
~ @ ~ 0 9 ~ - Z Z S 9 &
Submitted to 1996 IEEE Int'l Con$ on Robotics and Automation

A Generic Algorithm for Constructing Hierarchical

RECEIVED Representations of Geometric Objects*

Patrick G. Xavier OCT 9 1 1995

O S T I Sandia National Laboratories, Albuquerque NM 87 185-095 1

Abstract:

For a number of years, robotics researchers have
exploited hierarchical representations of geometri-
cal objects and scenes in motion-planning, collision-
avoidance, and simulation. However, few general
techniques exist for automatically constructing them.
We present a generic, bottom-up algorithm that uses
a heuristic clustering technique to produced balanced,
coherent hierarchies. Its worst-case running time
is O(N2ZogN), but for non-pathological cases it is
O(NZogN), where N is the number of inputprimitives.

We have completed a preliminary C++ implemen-
tation for input collections of 3D convex polygons and
3D convex polyhedra and conducted simple experiments
with scenes of up to 12,000 polygons, which take only
a few minutes to process. We present examples using
spheres and convex hulls as hierarchy primitives.

1 Introduction

1.1 Overview

For a number of years, the robotics community has uti-
lized hierarchical geometric representations to avoid all
pairs comparisons in distance computations and col-
lision detection, with motion planning being the main
application. (For example, see [FT87, Qui941.) The
automatic generation of hierarchical geometric repre-
sentations, however, is still a research area, especially if
one wants to control properties such as spatial balance,
structural balance, coherence, and tightness.

This research was supporkd by DOE Contract DEACO4-
94AL85000, and by the Laboratory Directed Research and Devel-
opment Office of Sandia National Laboratories.

We present a practical generic algorithm for gener-
ating hierarchical representations. Our algorithm is
generic in that it can be applied to collections of any con-
vex primitive, e.g., a scene of composed of convex poly-
gons or polyhedra. The core of the algorithm is a greedy
bottom-up clustering technique that constructs a tree of
sets. Tuning parameters allow control of the balance
of desirable properties. A hierarchy of convex solids
is then constructed by walking the tree. Our algorithm
is practical in that is runs in time roughly O(N log N);
our preliminary C++ implementation takes less than five
minutes to construct hierarchical groupings from inputs
of over 10,000 polygons. Building a hierarchy of solids
takes seconds to minutes, depending on the solids and
the desired tightness of the geometrical approximation.

1.2 Context
Geometric query algorithms (e.g., distance) frequently
take tree-structured representations as input. A typical
representation is a tree whose nodes each contain a ge-
ometricprimitive, such as a sphere, convex polygon, or
convex polyhedron. The subtree rooted at a node repre-
sents the union of the primitives at its leaves. We require
that each node of a hierarchical geometric representa-
tion contain a conservative approximation, or wrapper,
of the object represented by its subtree.

A typical branch-and-bound algorithm to answer a
query about the geometric object represented by such a
tree does a partial traversal, making a local query about
the wrapper or primitive at each node it visits. Thus, a
optimal tree would minimize

cr(~>P(a>s (1)
ac(nodes)

where q(a) is the cost of answering the local query to

,

a and p (a) is the probability that a local query at a will
be made in answering a global query. The catch is that
even the relative probabilities are generdly not known.

There are, however, several applicable heuristic prop-
erties. First, a structurally balanced tree is suited for
the divide-and-conquer nature of distance computation.
Second, it is intuitive that the probability that a node
is “relevant” to a query would grow with its volume.
This leads to the principle that a tree should be spa-
tially balanced. Third, we desire spatially coherent
trees, in which represented geometric objects that are
spatially close are also structurally close. Not only are
spatially coherent trees intuitively good according to the
expression above, but because they agree with human
intuition, algorithms that make use of the them would
be more likely to perform as expected.

1.3 Our Results

We present a generic algorithm for the following prob-
lem. Given a collection of N geometric primitives for
which convex wrappers can be efficiently computed,
construct a hierarchy of convex geometric primitives
such that (a) its leaves cover the input primitives, and
(b) each node contains a wrapper for the objects at the
leaves of the subtree rooted at it. We assume that the
diameter of the largest primitive in the input is at most
N orders of magnitude greater than that of the smallest.

