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Abstract
This paper presents the key steps involved in the design,
calibration and error modelling of a low cost odometry system
capable of achieving high accuracy dead-reckoning. A
consistent error model for estimating position and orientation
errors has been developed. Previous work on propagating
odometry error covariance relies on incrementally updating
the covariance matrix in small time steps. The approach taken
here sums the noise theoretically over the entire path length to
produce simple closed form expressions, allowing efficient
covariance matrix updating after the completion of path
segments. Systematic errors due to wheel radius and wheel
base measurement were first calibrated with UMBmark test
[4]. Experimental results show that, despite its low cost, our
system’s performance, with regard to dead-reckoning
accuracy, is comparable to some of the best reported odometry
vehicle.

1  Introduction

One of the major tasks of autonomous robot navigation is
localisation. In a typical indoor environment with a flat
floorplan, localisation becomes a matter of determining
the Cartesian coordinates (x,y) and the orientation θ of
the robot on a two dimensional floorplan. For a wheeled
robot, odometry (also known as dead-reckoning) is one
of the most important means of achieving this task. In
practice, optical encoders that are mounted on both drive
wheels feed discretised wheel increment information to a
processor, which continually updates the robot’s state
using geometric equations. However, with time,
odometric localisation accumulates errors in an
unbounded fashion due to wheel slippage, floor
roughness and discretised sampling of wheel increments.

At the hardware level, gyroscopes and/or
accelerometers [2] are used to determine the position of
the robot based on inertial navigation, but this method is
susceptible to drift. Blanche [6] uses a single steerable
drive wheel with a pair of knife-edge unloaded bearing
wheels solely for odometry. Dead-reckoning
implementations at the University of Michigan include
[3]: Cybermotion K2A utilises synchro-drive, making it
insensitive to non-systematic errors; CLAPPER,
essentially two TRC LabMates connected by a compliant

linkage, uses two rotary encoders to measure the rotation
of the labmates relative to the compliant linkage, and a
linear encoder to measure the relative distance between
their centrepoints, giving it the unique ability to measure
and correct non-systematic dead-reckoning errors during
motion; Andros, a tracked vehicle, has a two-wheeled
encoder trailer attached to its back which allows free
horizontal rotation. The rotations of the trailer wheels
and the trailer with respect to Andros are measured with
the attached optical encoders.

Theoretical research normally involves error
modelling, so that a mathematical treatment is possible.
For example, the Extended Kalman Filter requires that
the odometry errors be expressed in the form of an error
covariance matrix. Odometry errors can be classified as
being systematic or non-systematic. In the work by
Borenstein and Feng [3], a calibration technique called
UMBmark test has been developed to calibrate for the
systematic errors of a two wheel robot. The dominant
systematic error sources are identified as the difference in
wheel diameter and the uncertainty about the effective
wheel base. In our work, this method has been used to
calibrate systematic errors in our robot.

For dealing with non-systematic errors, all
classical models [4,8,9,12,13] either suffer from a lack of
physical basis or inconsistency. To illustrate, suppose
that at stage k-1, the state of the robot is
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coordinates (xk-1, yk-1) and orientation θk-1  with respect to
a global reference frame. A rotation αk followed by a
translation Dk moves the robot to a new state Sk..
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To propagate the error covariance matrix of Sk-1

to Sk, the error incurred is assumed to be small so that
first order Taylor’s expansion does not introduce
significant higher order errors. By assuming that the
error in stage k-1 is not correlated with the error
introduced by the input, the covariance matrix of stage k,
Cov(Sk), can be evaluated as follows,
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In the authors’ opinion, the major problem with
this treatment is that there is no physical basis in
assuming that the translation error is uncorrelated with
the rotation error [8,4,12,13]. Model parameters do not
reflect the physical characteristics of the system, hence
they are difficult to obtain experimentally.

