Proceedings of the 1996 International Conference on Robotics and AutonMithoreapolis, EUA, pp. 3714-3719.

OPTIMAL CONTROL SEQUENCE
FOR UNDERACTUATED MANIPULATORS

Marcel Bergerman Yangsheng Xu

The Robotics Institute
Carnegie Mellon University
Pittsburgh PA 15213 USA

Abstract this paper is how to select the passive joints in each group,

In this paper, we consider the problem of controlling an and_how ea<_:_h group can be asymptotically controlled to its
underactuated manipulator with less actuators than desired position. o
passive joints. The control methodology consists of More specifically, leh be the number of joints in the
dividing the passive joints in several groups, and of manipulatory be the number of actuators installed at the
controlling one group at a time via its dynamic coupling active joints, andp be the number of passive joints
with the actuators. Among the many possible control €quipped with brakes, whene= r+p . The passive joints
sequences for a given robot, we choose the optimal one@'® divided in groups afjoints each, except maybe for the
based on the dynamic programming method. The last group, which may contain less thigaints. The groups
optimization is based on a control cost defined as the are numbered from 1 tg the control scheme consists of
reciprocal of the coupling index, a measure of the dynamic controlling the joints in groupvia their dynamic coupling
coupling available between the active and the passive with the active joints, while the joints in all other groups are
joints of the manipulator. The detailed theory, kept locked. When all passive joints in grdugach their
computational procedures, simulation results, and set-points, they are locked and control of the joints in group

experimental results are presented. i+1 can be performed. After algroups of passive joints
] are controlled, the active ones are brought to their desired
1 Introduction set-points. The control problem is then solvefl in s+ 1
| phases.

Underactuated robot manipulators are fixed-base seria
chain mechanisms with both passive and active joints. The
study of such mechanisms is important for fault-tolerant

robot design, control of hyper-redundant robots, analysis link manipulator with one actuator. In this case 3 and

and ﬁon'trol (?Ifhspace rgbots, anq fﬁr thelanalysl[s of sporé there are 6 possible sequences for control of the 3 passive
mechanics. ese robots are inherently nonlinear an joints: 1.2-3, 1.3-2, 2.1-3, 2.3-1, 3.12,

nonholonomic, and some researchers have been working
on their control considering the nonholonomic constraints
[5], [6]. We, however, intend to study the control problem
by assuming that all passive joints are equipped with brakes
[1]. This allows us to constrain the robot to be holonomic
at every instant, and to use classical robot control
techniques in this new class of mechanisms. Control

cpntsrllst.s gf cont'rollmg tlhe paf(f]'\éﬁ JOIn';.S to their s(;:t-pmtrrl]ts joints, which we call the coupling index [2]. The greater the
via their dynamic coupling wi € aclive ones. Lnce ihe coupling index, the easier it is for the active joints to drive

passive joints converge, they are locked and the active oneso passive ones. Based on dynamic programming results,

canf.be cc;ntrol\lzﬂ untt':] the entt)lre r?bot rgache§ ta qef'md we ensure that the problem of dividing the passive joints in
configuration. e€n the number of passive JoInts 1S 1ess groups is globally optimum with respect to the coupling
than or equal to the number of active ones, all passive joints; - oy

can be controlled simultaneously. Because this specific

case has been studied by several authors—see [1], [3], [5],2 Problem definition

[7]—we restrict ourselves to the study of manipulators with . ) )

more passive joints than actuators. In this case, the passivé-onsider am-link underactuated manipulator, composed
joints have to be divided in several groups and each group©f I actuators located at the active joints, gngdassive

has to be controlled individually. The problem discussed in j0ints equipped with brakes. Assuming that there is

An apparent problem with the above control scheme is
that there are many different ways of choosing the joints to
be classified into each group. For example, consider a 4-

3-2-1. We take advantage of this redundancy to
minimize a control cost that is directly related to the
torques applied at the actuators. In other words, we use the
redundancy present in the system to minimize the energy
necessary for the control of the passive joints.