Our approach has two parts. First, in the Grouping
Phase, we construct a binary tree of sets, with edges cor-
responding to the subset relationship. This tree is called
the Subset Tree. Second, in the Geometrical Construc-
tion Phase, we construct a structurally identical Wrap-
per Tree, in which each node contains a convex wrapper
that spatially covers the union of the set elements at the
corresponding node in the Subset Tree. Each Wrap-
per Tree leaf contains the geometric primitive from the
corresponding Subset Tree leaf.

We first describe a generic algorithm for the Grouping
Phase. This algorithm represents the spatial extent of a
set of geometric primitives with a convex p-set wrap-
per,which can be any solid geometric primitive, and uses
a heuristic clustering technique to pair up nodes to be
siblings. Our description treats creating and merging of
p-set wrappers as bottom-level operations. Parameters
to a cost function can be used to control the relative em-
phases on structural balance, spatial balance, and spatial
coherence. We present an informal analysis for the case

Submitted to 1996 IEEE Int’l Con$ on Robotics and Automation

in which the p-set wrappers are axis-aligned bounding-
boxes. The analysis yields a worst case running time is
O(N2 log N), with an O(N logN) expected case under
certain assumptions. We also show that using convex
hulls for p-set wrappers yields an O(N2 102 N) worst
case, with O(N2 log N) expected.

Recall that any convex primitive can be used for the
wrapper type in constructing the Wrapper Tree. We
describe three straightforward techniques for the Con-
struction Phase: an O(N2 log N) method using convex
hulls as primitives, an O(N) bounding sphere technique,
and an O(N log N) bounding sphere technique that pro-
duces much tighter hierarchies.

We have implemented the grouping algorithm and
both the sphere and convex-hull Wrapper Tree construc-
tions in C t t . A 12,000-polygon scene takes less than
five minutes to process from scratch if the input prim-
itives are not too packed. This time can be cut by
orders of magnitude if instead of starting from scratch
(1) component objects are pre-grouped and processed
separately first, and (2) repeated component groups are
processed separately and then copy-moved. Construct-
ing the Wrapper Tree from the Subset Tree takes sec-
onds to minutes, depending on the wrapper-type used.
We provide illustrative examples.

1.4 Previous and Related Work
There is much previous work in hierarchical represen-
tations of geometrical objects. A good starting point
reference on the use of hierarchical representations in
collision avoidance is Faverjon F S 7 , Fav891. Work
on the construction of the hierarchical representations
falls into three categories: progressive refinement hi-
erarchies, space subdivision, and constructive solid ge-
ometry (CSG). While CSG [ReqSO] is not related to our
work, the other two are.

Notable early work in progressive refinement hierar-
chies includes that of Clark [Cla76], who describes no
constructions but introduces a recursive-descent algo-
rithmic paradigm and other important concepts. Rubin
and Whitted [RWSO] suggest a sort of clustering for
automating the hierarchy construction from primitives.
Weghorst, Hooper, and Greenberg [WHGS4] describe
an optimality measure for these hierarchies for ray-
tracing, but require construction by the user. Goldsmith
and Salmon [GS87] present an implemented method for
automatically generating hierarchies of convex bound-

2

Submitted to 1996 IEEE Int’l Con. on Robotics and Automation

ing volumes. Their algorithm is similar to a “top-down”
version of ours, but it has less control over the structural
and spatial balance and depends on randomization for
protection against “badly ordered data”. One motiva-
tion for the presented work was to ensure desirable tree
properties.

To speed collision detection, Quinlan [Qui941 con-
structs hierarchies of spheres using a divideand-
conquer method off-line. Earlier work by DelPobil,
et al [dPSL92] constructs a representation with a given
number of spheres, but restricts the input. Hubbard
[Hub941 directly optimizes the tightness of the approx-
imate representation at each level and includes bounds
on the distance between each sphere and the object. His
use of a medial-axis computation slows the method con-
siderably, but it appears useful for off-line processing.

