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Abstract
In this paper, we consider the problem of controlling an
underactuated manipulator with less actuators than
passive joints. The control methodology consists of
dividing the passive joints in several groups, and of
controlling one group at a time via its dynamic coupling
with the actuators. Among the many possible control
sequences for a given robot, we choose the optimal one
based on the dynamic programming method. The
optimization is based on a control cost defined as the
reciprocal of the coupling index, a measure of the dynamic
coupling available between the active and the passive
joints of the manipulator. The detailed theory,
computational procedures, simulation results, and
experimental results are presented.

1  Introduction

Underactuated robot manipulators are fixed-base serial
chain mechanisms with both passive and active joints. The
study of such mechanisms is important for fault-tolerant
robot design, control of hyper-redundant robots, analysis
and control of space robots, and for the analysis of sport
mechanics. These robots are inherently nonlinear and
nonholonomic, and some researchers have been working
on their control considering the nonholonomic constraints
[5], [6]. We, however, intend to study the control problem
by assuming that all passive joints are equipped with brakes
[1]. This allows us to constrain the robot to be holonomic
at every instant, and to use classical robot control
techniques in this new class of mechanisms. Control
consists of controlling the passive joints to their set-points
via their dynamic coupling with the active ones. Once the
passive joints converge, they are locked and the active ones
can be controlled until the entire robot reaches a desired
configuration. When the number of passive joints is less
than or equal to the number of active ones, all passive joints
can be controlled simultaneously. Because this specific
case has been studied by several authors—see [1], [3], [5],
[7]—we restrict ourselves to the study of manipulators with
more passive joints than actuators. In this case, the passive
joints have to be divided in several groups and each group
has to be controlled individually. The problem discussed in

this paper is how to select the passive joints in each group,
and how each group can be asymptotically controlled to its
desired position.

More specifically, letn be the number of joints in the
manipulator,r be the number of actuators installed at the
active joints, and p be the number of passive joints
equipped with brakes, where . The passive joints
are divided in groups ofr joints each, except maybe for the
last group, which may contain less thanr joints. The groups
are numbered from 1 tos; the control scheme consists of
controlling the joints in groupi via their dynamic coupling
with the active joints, while the joints in all other groups are
kept locked. When all passive joints in group i reach their
set-points, they are locked and control of the joints in group
i+1 can be performed. After alls groups of passive joints
are controlled, the active ones are brought to their desired
set-points. The control problem is then solved in
phases.

An apparent problem with the above control scheme is
that there are many different ways of choosing the joints to
be classified into each group. For example, consider a 4-
link manipulator with one actuator. In this cases = 3 and
there are 6 possible sequences for control of the 3 passive
joints: 1→2→3, 1→3→2, 2→1→3, 2→3→1, 3→1→2,
3→2→1. We take advantage of this redundancy to
minimize a control cost that is directly related to the
torques applied at the actuators. In other words, we use the
redundancy present in the system to minimize the energy
necessary for the control of the passive joints.

We use as control cost the reciprocal of a measure of
the dynamic coupling between the active and the passive
joints, which we call the coupling index [2]. The greater the
coupling index, the easier it is for the active joints to drive
the passive ones. Based on dynamic programming results,
we ensure that the problem of dividing the passive joints in
groups is globally optimum with respect to the coupling
index.

2  Problem definition

Consider ann-link underactuated manipulator, composed
of r actuators located at the active joints, andp passive
joints equipped with brakes. Assuming that there is
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sufficient dynamic coupling between the active and passive
joints at every configuration of the mechanism, the
manipulator can be driven indirectly by applying torques at
the actuators. The following is the control problem we are
investigating:

Given an initial and a final desired configurations of the
manipulator, denoted by q0 and qf respectively, drive all
the joints so that after some time T > 0, q(T) = qf .

The case  has been studied in our earlier work
and by other researchers as well (see [1], [3], [5], and [7]).
The solution consists of first controlling only the passive
joints to their desired set-points via dynamic coupling with
the active ones. Once this objective is reached, the passive
joints can be locked in place. The active joints can then be
easily controlled as if the mechanism were a regular fully-
actuated manipulator. If the number of actuators is less than
the number of passive joints, this scheme breaks down,
since it has been shown that onlyr joints can be controlled
at any instant ([1], [2]).