We use as control cost the reciprocal of a measure of
the dynamic coupling between the active and the passive
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sufficient dynamic coupling between the active and passive experimental results.) Note that control frogg to o
joints at every configuration of the mechanism, the requiresf = 4 phases, three of them for the control of the
manipulator can be driven indirectly by applying torques at passive joints. Note also that there is a total of 9 different
the actuators. The following is the control problem we are configurations of the manipulator, and 6 possible ways of
investigating: reaching g from gg. More generally, the case= 1
requiresn control phases, for a total of®l different

Given an initial and a final desired configurations of the ) . ; )
configurations, ang! possible ways of reachirggfrom qg.

manipulator, denoted bygcand g respectively, drive all
the joints so that after some time T >0, q(T)i= q

The case =p has been studied in our earlier work initial a0

and by other researchers as well (see [1], [3], [5], and [7]). Position
The solution consists of first controlling only the passive

joints to their desired set-points via dynamic coupling with

the active ones. Once this objective is reached, the passive after I

joints can be locked in place. The active joints can then be phase 1

easily controlled as if the mechanism were a regular fully-

actuated manipulator. If the number of actuators is less than ?T] )>< )

the number of passive joints, this scheme breaks down,

since it has been shown that onlipints can be controlled after /
at any instant ([1], [2]). phase 2
The above control scheme can be extended to the case

wherer < p. We start by dividing the passive joints into \ ¢
groups ofr joints each. Label these grougs ... ,gs We
propose the following solution to the problem posed above: S&gge 3 ! |
Step 1: set=1
Step 2: lock all joints in groupgy, k = 1, ... ,s, k#Zi; +
unlock all jo'in.ts in_grou;gi ' _ after
Step 3: control all joints in groug, to their desired set- phase 4
points, and as the joints reach their desired
position, lock them Figure 1: Possible control sequences of a 4-link
Step 4: incremerit if i <s, go back to step 2 manipulator with one actuator.
Step 5: control all active joints to their desired positions We propose to formulate the problem of selecting the

This scheme guarantees the convergence of all joints in optimal control sequence as a dynamic programming
the mechanism to a desired final configuration after a finite problem. For this purpose, it is necessary to assign a cost to
number of control loops. the transitions between all possible joint configurations.
3 Optimal control sequence This cost must be a function of the magnitude of the

P q actuator’s torque so that energy can be rationally utilized.

Given the groups of passive joints to control, the algorithm Ve Propose to use the reciprocal of the global coupling
presented in Section 2 guarantees convergence of all joints'Ndex, which will be defined in Section 4, after the
to a desired configuration. In this section we consider the ransition is completed, as a measure of the cost for each
problem of selecting thegroups among all possible ones.  transition. More spe_cmcally, let the state transition diagram
This is done off-line before control is executed. corresponding to Figure 1 be that given in Figure 2. (The
Consider first the case= 1, p = n—1 . To facilitate numbers inside the circles represent the number of passive
the comprehension of the following paragraphs, consider joints alregdy controlled.)_Then the cost for, say, transition
Figure 1, where a 4-link planar manipulator with one 12 to_2b,_ is equal to the inverse of the_ valug of the global
actuator is to be controlled frogg = [0, 0, 0, 0] tag = [9C°, coupll_ng index at 2b. The rauo_nale behind this choice is the
90°, 9C°, 9(P]. Starting from the top, that figure shows all follow_mg: after control ph_aste is completed_, we want the
possible ways of attaining the desired objective. For cpupllng betyveen the active _and_ the passive joints to be as
example, if one follows the left-most path, then the passive Nigh as possible. If the coupling is low, then a large amount
joints are controlled in this order: {4, 3, 2}. (For the sake of ©f €nergy will be spent on phasel (according to the
clarity, we drew the manipulator with the angle of the active d€finition of the coupling index). The DP algorithm will
joint at zero degrees after each phase. In practice, this is noth€n choose the solution with minimum cost, i.e., the one

always true, as will be seen later in the simulations and Which maximizes the dynamic coupling among all possible
solutions for the control problem. Note that we can assign
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the cost of the transitions from phase 1 to preage f = k1 +2
zero, since after phasds reached there will be no more
passive joints to control.