Related spatial-subdivision algorithms fall into two
categories: those based on binary space partitioning
(BSP) trees [FKN80] and those based on octrees. BSP
trees and variants such as Vanecek‘s B-Rep Index have
been used effectively in clash detection and modeling
BADO, Nay92, Van911. However, these structures
have not yet been shown to be efficient for distance
computation or the creation of general progressive
refinement hierarchies. Octrees for representing 3D g e
ometric objects have been in the literature for at least a
decade and a half; see [Man881 for a review. Extended
octrees (see [BN90], for example) are more economi-
cal and permit exact representations. Octrees have also
been used to create initial structures in generating other
hierarchies [Hub93]. Non-uniform hierarchical space
subdivisions based on balancing the number of primi-
tives on each side of a cutting plane have also been used
to create hierarchies, as reported by Zachmann and Fel-
ger [ZF95]. Although this type of partitioning is very
fast, our previous experiments with a similar algorithm
showed that the hierarchical representations were more
prone to grouping artifacts than what we present here.

2 Building Hierarchies Via A Clus-
tering Technique

2.1 Basic Idea: A Hierarchical Clustering
Technique

We now describe the Grouping Phase of our algorithm.
Recall that the general idea is to use a heuristic clus-

tering technique to build a Subset Tree whose leaves
contain the input primitives. Because of the need to
handle inputs of size lo3 to size lo5, we must rule out
any algorithm with an expected runtime of O(N2) or
more. While we can’t minimize cost (1) because of un-
known distributions, we still want to have some control
over spatial balance, structural balance, and coherence.
Intuitively, this points to some sort of bottom-up con-
struction.

Specifically, we had the following basic idea:

0 Maintain a collection of nodes without parents.

0 Until this collection contains just one node (the
root of the Subset Tree), do the following: consider
the convex hulls of the contents of pairs of nodes,
and make a parent for the pair whose convex-hull
diameter is minimal.

We call making two nodes the children of a new node
merging them. This also entails conceptually combining
the sets that corresponding to the node and creating a
new p-set wrapper for the resulting set.

One problem with this approach is it appears to be
at least O(N2 log N) because of the number of node
pairs that need to be considered. In addition, it lacks
control over coherence; it ignores the heuristic that it
is qualitatively better to merge two nodes if they are
spatially contiguous or close than if they are slightly
smaller but not contiguous.

Our solution to both problems is based on the obser-
vation that the diameter of new parent grows monotoni-
cally. Let us assume that the primitives are not long and
skinny (or flat) and not closely packed like uncooked
spaghetti. Then, suppose we set a diameter limit, and
only consider pairs of nodes with p-set wrappers that
have smaller diameters and centers that are closer than
this diameter; when the queue is empty, we simply dou-
ble the diameter limit. If the limit is set appropriately,
this greatly cuts the number of nodes any given node
could merge with. In fact, if we bound the aspect ra-
tios of the primitives, then each node can merge with at
most a constant number of others. This cuts the length
of the queue of pairs of parent-less nodes to O(N).
Furthermore, by spatially hashing the parent-less nodes,
we make constant the time it takes to determine which
nodes another node can merge with.

3

Submitted to 1996 IEEE Int’l Con. on Robotics and Automation

2.2 The Clustering Algorithm
There are other factors we might want to consider in
determining the priority of merging a pair of nodes. We
define the Balance of a node to be the greater ratio of
diameters of its children. We define the Fill of a node to
be the ratio of its diameter to the sum of the diameters of
its children. These measures can be used in assigning the
Cost of merging a pair of nodes. The cost is associated
with the p-set wrapper of the would-be new node. We
have been experimenting with a Cost of the form:

Cost = diametefl x (B x Fill + C x Balance), (2)

where A, B, and C, are non-negative constants.
Roughly, increasing A improves spatial balance of the
hierarchy. B and C are used to tune the emphases on
spatial coherence and structural balance.

To speed the algorithm, instead of using convex hulls
for the geometric extent of nodes and L2 distance to
measure gaps, we can use axis-aligned bounding boxes
and L, distance. We will use the term body to refer to
a node, its p-set wrapper, and the set contained by that
node. We now sketch the algorithm.

1.

2.

3.

4.

Let GLimit be the maximum gap allowed between
two bodies to be merged. This must be positive
if the data may contain more than one connected
component. Let DLimit be the maximum diameter
of bodies eligible for merging.