The above control scheme can be extended to the case
wherer < p. We start by dividing the passive joints into
groups ofr joints each. Label these groupsg1, ... ,gs. We
propose the following solution to the problem posed above:

Step 1: seti = 1
Step 2: lock all joints in groupsgk, k = 1, ... ,s, ;

unlock all joints in groupgi
Step 3: control all joints in groupgi to their desired set-

points, and as the joints reach their desired
position, lock them

Step 4: incrementi; if , go back to step 2
Step 5: control all active joints to their desired positions

This scheme guarantees the convergence of all joints in
the mechanism to a desired final configuration after a finite
number of control loops.

3  Optimal control sequence

Given the groups of passive joints to control, the algorithm
presented in Section 2 guarantees convergence of all joints
to a desired configuration. In this section we consider the
problem of selecting thes groups among all possible ones.
This is done off-line before control is executed.

Consider first the caser = 1, . To facilitate
the comprehension of the following paragraphs, consider
Figure 1, where a 4-link planar manipulator with one
actuator is to be controlled fromq0 = [0, 0, 0, 0] toqf = [90o,
90o, 90o, 90o]. Starting from the top, that figure shows all
possible ways of attaining the desired objective. For
example, if one follows the left-most path, then the passive
joints are controlled in this order: {4, 3, 2}. (For the sake of
clarity, we drew the manipulator with the angle of the active
joint at zero degrees after each phase. In practice, this is not
always true, as will be seen later in the simulations and

experimental results.) Note that control fromq0 to qf
requiresf = 4 phases, three of them for the control of the
passive joints. Note also that there is a total of 9 different
configurations of the manipulator, and 6 possible ways of
reaching qf from q0. More generally, the caser = 1
requiresn control phases, for a total of 2p+1 different
configurations, andp! possible ways of reachingqf fromq0.

We propose to formulate the problem of selecting the
optimal control sequence as a dynamic programming
problem. For this purpose, it is necessary to assign a cost to
the transitions between all possible joint configurations.
This cost must be a function of the magnitude of the
actuator’s torque so that energy can be rationally utilized.
We propose to use the reciprocal of the global coupling
index, which will be defined in Section 4, after the
transition is completed, as a measure of the cost for each
transition. More specifically, let the state transition diagram
corresponding to Figure 1 be that given in Figure 2. (The
numbers inside the circles represent the number of passive
joints already controlled.) Then the cost for, say, transition
1a to 2b, is equal to the inverse of the value of the global
coupling index at 2b. The rationale behind this choice is the
following: after control phasek is completed, we want the
coupling between the active and the passive joints to be as
high as possible. If the coupling is low, then a large amount
of energy will be spent on phasek+1 (according to the
definition of the coupling index). The DP algorithm will
then choose the solution with minimum cost, i.e., the one
which maximizes the dynamic coupling among all possible
solutions for the control problem. Note that we can assign
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Figure 1: Possible control sequences of a 4-link
manipulator with one actuator.
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the cost of the transitions from phase  to phases to
zero, since after phases is reached there will be no more
passive joints to control.

Finally, given the state transition diagram and the cost
of each transition, all one has to do is apply the DP
algorithm described in [4]. As explained in that reference,
the DP solution is guaranteed to be globally optimum and
to reach this optimum solution in less time than an
exhaustive search. Note that other tree-search algorithms,
such as A*, can also be used instead of DP.

We close this section commenting briefly on the case
, which is an extension of the previous case. Two sub-

cases can be distinguished:
(i) p is a multiple ofr (p = kr, with  an integer
number): in this case the passive joints are controlled in
groups ofr joints each;k phases are necessary for their
control, before the active ones can be controlled. The total
number of phases,f, different configurations,c, and
possible ways of reaching the desired configuration from
the initial position,d, are respectively equal to:

Note that these numbers reduce respectively ton, 2p+1, and
p! whenr = 1.
(ii) p is not a multiple ofr (p = k1r + k2, , ,
with k1 andk2 integer numbers): in this case we first control
k1r passive joints in groups ofr joints each, usingk1
control phases; then the remainingk2 passive joints are
controlled in one phase, and finally the active ones are also
controlled in one phase. The parametersf, c, andd in this
case are equal to:

4  Dynamic coupling measure

The dynamic equation of an underactuated manipulator is
similar to that of a regular fully-actuated one, the difference
being that, in the present case, the torque vector hasp
components equal to zero. Lumping thesep components at
the bottom part of the torque vector, the following
partitioned dynamic equation is obtained:

(1)

The vectorqa represents the positions of all active
joints, whileqp represents those of the passive ones. Note
that the inertia matrixM in (1) is symmetric and positive
definite, as demonstrated previously in [2]. This leads to the
submatricesMaa and Mpp also being positive definite.
Factoring  in the first line of (1), and substituting the
result on its second line, the following relationship between
the acceleration of the passive joints and the torques
applied at the active ones is obtained:

(2)

where the  matrixWpp is the inverse of the Schur
complement ofMaa in M, shown in [2] to be positive
definite:

(3)

We focus on the relationship between the accelerations
of the passive joints and the active joints’ torques, and
rewrite equation (2) as:

(4)

where:

(5)

The vector  can be considered as a virtual acceleration
of the passive joints, generated by the active torques and the
nonlinear torques due to velocity and gravitational effects.
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Figure 2: State transition diagram
corresponding to Fig. 1.
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Equation (4) illustrates how the passive joints in an
underactuated manipulator can be driven. Namely, torques
are applied at the active joints, and the structure of the

 coupling matrix

(6)

dictates how these torques are transmitted to the passive
joints. The greater the transmission, the easier the passive
joints can be driven via their dynamic coupling with the
active ones.

A convenient measure of the coupling between the
active and passive joints is given by the norm of the
coupling matrix, which is proportional to the product of its
singular values. We thus define thecoupling index as:

(7)

The coupling index thus defined is generally positive, and
provides a quantitative indication of the possibility to
control the passive joints given the available actuators’
torques.

In our earlier work, we also defined a coupling index
based on the relationship between the accelerations of the
active and of the passive joints. That index can be
considered as an acceleration transmission ratio, while the
index defined above can be considered as a virtual inertia.
Both are useful to characterize the movement of the passive
joints; we use in this paper the one that is directly related to
the actuators’ torques because we are interested on
minimizing energy spending.

The coupling index defined above is local in nature; it
measures the amount of coupling available between the
active and passive joints at a given configuration of the
underactuated arm. In design and path planning problems,
however, one is more interested in a global measure of the
dynamic coupling all over the workspace of the
mechanism. Such aglobal coupling index is defined as:

(8)

where the integrals are taken over the entire joint space
 of the manipulator. We use the reciprocal of the

global coupling index as a cost measure for the transition
between control phases, as explained in Section 3, with one
minor variation. Namely, we compute the global coupling
index only between the passive joints not yet controlled and
the active ones. This is justified by the following rationale:
after a passive joint reaches its set-point and is locked, it is
of no importance to know the amount of coupling between
this passive joint and the active ones.

5  Feedback control

Once the passive joints are grouped and the ordering of the
groups for control is established, we have to design a
feedback control law that guarantees that all joints will
reach their set-points asymptotically. As shown in [3],
robustness of the closed-loop system to parametric
uncertainties and external disturbances is very important
for underactuated manipulators. We present here a variable
structure controller (VSC) which guarantees asymptotic
stability and the necessary system robustness.

We begin by partitioning the joint vectorq as:

(9)

Ther-vectorqa represents the active joints, ther-vectorqc
represents the passive joints currently being controlled, the
w-vectorqw represents both the passive joints waiting to be
controlled and those that already converged, and

. Equation (1) can be further partitioned as:

(10)

Factoring  in the second line, substituting the obtained
expression in the first line, and noting that , we
obtain:

(11)

Expression (11) determines the open-loop relationship
between the accelerations of the controlled joints and the
torques applied at the actuators. The VSC proposed in [3]
can now be used for control of the joint variablesqc. Define
the following sliding surface:

(12)

where  represents the error of the variableqc andΓc is
an  diagonal gain matrix. The sliding surface is
reached in finite time if the acceleration  in (11) is equal
to:

(13)

where  is the desired acceleration of the controlled
joints.

Control law (11)-(13) guarantees asymptotic
convergence ofqc to qc,d. As each phase is completed, the
joints in the vectorqc are substituted for those inqw

corresponding to the next control phase. This guarantees
asymptotic convergence of all passive joints to their set-
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points. During the last phase, the active joints are
controlled; the dynamic equation of the system becomes:

(14)

As before, a sliding surface is defined in the phase plane of
 and an expression similar to (13) is used instead

of the acceleration  in (14). The active joints then
converge toqa,d and the joint control problem is solved.

