g., by 
using singlefloats wherever possible or using malloc- 
frugal memory management. For computing bounding 
spheres we use axis-aligned bounding-box centers. We 
use the Quickhull code from theuniversity of Minnesota 
for computing convex hulls. We began our implemen- 
tation on a Sun SPARCStation 10/51; we are currently 
developing the code on an SGI Indigo2 R44OOl200. 

3.2 Examples 

We have tested with this implementation on a variety 
of inputs of up to 12,000 polygons. In this section we 
present some illustrativeexamples. In all cases we used 
axis-aligned bounding boxes for p-set wrappers when 
building the Subset Tree. 

Figure 1 shows four levels of a tree generated with 
a 276-polygon robot base model as input, which yields 
a 12- or 13-level tree. (There is some randomization 
when ties occur.) The first frame shows the input. The 
second, third, and fourth frames show different levels 
of the bounding-sphere Wrapper Tree, progressing to 
the root. Leaves that are at or below the traversal level 
are represented as polygons, while interior nodes are 
represented as spheres. The three frames show repre- 
sentations of 251,104, and, 8 nodes, respectively. Note 
that our clustering method does not guarantee a bound 
on structural balance; however, the implementation has 
mostly generated trees no more than 2 log2 N deep. 

Figure 2 demonstrates the difference between the 
Subset Tree and the Wrapper Tree. The first frame 
shows a 626-polygon model of a lamp. For this input, 
the implementation produced hierarchies 16 or 17 lev- 
els deep. The next three frames again show different 
tree levels, with 414, 167, and 4 nodes respectively. 
The last two frames show 167- and 4-node levels of the 
corresponding convex-hull Wrapper Tree constructed 
from the same Subset Tree. The quality of the convex- 
hull Wrapper Tree suggests that our algorithm would 
produce very good hierarchies of bounding ellipses or 
rectangular prisms. 

Our next example (Figure 3) illustrates a convex-hull 
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Figure 1: Four levels of the sphere hierarchy constructed 
from the 276-polygon model of a robot base part. 

Wrapper Tree and shows again that using axis-aligned 
bounding boxes for p-set wrappers produces a good Sub- 
set Tree. The first frame shows a 3 130-polygonexample 
generated by replicating and randomly moving the lamp 
model four times. The second frame shows the 8-node 
level of the 21-level tree produced by our implemen- 
tation in 40 seconds. Thus, three levels from the root, 
eight convex hulls cover the five lamps. Using boundary 
connectivity analysis to pregroup the input for separate 
(pre)processing would result in reduced overall running 
time and probably a lower-volume covering at this tree 
level. 

Our final example (Figure 4) was generated by repli- 
cating and randomly moving the 43 times. The input 
to the algorithm was the resulting 12144-polygon list; 
this is shown in the first frame. Execution time was 
about 250 seconds. Increasing the average spacing so 
that fewer objects intersect decreases the running time. 
The second and third frames show two Wrapper Tree 
levels of 1604 and 126 nodes, respectively. 

6 

Figure 2: Four levels of the sphere hierarchy constructed 
from the 626-polygon model of a lamp; two levels from 
the convex-hull Wrapper tree. 

__.., ... I__-, .__-.._ . ...... l,,ll. ."x.,," . . . . . . . . . . . .  

Figure 3: Multiple lamps, 3 130 polygons; convex-hull 
Wrapper Tree level of 8 nodes. 

4 Futurework 
There are many directions for future work - in appli- 
cations, in improving our algorithm, and in combining 
hierarchical techniques with other methods for distance 
computation and collision detection. We are currently 
implementing a distance computation algorithm similar 
to that of [Qui941 for amotion-planningapplication, and 
this application is certain to drive further research. 

Towards improving our algorithm, the first question 
that arises is how to better handle large and flat or long 
and thin input primitives, such as the polygons that 
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Figure 4: Three levels from the hierarchy constructed 
from a 12,144-polygon input. 

model the surface of the lamp arm. A simple approach 
would be to preprocess the input to obtain polygons or 
polyhedra with limited aspect (primary-axis:secondary- 
axis) ratios, but this is only a partial answer. In addition, 
we would like to study the structure of the trees pro- 
duced, in order to improve our control over structural 
and spatial balance. It would be also useful for the algo- 
rithm to compute bounds tightness of the approximation. 

Another issue that arises is how to adapt the algorithm 
or use its output to produce a "near-optimal" collection 
of wrappers that cover the input, given a limit on the size 
of this output. We see this as a step to combining hier- 
archical representations with Baraff's [Bar901 and Lin's 
LMC941 technique of updating bounding-box relation- 
ships. Their "Sweep and Prune" technique is faster than 
hierarchical techniques for contact-set detection when 

more than a certain fraction of primitives are close, and 
it is also advantageous when there are multiple moving 
bodies or the bodies are not rigid. However, there is 
the disadvantage that without some hierarchical orga- 
nization, all the primitives must be updated. (This is 
somewhat unavoidable when the objects are flexible.) 
Furthermore, since Canny's and Lin's method [CL91] 
for computing the distance between collections of poly- 
gons that form the boundaries of two convex objects is a 
clear winner over tree-walking' a complete framework 
would include an algorithm for lopping off maximum 
convex boundary sections. 

Finally, we would like to pursue a more efficient al- 
gorithm. The current algorithm is a suitable tool for use 
with input size up to lo3, and it appears quite fast for 
off-line use with input sizes into the io4 range. While 
models and scenes are often broken up into individual 
object models each well within this range, in certain ap- 
plications we encounter raw model data that is orders of 
magnitude larger. We are currently pursuing a top-down 
algorithm based on Goldsmith and Salmon [GS87] that 
promises a smaller time-constant than that of our cur- 
rent algorithm; key extensions will improve control over 
coherence and spatial and structural balance. 

5 Conclusions 
We have presented a general, bottom up clustering tech- 
nique for automatically building hierarchical represen- 
tations of objects. The first phase of the technique em- 
ploys a heuristic clustering technique to construct a bi- 
nary Subset Tree in time O(N2ZogN) worst-case and 
O(NZogN) expected. The second phase then uses this 
hierarchy to construct a Wrapper Tree of geometric ob- 
jects using any of variety of primitives. 

Our preliminary C t t  implementation builds a sphere 
hierarchy from a 12,000-polygon input in less than five 
minutes. Most of this is spent in the grouping algo- 
rithm. Future work includes incorporating the tech- 
nique into general distance computation and collision- 
detection schemes and investigating whether Goldsmith 
and Salmon's faster "top-down'' grouping technique can 
be used while maintaining adequate control over char- 
acteristics of the hierarchies. 
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