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Abstract: The goal of the automated deburring can be achieved by maintaining a constant force on the 
grinding tool in the direction normal to the constraint surface while following the positional trajectory 
in the direction tangential to the surface. In this thesis, the dynamics of both the deburring process 
and the flexible manipulator will be investigated in detail, and a singular perturbation technique is then 
utilized to separate the system into a slow subsystem and a fast subsystem, whereby an adaptive hy- 
brid position/force controller is derived for the slow subsystem whereas a dynamic feedback controller is 
developed for the fast subsystem. It is shown that the motional tracking error and the force regulation 
error will both converge to a small residual set. Finally, the computer simulations and experiments of a 
2-link flexible manipulator confirm the effectiveness of the proposed controller. 

1.INTRODUCTION 

In most occassions, where parts need to be assembled 
properly and safely, the burrs on the part’s edge must 
be removed. However, the manual deburring process is 
a costly and time-consumming operation. For reducing 
the manufacturing cost efficiently, automated robotic 
deburring systems will naturallly be considered as a 
good solution and, hence, is investigated thoroughly in 
this thesis. 

In an automated robotic deburring process, the 
grinding tool mounted onto the end-effector must make 
a contact with the part’s edge. Since both the robot 
manipulator and the part are mostly rigid, the impact 
from the manipulator to the part will frequently cause 
damage to each other. Besides, due to the shortcomings 
of applying conventional rigid robot manipulators, such 
as high-power consumption, low motion speed and low 
payload ratio, the research on controlling the flexible 
manipulators has attracted more and more attention 
nowadays. 

In recent years, there have been many reaserch re- 
sults on the automated robotic deburring reported. In 
[2] ,  the control approach proposed there is to main- 
tain constant normal force and tangential force by the 
impedance control. An alternative approach is to con- 
trol the chamfer depth with the minimal surface by 
minimizing the normal cutting force [3]. 

From a different view-point, a more advanced control 
method, teaching and learning of adaptive control has 
been proposed for automated deburring [4]. In [5], the 
sensing system combines the information from foece 

and vision sensors to measure the chamfer depth, and 
the chamfer depth is controlled based on an adaptive 
predictive learning control stratege. 

However, for constrained flexible manipulators, there 
are some results which have been presented. Mat- 
sun0 et al. [7] have proposed a hybrid position/force 
controller based on the quasi-static equations. Lian 
et al. [l] proposed an adaptive hybrid position/force 
controller based on singular perturbation theory for 
flexible manipulators in Cartesian space. Rocco and 
Book [8] presented a reduced order model of a flexible 
robot and a sigular perturbation vesion of the model 
is also given, whcih shows some differences from pre- 
vious results. Kim et al. [9] presented a hybrid po- 
sition/force control scheme to a flexible manipulator 
using a lumped-parameter modeling. 

In this thesis, a deburring process model is presented, 
and a reduced model in Cartesian space is derived due 
to the constraints imposed on the end effector. Base 
on sigular perturbation theory, an nonlinear adaptive 
controller is designed for the system. In our Advanced 
Control Laboratory (ACL) at  National Taiwan Uni- 
versity (NTU), a 2-link planar flexible manipulator 
equipped with a grinding tool has been built to demon- 
strate the performance of the proposed controller. 

This thesis is organized as follows : Section 2 present 
the model of the deburring process and the dynamic 
model in task space of a constrained flexible manipu- 
lator. Further by applying the singular perturbation 
technique, the original system is decomposed into a 
slow subsystem and a fast subsystem. In Section 3, a 
nonlinear adaptive controller is developed based on the 
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Figure 1: The burr cross-section 

formulation of the two subsystems derived previously. 
and the simulation result will be shown. In Section 4, 
the experimental result will demonstrate the real con- 
trolled performance. Finally, some conclusions will be 
given in Section 5. 

2.PROBLEM FORMULATION 

Deburring Model 
In the process of deburring a part’s edge by a flexi- 
ble manipulator, the end-effector of the manioulator 
equipped with a grinding tool will remove the burrs by 
cutting at a constant chamfer depth into the nominal 
edge of the part while moving along the part’s actual 
edge under a feedrate. There exists an interaction force 
between the end-effector and the surface of the edge, 
called the cutting force, which can be decomposed into 
a force in the direction along the constraint surface and 
another in the direction normal to the constraint sur- 
face. According [2], we will introduce the model of the 
deburring process in the following. 