The model is also inconsistent. For the same path,
if propagation of error is done in multiple parts, the
model yields different solutions. To illustrate, suppose
that [ ]S k

T

− =1 0 0 0 and Cov(Sk-1) = 0. Compare the

following two scenarios :
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Even by setting Cov(uk0)=2⋅Cov(uk1), the two
cases yield different final state error covariance, even
though they lead to the same final state by following
exactly the same path. This problem has been resolved
[4] by performing error propagation for every time
increment on the wheel encoders. This approach is
conceptually similar to numerical integration but suffers
a high computational cost. Also no physical justification
for the error model has been offered.

The theoretical work by [14] has introduced a
more realistic, physically-based error model for an
arbitrary circular arc motion. The result is a model which
is very accurate for large wheel turn variance, but limited
in its applicability to a range of rotation angles. For large
rotation angles, the robot path has to be divided into
small segments in which the total turning angle is within
the limitation of the model.

Other methods of representing position error
includes the ‘circular-error probable’ (CPE) by [11]
which is questionable because it is well known that the
position error is usually not equal in all directions. [10]
has proposed the use of equal-error probability isoline

and has outlined some ways of growing the isoline as the
vehicle moves. It remains uncertain whether new and
sound methods could be developed to make use of them.

The new non-systematic error model developed by
the authors has a strong physical basis which is closely
related to the odometry design of our robot, Werrimbi.
The model also generates error representation in the
form of a error covariance matrix, which is the standard
operating block for a multitude of noise filtering tools.
Unlike the model illustrated earlier, the new model is
consistent in a multiple path segments scenario. The
computational load in incrementally updating the
covariance matrix in small time steps, as done in [4] has
been removed because simple close form formulae have
been derived for three simple path types: (I) circular arc
motion (II) straight line (III) rotation about the centre of
the axle. Complex paths can be divided into a small
number of sections which can be approximated by the
aforementioned cases, hence the model can be applied on
a section by section basis. Unlike the model in [14], it is
valid for arbitrary distance and rotation angle. Even
though the model by [14] is more accurate when the
errors are large, compared to the first order accuracy of
the new model, in the authors’ opinion, should the robot
be operating in conditions likely to incur large errors, an
accurate representation of these large errors is
inconsequential. Instead, preventive measures should be
adopted to avoid such errors, such as employing external
referencing. Our odometry model can then be used to
optimally combine other sensors with odometry.

The remainder of this paper is organised into six
sections: Section 2 presents the odometry system, and
states, with justification, the key assumptions being
incorporated into the model. Section 3 describes the
UMBmark test used for reducing systematic errors and
lists the key equations used. This is followed by section 4
on the derivation of the proposed non-systematic error
model and its properties. The details and results of
calibration of systematic errors and validation of the
proposed error model constitute section 5. Lastly, section
6 is the conclusion which suggests possible future
extensions of the model.

2  STEP ONE: Robot Design and Assumptions

Werrimbi has two pairs of wheels: drive wheels and
encoder wheels. The encoder wheels are as sharp-edged
as practically possible to reduce the wheel base (B)
uncertainty, and are unloaded because they are
independently mounted on linear bearings which allow
vertical motion, hence the problem of wheel distortion
and slippage is minimised. The idea of unloaded wheels
can also be found in [7]. Based on the design, it is
reasonable to assume that for a short unit of travel, the



error incurred on both wheels are uncorrelated. because
the two drive wheels are driven by two different motors,
and two separate optical shaft encoders are used to gather
odometry information. This assumption is also adopted
in [3].
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Figure 1 : (Left) Werrimbi, the sonar sensing robot (Right)
Design of the accurate odometry system

Our work takes the assumption one step further. For a
short unit of travel, the error is assumed to be zero mean,
and white, that is, uncorrelated with the previous or next
unit of travel. The variance of the cumulative error is
then the sum of the variance of each statistically
independent unit. This leads to a reasonable assumption
that the variance of each unit of travel is proportional to
the distance travelled

σ σL L L R R Rk d k d2 2 2 2= = (4)

where dL and dR are the distances travelled by each

wheel, and kL
2 and kR

2 are constants with unit m1/2.

