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Abstract 

In this paper, we investigate the problem of find- 
ing an algorithm for the movement of a vehicle under 
the nonholonomic constraint to track a given directed 
straight lane without allowing any spinning motion. 
We propose a new principle of computing the deriva- 
tive of path curvature as a linear combination of the 
current vehicle path curvature, vehicle orientation er- 
ror, and positional error. We call this function the 
steering function. By linearization we find an opti- 
mal selection of parameters for  critically damped mo- 
tions and obtain a single parameter, U,  for tracking, 
which we call smoothness. The uniform asymptotic 
stability of the feedback rule is proved through a Lya- 
punov function. Numerous simulation results as well 
as experimental results obtained on the autonomous 
robot Yamabico at the Naval Postgraduate School are 
included t o  show the effectiveness of this method. 

1 Introduction 

The motion planning/control problems for au- 
tonomous vehicles with the nonholonomic constraint 
have given rise to a vast body of literature in recent 
years. Due to a celebrated result by Brocket [l], it 
has been known that nonholonomic wheeled mobile 
robots can not be stabilized to a given configuration 
by a smooth feedback control. Therefore, to han- 
dle the “configuration tracking problem”, some re- 
searchers such as Canudas and Sordalen in [2] have 
proposed piecewise smooth feedback laws for expo- 
nentially stabilizing a mobile robot. Samson in 13, 41 
has proposed a smooth time varying feedback control 
law for stabilizing a robot, or even a chained system 
of wheeled robots to a given final configuration. 

While these approaches are mathematically elegant 
and general enough to be applied to a variety of situa- 
tions, for the specific problem of “straight-line track- 
ing” the feedback laws given by these procedures do 
not necessarily yield the simplest and most efficient 
feedback controllers. The problem considered in this 
paper is to find an algorithm for the movement of the 
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vehicle to track a given directed line without allowing 
any spinning motion. Our approach to this problem is 
based on a geometrical notion leading to a feedback 
design that is easy to use and implement, and also 
guarantees the exponential convergence of the mobile 
vehicle’s path from an arbitrary initial configuration 
to a given directed straight line. 

This problem was first studied by one of the au- 
thors. In [5] a motion planning algorithm using a 
sequence of straight lines was proposed. After this 
preliminary investigation, he found a stable tracking 
rule using a Lyapunov function [6]. The problem in 
this paper was to find a suitable pair ( v , w ) ,  the linear 
and angular velocity of the vehicle so that the vehicle 
would track a target moving on a straight directed 
line. A condition for the parameter in the feedback 
control rule for a critically damped response was ob- 
tained through linearization. The results from both 
papers were successfully implemented and tested on 
the Yamabico autonomous vehicle at the University of 
Tsukuba and at the University of California at Santa 
Barbara. 

Recently, DeSantis, [7] has developed a control rule 
based on the geometric path tracking principle for a 
tractor-trailer-like robots to track a straight line or a 
circular arc. In a related effort, Thuilot and others, 
[SI have developed a theory based on linearized dy- 
namic feedback as well as time-varying feedbacks for 
the moving reference trajectory tracking problem for 
vehicles with several steering wheels. 

The new method proposed in this paper is based 
on the fundamental observation on the role of path 
curvature in vehicle motion control. In this method, 
the derivative dK:/ds of curvature is computed rather 
than the curvature K: itself, where s is path length. 
A rule to compute the derivative of path curvature 
is to express it as a linear combination of the vehicle 
path curvature, vehicle heading errot, and signed po- 
sitional error Ad. This function is called a steering 
function in this paper. 
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The main results of this theory are summarized as 
follows: (1) The uniform asymptotic stability of the 
feedback rule is proved through linearization and a 
Lyapunov function. (2) Assuming the critical damp- 
ing condition. the steering function contains only one 
parameter that controls the smoothness (or equiva- 
lently. sharpness) of vehicle motions. (3) As the con- 
dition I d ~ / d s l  < IX is satisfied, this scheme ensures 
the continuity of curvature K that is needed for rigid 
body vehicle motion [9]. (4) This theory is indepen- 
dent of vehicle architecture. 

To demonstrate the effectiveness of this method nu- 
merous simulation results are included. This smooth 
motion control algorithm has been successfully work- 
ing on the Yamabico autonomous mobile vehicle at 
Naval Postgraduate School. Because of the simplicity 
of the steering function, the implementation is easy 
and the processing time is short. The real trajec- 
tories of Yamabico generated by this algorithm are 
also shown. From a comparison of these results with 
the simulation results, we observe a good agreement 
between the two types of results. 