First we give some general descriptions of the ge- 
ometric characteristics of burrs. Fig. l shows the 
cross-section of a burr, from which burr height, burr 
thickness, and the chamfer depth are clearly illustrated. 
Here, we assume that the average burr height is much 
greater than the average burr thickness [2]. 

A three-dimentional geometric model of a cutting 
surface is shown in Fig. 2. Let the cutting area be 
projected into the plane tangential to the constraint 
surface and another plane with a normal tangent to 
the same surface, respectively. We can see that each 
of the projected areas can, in fact, be decomposed into 
two parts, one from burr projection and the other from 
chamfer projection. According to the previous assump- 
tion, i.e., the burr height is much greater than the burr 
thickness and the chamfer depth is usually chosen to be 
greater than the maximum of the possible burr thick- 
ness, the normal projected area of the burr relative to 
the normal projection of the contact area can be very 
insignificant, but the tangential projected area of the 
burr relative to the tangential projection of the con- 
tact area becomes much more substantial. It means 
that the variation of the tangential projected area with 
the burr size is much greater than that of the normal 
projected area with burr size. 

Figure 2: The 3D geometric model of the cutting sur- 
face 

Intuitively, the cutting force is proportional to the 
contact area. Accordingly, it is sure that the tangential 
forcee varies much more significantly with the burr size, 
but the normal force maintains almost constant magni- 
tude regardless of the burr size. Therefore, a consistent 
chamfer depth can be obtained by controlling only the 
normal force. 

In the following, we will derive the tangential cutting 
force in detail. According to  [2], the material removal 
rate M R R  can be expressed as: 

M R R  = (A ,  + Ab) x V t  (1) 

where A ,  and Ab denote the cross sectional area of the 
chamfer and of the burr, respectively, and vt is the 
velocity of the grinding tool along the part’s edge. 

In the deburring process, the tangentail cutting force 
is proportional to M R R .  Then, according to (l), the 
relationship between the tangential cutting force and 
the tangential velocity can be expressed as: 

ft = (k t  + A h )  x U t  (2) 

where kt is a posive constant, and Akt is an uncertainty 
from the variation of the burr size. For a large tangen- 
tial force, there may exist some problems, such as the 
grinding tool may be stalled and quickly wears out. 

To avoid the above problems, for a given desired cut- 
ting chamfer depth, we can select a desired feedrate 
which does not yield a large tangential cutting force 
but makes the grinding tool work normally. If the burr 
size is much smaller than the chamfer depth, this ob- 
servation will be even more justified. Finally, it should 
be realized that one can use position control in the di- 
rection tangential to  the constraint surface and force 
control in the direction normal to the same surface in 
order to accomplish the above-mentioned control task 
in the deburring process. 

Dynamic Model of a Deburring Flexible 
Manipulator in Task Space 
Recall the discussions in the previous section, con- 
cerning an end-effector of a flexible manipulator which 
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moves along the part's edge for deburring. There exists 
an interaction force called the cutting force between the 
end-effector and the surface. The dynamic model can 
be expressed as 

where qr E R", (n 5 6) and qf E R"f ,  n + nf = N ,  
X E R" is the vector of Lagrange multipliers assc- 
ciated with the geometric constraints @'(q) = O , @  : 
RN -+ R", A1 = e, A2 = E, and rt E RN denotes 
the tangential cutting force in joint-space coordinates. 
The subscript T and f denote the rigid mode part and 
flexible mode part, respectively. 