If there is only one parent-less body, return it; it
is the root of the Subset Tree. Otherwise, let the
set of active bodies ABods be the set of parent-less
bodies that obey DLimit. Let rest of the parent-less
bodies form the set of dormant bodies DBods.

Let CSize = DLimit + GLimit. Subdivide the
bounding box of the input into voxels of edge
length CSize to create a body-center occupancy ar-
ray. Then scan in the centers of the active bodies to
determine possible eligible pairs, and use the gap
limit GLimit to filter these to obtain the queue of
eligible pairs MPairs sorted by increasing Cost.

Until MPairs is empty do the following:

(a) Pop off the first pair in MPairs, and remove
other pairs that share an element with this
pair. Create a merged body from this pair.

4

(b) If this body meets the DLimit criterion, then
add it to the set ABods and determine which
other members ofABods it is eligible to merge
with, using and updating the array from step
3. Enqueue the new eligible pairs in MPairs.

(c) Otherwise, add the new body to DBods.

5 . Double DLimit and GLimit. Go to 2.

2.3 Subset n e e Analysis
We now present an informal analysis of the algorithm.

Since the hierarchy is a binary tree with N leaves,
exactly N - 1 interior nodes are created, and at most
N bodies (nodes) are active at any time. Let us assume
that during the construction no body is eligible to merge
with more than k other bodies for some constant k that
depends on how “pathological” the input is. We justify
the assumption by considering the case in which input is
uniformly sized and uniformly distributed and in which
(2) is simplified to be diameter. The key observation is
that because DLimit doubles in step 4 and the ordering
of MPairs favors the creation of roughly cuboid bodies,
doubling the DLimit and GLimit in step four does not,
on average, increase the number of bodies any one body
is eligible to merge with.

The assumption justified, it follows that the maxi-
mum length of the queue MPairs is kN, and at most
kN queue operations are performed. These operations
take total time O(kN(1ogk + logN)) time. Further-
more, consulting the array of lists in steps 3 and 4(b)
also takes a constant amount of time dependent on k for
each body. We note that the array can be implemented
virtually with a spatial hash table, using array coordi-
nates as keys and cell contents as data; thus, the storage
for the array only really need be size O(N). The other
operations are constructing the geometric extents of the
bodies, merging them, and determining the diameters
and gaps. Assuming that we use axis-aligned bounding
boxes, each takes constant time. Since all other indi-
vidual operations are constant time, the total running
time is then O(kN(1ogK + logN), or O(N log N) for
a given quality of input. In the worst case, with “patho-
logical” inputs such as a box of spaghetti, the constant
k is replaced by N . Thus the worst case running time
is O(N210gN). Finally, ordering of MPairs also bal-
ances the tree to be of O(1og N) depth, with the constant
depending on the Cost function and the quality of the in-

. - - . . - - . . _-_.- . - . . . - .*
I , . .

Submitted to 1996 IEEE Int’l Con$ on Robotics and Automation

put; the assumption about the ratio between greatest and
least diameters among the input primitives also comes
into play.

We note that if convex hulls are used to model g e
ometric extent, then each merge takes time O(n1ogn)
for a pair with O(n) vertices. However, if we assume
the input primitives each have a constant-bounded num-
ber of vertices, then the overall running time would be
O(N l o g N) because of the balance of the tree.

2.4 Building a Geometric Hierarchy
To construct the Wrapper Tree for the output of our al-
gorithm, we do a depth-first traversal of the Subset Tree,
assigning a wrapper to each node once we’re done with
its descendents. There are two ways we can assign a
wrapper to a parent node. The first option is to geomet-
rically merge the wrappers at its children. The second is
to create a wrapper that geometrically covers the primi-
tives at the leaves of its subtrees -Le., the members of
the set at the corresponding node in the Subset Tree. If
we use convex hulls for the wrapper type, then these op-
tions are geometrically identical, costing O(N l o g N)
overall. However, if we use bounding spheres, bounding
boxes, bounding ellipsoids, or any other sort of convex
object for wrappers, then the second option results in
geometric hierarchies that cover the collection of input
primitive much more tightly.