2 Motion Control by Path Curvature 

A two dimensional nonholonomic vehicle’s status is 
described by a vehzcle configuration 

where p and 6 denote its position and heading ori- 
entqtion respectively, and K is the path curvature in 
a glbbal Cartesian coordinate system. All these vari- 
ables are functions of time or path length. We include 
the path curvature K in the configuration, partially 
because a vehicle under the nonholonomic constraint 
can execute only a path that has curvature continuity 
[9, 10, 111. 

Although a two dimensional vehicle motion has 
generally three degrees of freedom [9], a nonholo- 
nomic motion has only two degrees of freedom. Such 
a motion can be described as follows: There is one 
and only one line C fixed on the vehicle so that there 
is a rotational center c on C with a rotational speed 
of w (Fig. 1). We call this line C the major axis of 
the vehicle. An arbitrary point on the major axis can 
be taken as a vehzcle reference poznt OV.  Since the 
position of c is specified by the distance r from O V ,  
an instantaneous motion Q is described by only two 
varihbles ( r , w )  or ( r ,  T I ) ,  where TI is the linear speed 
at Ov. A better representation is 

where K = 1/r is curvature. If the center c of rota- 
tion is at infinity, the vehicle is moving on a straight 
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line and K = 0. This representation clearly shows the 
two degrees of freedom possessed by nonholonomic 
vehicle motions. The path curvature K is the best 
variable as a tool to describe vehicle’s motions, be- 
cause (1) K is more directly related to vehicle control, 
and (2) the curvature is independent of how a global 
coordinate system is placed. As we notice every day, 
the path curvature of an automobile is positively con- 
trolled through its steering wheel. 

Center of Rotation 

I Major .A? 
2 

Figure 1: Constraint in Vehicle Motion 

In this paper, we will mainly discuss designing the 
optimal curvature K ,  but not of speed v.  With this 
background, the configuration q and motion Q are 
represented as functions of length s as the indepen- 
dent variable rather than time t .  By the definition of 
curvature, and by the fact that the tangential direc- 
tion of the trajectory is equal to the vehicle heading 
O(s) (Fig. l), we obtain 

6(s) = q o )  + /’ K(u)du, 

2(s) = x ( ~ )  + 1’ cos qu )du ,  

y(s) = y(0) + l’ sin O(u)du. 

(3) 

(4) 

(5) 

0 

3 Line Tracking 

3.1 Steering Function 

Now our original problem becomes the one of find- 
ing the “optimal” curvature K by feedback at each 
moment in order to track a given line L.  Actually, 
rather than computing the curvature itself, we pro- 
pose a method which computes the derivative dKIds  
of curvature K ,  

because of the constraint that the curvature must be 
continuous. Since the magnitude 1x1 is finite, the cur- 
vature is always continuous. Let a vehicle q = ( p ,  6, K )  



X-axis in an exponential rate. In order to study the 
stability properties of the zero solution and their de- 
pendence on the choice of a ,  b,  c ,  we refer to Lyapunov 
stability theories. First, we use the indirect method 
which gives us information about asymptotic stabil- 
ity of the nonlinear equation by studying the related 
linearized first order system of equations. So we write 
Equation (9) as a system of first order equations by 
using the following variables: 

Figure 2: Principle of Path Tracking 

be supposed to track a directed line L (Fig. 2). We 
propose a specific form of a control rule 

(7) 
dK: 
- = -UK - b(B - 81) - c A d ,  
d s  

where, a ,  b,  and c are positive constants. This neg- 
ative feedback rule is called a steering fanetion. The 
first term, - a K  is a feedback term (a damping factor) 
for the curvature, the second term -b(B - 6,) is a 
feedback term for the angle error, and the third term 
- c a d  is a feedback term for the positional error. The 
positional error A d  is the signed distance from p to 
L ,  where A d  > 0 if the vehicle is on the left side of 
the directed line, A d  < 0 if it is on the right side, and 
A d  = 0 if it is on the line. 

3.2 Linearization 

Choosing the “optimal” combination of the three 
constants ( a ,  b ,  c)  is the next important issue to  
tackle. If we select an inappropriate combination, the 
vehicle may not converge to the line L or may oscillate 
around the directed line and takes longer tracking for 
convergence. We first perform an appropriate coordi- 
nate transformation so that the given directed line L 
becomes the X-axis of the global coordinate system in 
the positive direction [12]. After this transformation, 

Thus, the steering function (7) becomes 

dK: 
- = - a K  - bB - cy. ds  (9) 

Notice that this is a nonlinear homogeneous differen- 
tial equation and there is no closed form solution. We 
impose the condition, 181 < $, so that the trajectory 
is a single-valued function y( 2). 