3  STEP TWO: Calibration of Systematic Error
Using UMBmark Test

UMBmark test [3] is used to calibrate wheel base error
and unequal wheel diameter error. Briefly, the robot is
programmed to travel a square path of side D in the
clockwise sense (CW)  n times, and the offsets of the
final Cartesian coordinates from the initial Cartesian
coordinates, exi,CW, eyi,CW are recorded. The experiment is
repeated for the counterclockwise sense (CCW) and
exi,CCW, eyi,CCW  are recorded. The ‘tuning factors’
required to be incorporated into the software to
counteract the effect of the systematic errors are
calculated from the weighted Cartesian offsets in both
senses. In summary, the centres of gravity of the offsets
can be computed from their averages
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With the two pairs of centres of gravity, the
tuning factors for the wheel base, the radius of left wheel
and the radius of right wheel, cb, cl and cr, can be found
by following this sequence of computations:
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cb = −π π α/ ( ) (9)

c El d= +2 1/ ( ) (10)

c E cr d l= (11)

and finally, the measure of dead-reckoning accuracy for
systematic errors is defined in  [3] as

( )E x y x ysyst c g CW c g CW c g CCW c g CCWmax, . ., . ., . ., . .,max ,= + +2 2 2 2 (12)

4  STEP THREE: The New Non-systematic Error
Model

With the new non-systematic error model, the entire path
travelled by the robot is treated as consisting of k small
segments. Propagation of error covariance is required to
be done k times to obtain the error covariance of the final
state. This section shows that it is possible to obtain a
closed form solution for this model, as k approaches
infinity. The solution for a general circular arc motion is
first developed. The solutions for two special cases,
straight line motion and on-spot turn are then obtained
by suitably taking limits.

 

Figure 2 : Initial and final state of the robot after following
a circular arc trajectory

Suppose that at segment k-1, the state of the robot
is Sk-1. It then propels its left wheel by Lk metre and its
right wheel by Rk metre, to bring the robot to a new state
Sk. Over an infinitesimal time increment, the speed of the
wheels can be assumed constant, hence the path takes on
a circular arc trajectory with constant radius of curvature



rk. Refer to Figure 2.
Based on the constant radius of curvature

assumption, the following transition equation can be
derived:
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where rk is the instantaneous radius of curvature,
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B L R

L R
k k

k k
= +

−2 (14)

where [ ]uk k k

T
L R= . The next step is to

propagate the error covariance matrix associated with (k-
1)th stage to the kth stage using equation (2). Now suppose
that the arc segment is infinitesimally small, and the full
path actually comprises k such segments being
concatenated from end to end. The initial state of the
robot is S0 which is at the starting end of the first
segment and the last segment is Sk  which is the
destination of the last segment.

The expression for covariance propagation can be
recursively expanded (like a Markov process),
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Let Li , Ri denote the small increments in wheel
turn at for the ith segment, and for circular arc motion, L
= kLi , R = kRi. The Cov(Sk) can be further evaluated to
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The sum of products part of equation (16) gives rise to an
error covariance matrix henceforth known as Cov(Uk).
Let Cov(Uk)i,j be the ith row, jth column component of
Cov(Uk), after taking k→∞ (and considerable effort!),
then
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These equations remove the need to incrementally
update the covariance matrix in small time steps. As
closed form expressions, they are applicable to any
circular arc motion with constant radius of curvature. For
simple paths, the matrix terms can be further simplified
by suitably taking limits.