6  Simulation results

In this section we present simulation results to demonstrate
the feasibility of the method proposed for control of an
underactuated manipulator with less actuators than passive
joints. We consider a 4-link manipulator with one actuator
located at the first joint, as depicted in Figure 1. The
dynamic parameters adopted are given in Table 1.

In order to make use of the DP method, we compute
the cost of each transition in the diagram shown in Figure
2. These costs, found with the use of the software package
Matlab, are given in Table 2.

The DP algorithm generates the following order under
which the passive joints should be controlled:g1 = {4}, g2
= {3}, g3 = {2}. (The numbers between the braces
represent the joints in each group.) Figure 3 presents the
control of the mechanism from an initial positionq0 = [0,

0, 0, 0] to the desired configurationqf = [60o, 30o, -40o,
40o]. Note that each passive joint is controlled
independently, in the prescribed order, and that they reach
their set-points respectively att = 1.00 s, 2.05 s, and 2.87 s.
After the passive joints are controlled, the active one is
brought to its set-point att = 4.26 s.

7  Experimental results

To validate the simulation result presented, we built a 3-
link planar horizontal manipulator equipped with one
actuator at the first joint. The robot is shown in Figure 4,
and its dynamic parameters are given in Table 3.

For the 3-link robot, the possible control sequences are
shown in Figure 5 (for a generic set-point). The numbers
beside the arrows indicate the cost of each transition. One

Table 1: Dynamic parameters adopted (simulation).

link mi (Kg) Ii (Kg m2) li (m) lci (m)

1 2.0 0.2 0.30 0.15

2 1.0 0.1 0.30 0.15

3 1.0 0.1 0.30 0.15

4 1.0 0.1 0.30 0.15

Table 2: Cost of each transition of the
state diagram in Figure 2.

Transition State after transition Cost

0 → 1a 1a 0.3146

0 → 1b 1b 0.3208

0 → 1c 1c 0.4564

1a→ 2a
1b → 2a

2a 0.3822

1a→ 2b
1c → 2b

2b 0.6677

1b → 2c
1c → 2c

2c 0.7277

2a→ 3
2b → 3
2c → 3

3 0.0

3 → 3a 3a 0.0

τa Maaq̇̇a ba+=

qa q̇a,( )
q̇̇a

Table 3: Dynamic parameters of the 3-link arm.

link mi (Kg) Ii (Kg m2) li (m) lci (m)

1 0.9938 0.027037 0.262 0.108

2 0.5639 0.016742 0.208 0.150

3 0.3683 0.015473 0.256 0.161

Figure 3: Simulated control of the 4-link manipulator.
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can see that the optimal control sequence of the passive
joints consists of first controlling the passive joint on joint
3, followed by that on joint 2; after these 2 joints converge,
the active joint can be controlled. When joint 2 is
controlled, the matrixMca is equal to:

(15)

When the third joint is controlled, it is equal to:

(16)

Using equation (7) one may conclude that the coupling
index never reaches zero inside the manipulator’s
workspace ( ); accordingly, position
control of both passive joints is always achievable.

Figure 6 presents the control of the manipulator for
initial anglesq0 = [12.6o, -6.3o, -39.4o] and final desired
anglesqf = [0o, -45o, 90o]. It can be seen that the controller
successfully brings both passive joints to their set-points, in
the optimal order prescribed by the dynamic programming
result. The active joint is then controlled and the
manipulator reaches its final desired configuration in joint
space. The final steady-state error is  = [-0.006o, 0.000o,
0.000o].

8  Conclusion

We present in this paper a method to control an
underactuated manipulator with less actuators than passive
joints. The methodology consists of dividing the passive
joints in several groups, and of controlling each group
sequentially. After all passive joints reach their set-points,
the active ones can be controlled to their desired positions.
We use a variable structure controller to guarantee
robustness of the system to parameter uncertainty and
external disturbances, and dynamic programming to ensure
that the control sequence is optimal with respect to the
coupling index.

We demonstrate through simulation and experimental
studies the feasibility of the proposed method in controlling
an actual 3-link manipulator in joint space with the use of
only one actuator.
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