The apparent advantage of the first option is that for
bounding spheres, bounding boxes, and bounding el-
lipsoids, the cost of merging a pair is constant, so that
the overall time for this phase would be O(N). How-
ever, for axis-aligned bounding boxes, the constructions
are identical. In addition, we note that computing an
approximately minimum bounding sphere or rectangu-
lar prism for n points takes time O(n) [wu92]. Fur-
thermore, a bounding sphere or bounding prism of the
vertices of a collection of convex polygons and convex
polyhedra bounds the collection itself. Recalling that
we assume a constant-bounded number of vertices on
each input primitive and that the Subset Tree will be
of depth O(1og N), we see that the cost of computing a
Wrapper Tree of bounding-spheres or rectangular prisms
directly from the corresponding nodes in the Subset Tree
is O(N log N), which is perfectly acceptable since the
constant is small and this complexity matches the cost of
constructing the Subset Tree with axis-aligned bounding
boxes as p-set wrappers.

3 Implementation and Examples

3.1 Implementation

We have completed a preliminary implementation of our
algorithm in C++. By “preliminary” we mean that we
have not yet attempted to optimize our code, e.g., by
using singlefloats wherever possible or using malloc-
frugal memory management. For computing bounding
spheres we use axis-aligned bounding-box centers. We
use the Quickhull code from theuniversity of Minnesota
for computing convex hulls. We began our implemen-
tation on a Sun SPARCStation 10/51; we are currently
developing the code on an SGI Indigo2 R44OOl200.

3.2 Examples

We have tested with this implementation on a variety
of inputs of up to 12,000 polygons. In this section we
present some illustrativeexamples. In all cases we used
axis-aligned bounding boxes for p-set wrappers when
building the Subset Tree.

Figure 1 shows four levels of a tree generated with
a 276-polygon robot base model as input, which yields
a 12- or 13-level tree. (There is some randomization
when ties occur.) The first frame shows the input. The
second, third, and fourth frames show different levels
of the bounding-sphere Wrapper Tree, progressing to
the root. Leaves that are at or below the traversal level
are represented as polygons, while interior nodes are
represented as spheres. The three frames show repre-
sentations of 251,104, and, 8 nodes, respectively. Note
that our clustering method does not guarantee a bound
on structural balance; however, the implementation has
mostly generated trees no more than 2 log2 N deep.

Figure 2 demonstrates the difference between the
Subset Tree and the Wrapper Tree. The first frame
shows a 626-polygon model of a lamp. For this input,
the implementation produced hierarchies 16 or 17 lev-
els deep. The next three frames again show different
tree levels, with 414, 167, and 4 nodes respectively.
The last two frames show 167- and 4-node levels of the
corresponding convex-hull Wrapper Tree constructed
from the same Subset Tree. The quality of the convex-
hull Wrapper Tree suggests that our algorithm would
produce very good hierarchies of bounding ellipses or
rectangular prisms.

Our next example (Figure 3) illustrates a convex-hull

5

Submitted to 1996 IEEE Int'l Con$ on Robotics and Automation

r.--- _._.I lllll.l̂ ll_lll___I__*___-_ . IF? .__
[

i

1 !
, - _, .. - i 6

I -

j

! i
,--

1
i 1

1
i
! !

t
1

I

Figure 1: Four levels of the sphere hierarchy constructed
from the 276-polygon model of a robot base part.

Wrapper Tree and shows again that using axis-aligned
bounding boxes for p-set wrappers produces a good Sub-
set Tree. The first frame shows a 3 130-polygonexample
generated by replicating and randomly moving the lamp
model four times. The second frame shows the 8-node
level of the 21-level tree produced by our implemen-
tation in 40 seconds. Thus, three levels from the root,
eight convex hulls cover the five lamps. Using boundary
connectivity analysis to pregroup the input for separate
(pre)processing would result in reduced overall running
time and probably a lower-volume covering at this tree
level.

Our final example (Figure 4) was generated by repli-
cating and randomly moving the 43 times. The input
to the algorithm was the resulting 12144-polygon list;
this is shown in the first frame. Execution time was
about 250 seconds. Increasing the average spacing so
that fewer objects intersect decreases the running time.
The second and third frames show two Wrapper Tree
levels of 1604 and 126 nodes, respectively.