Owing to task requirement, a dynamic model in 
Cartesian space would better be derived. First, we de- 
note I as the position of the end-effector in Cartesian 
space, and I can be expressed as I = X ( q ) ,  where 
X : RN --+ R", qT = [ qT ,  q 7 l T .  Then, 

and [;;I=[ $ ] f t  

ax where Jr = e, JJ = G, and f t  E R" is the tangen- 
tial cutting force in Cartesian space. Assume that the 
flexible manipulator is non-redundant with respect to 
the rigid part so that  Jr is insured to be invertible. As 
a result, we can obtain the dynamic equations in the 
task space as follows: 

And the flexible part can be expressed in a more com- 
pact form as follows: 

To tackle the problem with vibration suppression, we 
will apply the singular perturbation theory here and 
separate the flexible manipulator system into a slow 
subsystem and a fast subsystem. To that aim, we make 
the following definition first : 

U = I C q f ,  and k = ICE', 

where c2 is a common factor extracted from each entry 
of the matrix IC', assumed to be small enough. Next, 
we define the state variables : 21 = v and 22 = cl j ,  
y1 = I and y2 = i. so that ,  acccording to (7) and (S), 

the state space form of a singualr perturbed model can 
thus be derived as follows: 

Y1 = Y2 (9) 

€21 = 22 (10) 
y2 = Diy2 + E D Z ~ - ~ Z ~  + 0 3  + 0 4 2 1  + DST + D6 

€22 = K ( E l y 2  + €EZk-'zz + E3 + E 4 Z 1  + E57 + E6) 

For the extreme case where E + 0, we can obtain the 
following relation via (IO) : 

zz = 0 
r1 = -Eil[Eiyz -I- E3 4- E57 + EG] ,  (11) 

which can be subsituted into (9) with E = 0 to  yield 
the following set of equations : 

Y 1  = Y2 

5, = [Jr - &M;1Crr]J32 - jrM;lG1 

+ JrM,,'? + JrPMT;l(ATS; + J 7 5 )  (12) 

where we have used the additional relation Mrr = 
(HI1 - H~~H,;'Hz~)-', and all the variables and func- 
tions with overbar are used to denote those in (9), (10) 
in the situation when E = 0 . This system will then be 
referred to as the slow subsystem. 

For deriving the fast subsystem, we first define the 
fast time-scale as p = $ and then redefine the fast 
variables as 71 = z1 - 21 and 72 = zz - 22. 

As E --+ 0, we can obtain 9 = % = 0, which 
implies that y1 and yz are constants with respect to 
the fast time-scale p ,  i.e., within the boundary layer, 
y1 and y2 are stationary. Therefore, the fast subsystem 
can be easily derived as 

= 172 
d7]1 
dP 

dP 
d7]2 = -kHz271 + R H ~ ~ ( T  - T )  (13) 

Next, due to the existing constraints, W ( q )  = @(z) = 
0, where @ : R" -+ R". Further, we will derive the 
original equations of motion into a reduced set of equa- 
tion. First, we separate the state 3, in the slow subsys- 
tem into two parts, namely, f l  and 2 2 ,  where 21 E R" 
and 22 E R"-", so that the constraint can be further 
rewritten as: &(f) = 21 - a(?,) = 0, where a is a 
nonlinear map form R"-" to R". Of course, the total 
m constraint equations from @(I) = 0 are functionally 
independent. 

Then, we rewrite the state-space equation (12) into a 
set of differential equations, by premuliplying the equa- 
tions by j;'Mrrj;'. then the resulting equations be- 
come: 
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where 

(15) 

where F2 = e, $1 is the component of the tangential 
force in 5 1  direction, and f t 2  is the component of the 
tangential force in 22 direction. 

Now, if (14) is used to replace 5 1 ,  &,  &,  and premul- 
tiply the second equation in (14) by Fr and add the 
result to the first equation in (14) to eliminate -F2x 
in the second equation, we can obtain the following set 
of equations: 

fil& + CI& + GII = f1 + + ftl(l8) 
f i 2 &  +e& + F 2 G 1 1 +  G I 2  = F:f1+ f2 

+ I”f t l+  f12(19) 

Similarly, we can also refer the equations (18) and 
(19) as force part and motion part, respectively. 