- PO, (PO, OPO PO
= oot ot g t2

initial
position q = E'fEXE)_EX--- ><|:P—(kl—l)rD
after ' O r O
hase 1 -
P =l thag kD tkog, g tkeg
o r OO r g gr 0O
after
hase 2 . .
P 4 Dynamic coupling measure
after
phase 3 The dynamic equation of an underactuated manipulator is
similar to that of a regular fully-actuated one, the difference
after being that, in the present case, the torque vectophas
phase 4 !
components equal to zero. Lumping thesemponents at
Figure 2: State transition diagram the bottom part of the torque vector, the following
corresponding to Fig. 1. partitioned dynamic equation is obtained:
Finally, given the state transition diagram and the cost T riM. ™ § b
of each transition, all one has to do is apply the DP al = aa “ap | "a 4 a
algorithm described in [4]. As explained in that reference, 0 P M pa M ppl |9 bp Q)

the DP solution is guaranteed to be globally optimum and r p

to reach this optimum solution in less time than an

exhaustive search. Note that other tree-search algorithms, ~ The vectorq, represents the positions of all active

such as A*, can also be used instead of DP. joints, whileqy, represents those of the passive ones. Note
We close this section commenting briefly on the case that the inertia matris in (1) is symmetric and positive

rz1, which is an extension of the previous case. Two sub- deﬁnite, as demonstrated preViOUSly in [2] This leads to the

cases can be distinguished: submatricesM,, and M, also being positive definite.

() p is a multiple ofr (p = kr, with k=2 an integer Factoring q‘a in the first line of (1), and substituting the

number): in this case the passive joints are controlled in result on its second line, the following relationship between

groups ofr joints eachk phases are necessary for their the acceleration of the passive joints and the torques

control, before the active ones can be controlled. The total @Pplied at the active ones is obtained:

number of phasesf, different configurationsc, and . -1 -1

possible ways of reaching the desired configuration from dp = =WpoM Mg Ty + W (M M 0by =bp) (2)

the initial positiond, are respectively equal to: . . .
P d P yeq where thepx p  matriXx\V,, is the inverse of the Schur

f=k+1 complement ofM,, in M, shown in [2] to be positive

[P0, [PO, OP LI opOl definite:
= ootgotmot Tokedtt 4
W =(M_-M_M_ M)

pp pp pa“aaap 3)

d = PO, P—rO, P—2r0, P—(k=1)rQ
oo tr OO0 r O o r 0 We focus on the relationship between the accelerations
_ kro. dk=2)ro, i(k=2)r0 iin of the passive joints and the active joints’ torques, and
o000 ¢ 00 v XG0 rewrite equation (2) as:
Note that these numbers reduce respectivaly2+1, and S -1
p! whenr = 1. dp = prM paMaaTa (4)
(if) pis not a multiple of (p =kir +ky, ky =22, k,<r, where:
with k; andk, integer numbers): in this case we first control L
kir passive joints in groups af joints each, usind; dp = qp_pr(MpaMaaba_bp) (5)

control phases; then the remainikg passive joints are B

controlled in one phase, and finally the active ones are alsoThe vectorqp, can be considered as a virtual acceleration
controlled in one phase. The paramefecs andd in this of the passive joints, generated by the active torques and the
case are equal to: nonlinear torques due to velocity and gravitational effects.
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Equation (4) illustrates how the passive joints in an 5 Feedback control
underactuated manipulator can be driven. Namely, torques o .
are applied at the active joints, and the structure of the Once the passive joints are grouped and the ordering of the

p x r coupling matrix groups for control is established, we have to design a
feedback control law that guarantees that all joints will
M = —prM paM;; (6) reach their set-points asymptotically. As shown in [3],

robustness of the closed-loop system to parametric
dictates how these torques are transmitted to the passiveuncertainties and external disturbances is very important
joints. The greater the transmission, the easier the passivefor underactuated manipulators. We present here a variable
joints can be driven via their dynamic coupling with the structure controller (VSC) which guarantees asymptotic