6

Figure 2: Four levels of the sphere hierarchy constructed
from the 626-polygon model of a lamp; two levels from
the convex-hull Wrapper tree.

__.., ... I__-, .__-.._ l,,ll. ."x.,,"

Figure 3: Multiple lamps, 3 130 polygons; convex-hull
Wrapper Tree level of 8 nodes.

4 Futurework
There are many directions for future work - in appli-
cations, in improving our algorithm, and in combining
hierarchical techniques with other methods for distance
computation and collision detection. We are currently
implementing a distance computation algorithm similar
to that of [Qui941 for amotion-planningapplication, and
this application is certain to drive further research.

Towards improving our algorithm, the first question
that arises is how to better handle large and flat or long
and thin input primitives, such as the polygons that

Submitted to 1996 IEEE Int'l Con. on Robotics and Automation

Figure 4: Three levels from the hierarchy constructed
from a 12,144-polygon input.

model the surface of the lamp arm. A simple approach
would be to preprocess the input to obtain polygons or
polyhedra with limited aspect (primary-axis:secondary-
axis) ratios, but this is only a partial answer. In addition,
we would like to study the structure of the trees pro-
duced, in order to improve our control over structural
and spatial balance. It would be also useful for the algo-
rithm to compute bounds tightness of the approximation.

Another issue that arises is how to adapt the algorithm
or use its output to produce a "near-optimal" collection
of wrappers that cover the input, given a limit on the size
of this output. We see this as a step to combining hier-
archical representations with Baraff's [Bar901 and Lin's
LMC941 technique of updating bounding-box relation-
ships. Their "Sweep and Prune" technique is faster than
hierarchical techniques for contact-set detection when

more than a certain fraction of primitives are close, and
it is also advantageous when there are multiple moving
bodies or the bodies are not rigid. However, there is
the disadvantage that without some hierarchical orga-
nization, all the primitives must be updated. (This is
somewhat unavoidable when the objects are flexible.)
Furthermore, since Canny's and Lin's method [CL91]
for computing the distance between collections of poly-
gons that form the boundaries of two convex objects is a
clear winner over tree-walking' a complete framework
would include an algorithm for lopping off maximum
convex boundary sections.

Finally, we would like to pursue a more efficient al-
gorithm. The current algorithm is a suitable tool for use
with input size up to lo3, and it appears quite fast for
off-line use with input sizes into the io4 range. While
models and scenes are often broken up into individual
object models each well within this range, in certain ap-
plications we encounter raw model data that is orders of
magnitude larger. We are currently pursuing a top-down
algorithm based on Goldsmith and Salmon [GS87] that
promises a smaller time-constant than that of our cur-
rent algorithm; key extensions will improve control over
coherence and spatial and structural balance.

5 Conclusions
We have presented a general, bottom up clustering tech-
nique for automatically building hierarchical represen-
tations of objects. The first phase of the technique em-
ploys a heuristic clustering technique to construct a bi-
nary Subset Tree in time O(N2ZogN) worst-case and
O(NZogN) expected. The second phase then uses this
hierarchy to construct a Wrapper Tree of geometric ob-
jects using any of variety of primitives.

Our preliminary C t t implementation builds a sphere
hierarchy from a 12,000-polygon input in less than five
minutes. Most of this is spent in the grouping algo-
rithm. Future work includes incorporating the tech-
nique into general distance computation and collision-
detection schemes and investigating whether Goldsmith
and Salmon's faster "top-down'' grouping technique can
be used while maintaining adequate control over char-
acteristics of the hierarchies.

Acknowledgements
The author thanks Peter Watterberg (Sandia) and

Philip Hubbard (Cornell) for providing the geometric

7

Submitted to 1996 IEEE Int ' I Con. on Robotics and Automation

models used in our experiments. The author also thanks
Russell Brown and Pang Chen (Sandia) for their com-
ments and suggestions.