3.CONTROLLER DESIGN 

Slow Subsystem Controller 
Before we discuss the controller design, we will summa- 
rize some properties of the slow subsystem (18), (19) 
described in the previous chapter. 
Proposition 3.1 : A?f2 is symmetric and positive def- 
inite. 
Proposition 3.2 : By a proper choice of C(q, q)  to  de- 
fine C 2  in (19), the matrix h2-2C2 is skew-symmetric. 
Proposition 3.3 : There exist some constant system 
parameter vectors 8 1  and 82 such that 

M 1 u + C 1 u - G 1 1  = W T e ,  (20) 
B Z l F 2  + &)U - G l 2  ( M 2 1 F 2  + M 2 2 ) G  + (MZlFZ + 

= w p 2 ,  - (21) 

Mzzi + C 2 u  + F:&+ G I 2  = {F:.T 69 [ ;; ] 
= WTe,  (22) 

where U is a smooth variable with proper definition and 
W l ,  Wz,  and w are known functions matrix. 
Proposition 3.4 : The uncertainty of the tangential 
force can be bounded as follows : 

IIF2Tftl - F , T f t I  + f t z  - it211 < P11;211 
where p > 0 and 52 is the component of the velocity 
of the end-effector in x 2  direction. 

Now, we are ready to  introduce the design of the hy- 
brid adaptive position/force controller in the following. 

First, we define an error signal as & = 5 2  - X 2 d .  Then 
we define an auxiliary signal 3 as S = %Z + Kr&, where 
Kr > 0. Let the control law be designed as: 

fl = - w 1 0 1  - T -  + IE - h l  

f2 = -wf8,-F:IC-KpS 

-K~ll&llssn(q - i t 2  (23) 
where n = K j ( x  - A d )  - x , K j  > 0, and K p  > 0, 
K,  > 0, and 8j denotes the estimate of the vector of 
system parameters 8j, i = 1,2 .  Let the adaptation law 
be designd as: 

where r > 0 and U > 0. 
According to  Proposition 3.1, 3.2 and 3.3, equation 

(18), (19) and the control law (23) the error dynamics 
involving i can be derived as follows : 

M z k  + f?23 = CTZ + FFftl- F T f t  1 + $2 - ft2 

- Kp3 - I‘,ll.&llsgn(S) (25) 

MlS’+C,S = w T i l + K f i + f i l - j t l ,  (26) 

where = 8 - e is the parameter estimation error and 
= x - Ad is the force tracking error. The control 

results of the slow subsystem are summarized in the 
following theorem. 
Theorem 3.1: Consider the slow subsystem (18)- 
(19) with the control law (23) and the adaptation 
law (24). Then, all signals inside the system remain 
bounded and both tracking errors in position and con- 
tact force will converge into a residual set. 
Proof: Let the Lyapunov function candidate as: 

(27) 

and then take its time derivative along the trajectories 
of (25) to obtain 

1 1 I -Am(Kp)l l#  - , u l l ~ l l 2  + ~“118112 

5 -711k112 7 0  (28) 
- 

where ( = [I 81, 7 0  and 7 1  are positive constant, 
and Am(ZC,) and &(lip) denote the smallest and the 
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largest eigenvalues of IC,. Note that there exits K ,  
such that A,(K,) - /3 is positive definite matrix. 

Therefore, we can guarantee that S and 8 are 
bounded, and so are &, 22 by use of a Lyapunov the- 
orem. Consider the closed-loop dynamical equation 
(25), s' is obviously bounded. According to (26), we 
get the force error x to be expressed as: 

- 

which readily implies that i is bounded. If K f  is large 
enough, then the force error can even be made arbi- 
trayrily small. 0 

Fast Subsystem Controller 
Now the fast subsystem (13) is rewritten in a very com- 
pact form as follows : 

Within the boundary layer the system matrices A 
and B can be replaced by AO + A& and BO +A&,, re- 
spectively, where & and & are nominal matrices with 
known elements and there are availabe known bounds 
on llA&ll and llA&/l. 