active ones. stability and the necessary system robustness.
A convenient measure of the coupling between the We begin by partitioning the joint vectgras:
active and passive joints is given by the norm of the
. . P . . T
coupling matrix, which is proportional to the product of its q= |47 T T )
singular values. We thus define ttmupling indexas: 92 dc Aw

q Ther-vectorg, represents the active joints, theectorq,
P = ] o (7) represents the passive joints currently being controlled, the
k=1 w-vectorg,, represents both the passive joints waiting to be
The coupling index thus defined is generally positive, and controlled and those that already converged, and
provides a quantitative indication of the possibility to W = p—r. Equation (1) can be further partitioned as:
control the passive joints given the available actuators’

torques. T, Maa Mac Maw| |8a| | Pa

In our earlier vyork, we also defined a couplmg index ol = Mgy M., M G|+ bc (10)
based on the relationship between the accelerations of the ca cec Tew)) e
active and of the passive joints. That index can be 0 Mya Mwe Mawl |90 |Pw

considered as an acceleration transmission ratio, while the
index defined above can be considered as a virtual inertia.Factoringq, in the second line, substituting the obtained
Both are useful to characterize the movement of the passiveexpression in the first line, and noting ttggt =0 , we
joints; we use in this paper the one that is directly related to obtain:
the actuators’ torques because we are interested on 1 ) 1
minimizing energy spending. T, = (Mge—Mg M gM . —M M b + b, (11)

The coupling index defined above is local in nature; it

measures the amount of coupling available between the i P
active and passive joints at a given configuration of the between the accelerations of the controlled joints and the

underactuated arm. In design and path planning problems,oraues applied at the actuators. The VSC proposed in [3]
however, one is more interested in a global measure of thea" Now be used for control of the joint varialjgsDefine
dynamic coupling all over the workspace of the the following sliding surface:

mechanism. Suchglobal coupling indexs defined as:

Expression (11) determines the open-loop relationship

e = Mel +de (12)

2

g _ JoP do 8 wherefqC represents the error of the variapleandrl . is

P = [ do (8) an r xr diagonal gain matrix. The sliding surface is
o reached in finite time if the acceleratidg in (11) is equal

where r;[he integrals are taken over the entire joint space t0:

© 00 of the manipulator. We use the reciprocal of the . O

global coupling index as a cost measure for the transition G = TAc* Ae g+ Pesan(sy)
between control phases, as explained in Section 3, with one
minor variation. Namely, we compute the global coupling

index only between the passive joints not yet controlled and Control law (11)-(13) guarantees asymptotic

the active ones. Thls is Justlflfed by the.followu?g ratlonalg:. convergence i to q, 4. As each phase is completed, the
after a passive joint reaches its set-point and is locked, itis. . s in th ‘ ' bstituted for th .
of no importance to know the amount of coupling between Joints in ? vectorqe are substituted for .ose O

this passive joint and the active ones. corresponding to the next control phase. This guarantees

asymptotic convergence of all passive joints to their set-

(13)

where q, 4 is the desired acceleration of the controlled
joints.



Proceedings of the 1996 International Conference on Robotics and AutonMithoreapolis, EUA, pp. 3714-3719.

points. During the last phase, the active joints are 0, 0, 0] to the desired configuratign= [60°, 3C°, -4C,

controlled; the dynamic equation of the system becomes: 4(°]. Note that each passive joint is controlled

+b (14) independently, in the prescribed order, and that they reach
a their set-points respectivelytat 1.00 s, 2.05 s, and 2.87 s.

As before, a sliding surface is defined in the phase plane of After the passive joints are controlled, the active one is
(d, G,) and an expression similar to (13) is used instead brought to its set-point &t 4.26 s.

of the accelerationg, in (14). The active joints then
converge taj, g and the joint control problem is solved.

Ta = Magla

3

2.5

6 Simulation results 2

=
o
T

In this section we present simulation results to demonstrate

the feasibility of the method proposed for control of an

underactuated manipulator with less actuators than passive

joints. We consider a 4-link manipulator with one actuator
located at the first joint, as depicted in Figure 1. The
dynamic parameters adopted are given in Table 1.