References
[BafiOI

PN901

[CL91]

[Cla76]

[dPSL92]

[Fav89]

m 8 0 1

F 8 7 1

[GS87]

[Hub931

[Hub941

&MC94]

D. Baraff. Curved surfaces and coherence for
nonpenetrating rigid body simulation. Computer
Graphics (Proc. SIGGRAPH), 24(4):19-28, Au-
gust 1990.
P. Brunet and I. Navazo. Solid representationa dn
operation using extended octrees. ACM Transac-
tions on Graphics, 9(2):170-197, April 1990.
J. Canny and M. C. Lin. A fast algorithm for incre-
mental distance calculation. In Proc. IEEE ICRA
I991, pages 1008-1014, Sacremento, California,
1991.
J. H. Clark. Hierarchical geometri models for vis-
ible surface algorithms. Communications of the

A. del Pobil, M. Sema, and J. Llovet. A new rep-
resentation for collision avoidance and detection.
In Proc. IEEE ICRA 1992, pages 246-251,1992.
B. Faverjon. Hierarchical object models for ef-
ficient anti-collision algorithms. In Proc. IEEE
ICRA 1989, pages 333-340, Scottsdale, AZ, 1989.
H. Fuchs, Z. Kedem, and B. Naylor. On visible
surface generation by a priori tree structures. In
Proc. OfACMSIGGRAPH, pages 124-133,1980.
B. Faverjon and P. Toumassoud. A local based
approach for path planning of manipulators with a
high number of degrees of freedom. In Proc. IEEE
ICRA I987, pages 1152-1 159,Raleigh, North Car-
olina, 1987.
J. Goldsmith and J. Salmon. Automatic creation
fo object heirarchies for ray tracing. IEEE Com-
puter Graphics andApplications,7(5):14-20, May
1987.
P. Hubbard. Interactive collision detection. In
Proc. IEEE Sumposium on Research Frontiers in
Krtual Reality, pages 24-31, October 1993.
P. Hubbard. Collision Detection for Interactive
Graphics Applications. PhD thesis, Brown Uni-
versity, Providence, RI, October 1994.
M. Lin, D. Manoucha, and J. Canny. Fast con-
tact determination in dynamic environments. In
Proc. IEEE ICRA 1994, pages 602607, San
Diego, CA, May 1994.

ACM, 19(10):547-555,1976.

Man881 M. Mantyla. An Introduction to Solid Modeling.
Computer Science Press, Rockville, MD, 1988.

I?IAT90] B. Naylor, J. Amanatides, and W. Thibault. Merg-
ing bsp trees yields polyhedral set operations.
Computer Graphics (Proc. SIGGRAPH 1990), 24,
August 1990.
B. Naylor. Interactive solid geometry via partition-
ing trees. In Proc. of Graphics Interface. pages
11-18, May 1992.

[Qui941 S. Quinlan. Efficient distance computation be-
tween non-convex objects. In Proc. 1994 IEEE
Int'l Conference on Robotics anddutomation, San
Diego, CA, 1994.
A. A. G. Requicha. Representations of solid ob-
jects - theory, methods, and systems. ACM Com-
puting Surveys, 12(4):437-464, December 1980.
S. Rubin and T. Whitted. A 3-dimensional rep-
resentation for fast rendering of complex scenes.
Computer Graphics (Proc. SIGGRAPH), pages
110-116, July 1980.

man911 G. Vanecek. Brep index, a multi-dimensional
space partitioning tree. In Proc. 1st ACM-
SIGGRAPH Symp. on Solid Modeling Founda-
tions and CAD/CAM Applications, pages 35-44,
Austin,TX, June 1991.

WG84-J H. Weghorst, G. Hooper, and D. Greenberg. Im-
proved computational methods for ray tracing.
ACM Trans. on Graphics, 3(1):52-69, January
1984.
Xiaolin Wu. A linear-time simple bounding vol-
ume algorithm. In D. Kirk, editor, Graphics Gems
111, pages 301-306. Academic Press, San Diego,
CA, 1992.
G. Zachmann and W. Felger. The box tree: En-
abling real time and exact collision detection of ar-
bitrary polyhedra. In Proc. 1st Workshop on Sim-
ulation and Interaction in Krtual Environments,
pages 104-113,Iowa City, IA, July 1995.

Way921

peq80]

RWSO]

[wu92]

[ZF95]

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thercof,.nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information; apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac:
turer, or otherwise does not necessarily constitute or imply its endorsement, mom-
mendation, or favoring by the United States Government or any agenby thereof.
The views and opinions of authors exprcssed'herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

,

'

,

,

.