Here, after a careful study, a proper design of the 
aforementioned regulator is apparently a dynamic feed- 
back controller expressed as follows : 

where the matrices E and G will be determined later. 
By adopting such control, the closed-loop fast subsys- 
tem becomes 

where 6 = [qT, T T ] ~ ,  A = , and B = 

[ 1. The following theorem summarizes 

a condition under which the above design of the fast 
subsystem controller may provide the desirable result. 
Theorem 3.2: If and G are chosen such that A is 
Hurwitz and there ezist P, Q > 0 satisfying 

1 j0 Bo I 

A T P  + P A  = -& (33) 

and Amin(&) > ~cYIIPII, where llBll 5 Q, then it is guar- 

Proof: The proof is omitted here due to limited space. 
One can see [lo] for details. 

anteed that ll<ll -* 0 ezponentially. * 

Composite Controller: 
Consider the original system (7)-(8) with the control 
law r = ? + r f .  The control results of such system are 
detailedly summarized in the following theorem. 
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Figure 3: Simulation result 

Theorem 3.3: Consider the system (9)-(10) with 
the composite control law (23), (31) and the adaptation 
law (24). Then, all signals inside the system remain 
bounded and both tracking errors in position and con- 
t a c t  force and link vibration will converge into a resid- 
ual set of a site which is an order of e ,  provided e is 
sufficiently small. 
Proof: The proof is omitted here due to  limited space. 
One can see [lo] for details. 

Simulation Result 
A computer simulation results of a case of a 2-link plan- 
nar flexible maipulator deburring system will be shown 
to verify the performance of the previous design of the 
composite controller. Assume that the gravitational 
force and the torsion effect of link can be neglected. 

Here, we use 2 modes to describe each link's deforma- 
tion. The constaint surface is set as X I  = 0.85m, and 
the desired positional trajectory and force trajectory 
are chosen as follows : 

The simulation results are shown in Fig. 3. Fig. 3 
(a) (b) show the normal cutting force and tangential 
postional tracking trajectories, respectively, Fig 3 (c) 
shows the tangential cutting force, and Fig. 3 (d) shows 
the input torques. From these figures of the simulation 
results we know that the tracking errors converge and 
all system states and control inputs are bounded simu- 
taneously. Therefore, the effectiveness of the composite 
controller is verified. 

4 .EXPERIMENTAL RESULTS 
A 2-link planar flexible manipulator deburring sys- 
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Figure 4: Experimental result 

tem has been set up and experimented in Department 
of Electrical Engineering at National Taiwan Univer- 
sity (NTU). The 2-link flexible manipulator is drived 
by two revolute joints which are perpendicular to the 
motional plane. The first link is driven by a D.C. mo- 
tor with ratio 128:1, and the second link is driven by a 
D.C. Brushless motor with gear ratio 1 O O : l .  There is 
a grinding tool equipped at the tip of the second link 
and the second joint of the manipulator is air-based in 
order to counteract the gravity. In the experiment, the 
flexible modes are measured using strain gauges. A PC 
486-33 is used as the processor to implement the com- 
putation of the control law and the adaptation law, in 
which the sampling rate is set to be 300 Hz. 

The workpiece chosen for deburring is a rectagulat 
steer slip, which is held paralel to the y-axis direction 
int the task space. The constraint surface of the work- 
piece can be mathematically represented as z = 0.9. 
The experimental results are shown in Fig. 4,  which are 
the control results with different feedrate. Fig. 4 (a) 
(b) show the normal cutting force and tangential pos- 
tional tracking trajectorie, respectively, Fig 4 (c) shows 
the tangential cutting force, and Fig. 4 (d) shows the 
input torques. From these figures of the experimental 
results, the preformance of the composite controller is 
verified. 

6.CONCLUSION 

In this thesis, the deburring model was presented 
and the dynamic model of an n-link constrained flexi- 
ble manipulator in task space was derived. A general 
method, namely, the singular perturbation method was 
utilized to formulate this problem into a two time-scale 
system in Cartesian coordinate. According to the nat- 
ural characteristics of the constrained system, we can 
further reduce its slow subsystem into an even simpler 

one. Under this formulation, a nonlinear adaptive con- 
troller is then proposed. The tracking errors of position 
and force as well as the link vibrations can be shown 
to converge to a small residual set. 

To demonstrate the effectiveness of the nonlinear 
adaptive controller proposed, both computer simula- 
tions and the actual experiment were both performed. 
All the results obtained indeed manifest the promising 
potential of real application. 
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