JOINT POSITIONS (rd)
o
o 0 [

o
a

_ JOINT4

* JOINT 3

P O
.
,/JOINT 2

Table 1: Dynamic parameters adopted (simulation).

link  m(Kg) I;(Kgmd) lim) I (m)
1 2.0 0.2 0.30 0.15
2 1.0 0.1 0.30 0.15
3 1.0 0.1 0.30 0.15
4 1.0 0.1 0.30 0.15

&

i i i i i i
0 05 1 15 2 2.5 3 3.5 4 4.5
TIME (s)

Figure 3: Simulated control of the 4-link manipulator.

7 Experimental results

To validate the simulation result presented, we built a 3-
link planar horizontal manipulator equipped with one

In order to make use of the DP method, we compute actuator at the first joint. The robot is shown in Figure 4,
the cost of each transition in the diagram shown in Figure and its dynamic parameters are given in Table 3.
2. These costs, found with the use of the software package
Matlab, are given in Table 2.

Table 2: Cost of each transition of the

state diagram in Figure 2.

Transition State after transition Cost
0- 1la la 0.3146
0- 1b 1b 0.3208
0 - 1c 1c 0.4564
la- 2a
1b - 2a 2a 0.3822
la- 2b
ic - 2b 2b 0.6677
1b - 2¢
1lc - 2c 2¢ 07277 Figure 4: Experimental testbed.
2 — 3
ZS .3 3 00 Table 3: Dynamic parameters of the 3-link arm.
2c- 3 link  m(Kg) I;(Kgmd) li(m) g (m)
3-3a 3a 0.0 T 009938 0027037 0262 0108
The DP algorithm generates the following order under 2 0.5639 0.016742 0.208 0.150
which the passive joints should be controligd= {4}, g, 3 0.3683 0.015473 0.256 0.161

= {3}, g3 = {2}. (The numbers between the braces
represent the joints in each group.) Figure 3 presents the
control of the mechanism from an initial positign= [0,

For the 3-link robot, the possible control sequences are
shown in Figure 5 (for a generic set-point). The numbers
beside the arrows indicate the cost of each transition. One
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can see that the optimal control sequence of the passive8 Conclusion

joints consists of first controlling the passive joint on joint

3, followed by that on joint 2; after these 2 joints converge,
the active joint can be controlled. When joint 2 is

controlled, the matri,, is equal to:

Mg, = 0.0704+ 0.0428, +0.02484 +0.0156,, (15)

When the third joint is controlled, it is equal to:

M., = 0.0251+ 0.012d5+0.015€&,, (16)
Using equation (7) one may conclude that the coupling
index never rgaches zero 0inside the manipulator’s
workspace{120°<8,, 65<120" ); accordingly, position
control of both passive joints is always achievable.

initial b*S t

position ’G)?ss 0.1®\
after |

phase 1

after \ /
phase 2 0.0 R—]_I 0.0
after

phase 3

Figure 5: Possible control sequences for the 3-link arm.

Figure 6 presents the control of the manipulator for
initial anglesqg = [12.6, -6.2, -39.4] and final desired
anglesy; = [0°, -45°, 9(P]. It can be seen that the controller
successfully brings both passive joints to their set-points, in
the optimal order prescribed by the dynamic programming
result. The active joint is then controlled and the
manipulator reaches its final desired configuration in joint

space. The final steady-state errogis = [-0°00®00,
0.0007].
100
JOINT 3
g 50 .
3
z
E JOINT 1
S o
JOINT 2
oo ‘ ‘ ‘ ‘ : :
o] 1 2 3 4 5 6 7

TIME (s)

Figure 6: Control of the 3-link manipulator.

We present in this paper a method to control an
underactuated manipulator with less actuators than passive
joints. The methodology consists of dividing the passive
joints in several groups, and of controlling each group
sequentially. After all passive joints reach their set-points,
the active ones can be controlled to their desired positions.
We use a variable structure controller to guarantee
robustness of the system to parameter uncertainty and
external disturbances, and dynamic programming to ensure
that the control sequence is optimal with respect to the
coupling index.

We demonstrate through simulation and experimental
studies the feasibility of the proposed method in controlling
an actual 3-link manipulator in joint space with the use of
only one actuator.
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