4.1  Special Cases : Straight Line Translation and
Rotation about the Centre of Wheel Axle

For a straight line path of length D, both wheels rotate by
the same amount and the initial angle is approximately
the same as the finally angle, the limits to be taken are

L,R→D and θ0→θk. Contrary to popular assumptions
[7,12], our model predicts that variance in the direction
perpendicular to the direction of motion is proportional
to the cube of the distance travelled, whereas the variance
in the direction of motion is only proportional to the
distance travelled. For rotation about the centre of wheel
axle, both wheels still rotate by the same amount, but in
opposite direction. The limits to be taken are
L B

k→ −2 0( )θ θ and R B
k→ −2 0( )θ θ . All simplified

expressions can also be found in [5].
This model is consistent unlike the models

presented in the introduction of this paper [4,8,9,12,13].
That is, if propagation is done in multiple parts, the
model generates exactly the same result. This is because
the model itself is founded upon the concept of
incrementally propagating error covariance from one
infinitesimal section to the next.

5 Implementation and Results

5.1  Calibration for Systematic Error

The experiments were conducted in a lab with a
parquetry floor. The wheel encoder measurements were



used to calculate the perceived final state of the robot,
whereas a sonar array [15] mounted on top of the robot
was to used to estimate its actual state by sensing some
reference walls placed close to the initial position. Two
reference walls were used to establish the robot’s
coordinates and orientation.
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Figure 3 : Result of UMBmark test, before and after
calibration. (metre units)

The distribution of Cartesian offsets after the
completion of D=4m square path for 5 runs in each sense
(clockwise and counterclockwise), before and after
calibration, are shown in Figure 3. The value of D has
been chosen as such in order to make benchmark
comparison with the results presented in [3].

The calibration results are presented in Table 1.
Comparison with other robot vehicles are made in Table
2. All except Cybermotion K2A are calibrated. It can be
seen that the measure of dead-reckoning accuracy for
systematic errors, Emax,syst , of Werrimbi is comparable to
those achievable by many advanced odometry systems.
Further calibration has been carried out with the
compensated parameters but no significant improvement
has been made.

Table 1 : Key results before and after calibration

Before After
xc.g.,CCW (mm) 97 -26
yc.g.,CCW  (mm) -94 16
xc.g.,CW  (mm) 32 1.5
yc.g.,CW  (mm) 31 11
Emax,syst (mm) 135 30

Table 2 : Comparison of dead-reckoning accuracy and
approximate cost of our design with four vehicles. The

first four sets of figures are obtained from [3]

Vehicle Emax,syst Cost (US$)
TRC LabMate average 27 10K

Cybermotion K2A 63 <50K
CLAPPER 22 30K

Andros with Trailer 74 ?
Werrimbi 30 ~4K

5.2  Computation of Non-systematic Error Parameters

After calibration, Werrimbi was programmed such that it
scanned two reference walls, moved forwards 10 metres,
moved backward 10 metres, re-scanned the two reference
walls and compared the position estimation from sonar
sensing and odometry reading. The process was repeated
60 times (5 hours consumed) and the difference in the
Cartesian coordinates, (ex, ey) and the difference in
orientation et for all 60 runs are plotted against each
other in Figure 4(a)-(c). The values of kL and kR have
been obtained by fitting error ellipses to the data, and
they are kL=0.00040m1/2, kR=0.00058m1/2. In Figure 4,
both the 95% confidence error ellipses of the actual data
and the 95% confidence error ellipses generated with kL

and kR are overlayed on the plots for comparison.

6  Conclusion and Future Work

This work is the preliminary stage of a robotics mapping
project [5]. It draws together the key considerations and
procedures involved in the calibration and error
modelling for an odometry design. An accurate odometry
system has been presented which is comparable to the
best reported system but can be fabricated at low cost. A
new first order odometry error model has been derived to
propagate the state error covariance following a motion.
The error model takes the form of a covariance matrix
which is prevalent in statistics and filtering theory, hence
could easily fit into many powerful tools such as the
Kalman Filter. This model cannot account for
unexpected errors such as hitting a bump on the floor,
which violates the flat floorplan assumption. For certain
applications such as mapping, external referencing
should be deployed to detect such errors.
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