We can formulate the problem as achieving asymp- 
totic stability of the zero equilibrium solution of the 
nonlinear dynamic equation (9) by a proper choice of 
a, b,  c. In this case, uniform asymptotic stabilaty of the 
zero solution means that the trajectories of the vehi- 
cle with certain initial configurations converge to the 

We would like to  have the form 

x = f(x), (11) 

where the dot denotes differentiation with respect to 
2. We represent all the variables in Equation (9) (y, 
8, K ,  and %) in terms of 21 to 2 3 .  

y = 21 

e tan-’ y‘ = tan-’ 2 2 ,  

- dK/dx  - 2 (6) - -- 
dtc - 
d s  d s / d x  JG-p 

= ylrl(l + y12)-2 - 3yly‘12(1 + y/2)-3 

= i 3 ( 1  + 222)-2 - ~ x ~ x ~ ~ ( I  + x ~ ~ ) - ~ .  

After substituting these results into (9), we can ob- 
tain an equation in the form of Equation (11): 

x1 = y‘ = 2 2  = fl, 

x 2  = y ” =  2 3  = f2 ,  

x 3  = y”’ 

= 322232(1 + 2 2 2 ) - 1  - U.23(1 + 2 2  2 ) 1/2 

- b ( l +  ~ 2 ’ ) ~  tan-l22 - c z l ( l +  $2’))” 

= f 3 ,  

where f = [fl, f2, f3IT clearly satisfies 

f(0) = 0. (12) 

Now we linearize the system by using the Jacobian of 
f 

The Lyapunov’s indirect method informs us that the 
nature of the eigenvalues of matrix A determines the 
stability properties of the system. More precisely the 
method states that the equilibrium point 0 is uni- 
formly asymptotically stable if all the eigenvalues of 
A have negative real parts [13]. 
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For our problem the eigenvalues X of A satisfy the 
equation, 

X 3  + aX2 + bX + c = 0. (14) 
To obtain the proper conditions on the coefficients for 
achieving asymptotic stability, we refer to the Routh- 
Hurwita criterion which says a ,  b,  and c must be all 
positive and ab - c > 0. Therefore, we have the fol- 
lowing statement. 

Proposition 3.1 The equilibrium point 0 of Equa- 
tion (9) is uniformly asymptotically stable i f  a ,  b ,  c 
are positive constants and ab > c. 

If the eigenvalues are three negative numbers, 
-kl, - K 2 ,  -k3, the parameters a ,  b, c must satisfy 

a =  k l  + 1 2  + k3, (15) 
b = k2k3+k3ki  + k i k 2 ,  (16) 
c = klk2k3.  (17) 

Furthermore, if we take all the negative real eigenval- 
ues equal, 

kl = E 2  = k3 = k for some k ,  (18) 

then the relationship among the constants becomes 
simpler: 

a = 3k, b = 3k2, c = k3. (19) 

We call k the gain of the steering function. Therefore, 
we can conclude 

Corollary 3.1 For the Equation (9), the equilibrium 
point 0 is uniformly asymptotically stable if a = 
3k, b = 3k2, and c = k3  for some posztave constant 
k .  

In the examples in Section 4, the parameters are sup- 
posed'to satisfy the set of relations (19). We let 

1 
k 

U = -  

that is called the smoothness of the steering function. 
A steering function has only one parameter U .  

3.3 , Global Stability 

The stability analysis presented in the previous sec- 
tion gives us asymptotic stability of the solutions in a 
local qense. This means that only for the initial con- 
figurakions that are sufficiently close to the origin, the 
subsequent trajectories converge to the X-axis. To 
study the stability properties of the highly nonlinear 
system (9), we need to refer to the direct Lyapunov 

method which gives us more information about the 
subset of of the real plane called the domain of at- 
traction or the set of initial conditions that result in 
uniform asymptotic convergence to a desired path. 
Upon some numerical experiments, we have encoun- 
tered examples where for some initial conditions the 
trajectories do not converge to the X-axis. Therefore, 
we already know that the system lacks global expo- 
nential stability. But we can indeed prove a stability 
result that is stronger than the one obtained by lin- 
earization. Under a restriction only on the magnitude 
of the direction 0, we will prove that all the resulting 
paths converge to the X-axis, regardless of the initial 
values of the other variables, y, and n. This result 
is obtained by the direct method which relies on con- 
structing a positive definite Lyapunov function whose 
path derivative along the trajectory is negative. We 
refer to the following theorem [14]: 

Theorem 3.1 Consider the autonomous equation 

x = f(x), f(0) = 0. (21) 

Let V(x) be a scalar function, and let Q designate a 
region where V(x) is positive-definite. Assume that 
Q is bounded and that within $2, 

0 V(x) > 0 for  x # 0, and V(0) = 0 ,  

V(x) 5 0, 

0 if V(x) = 0 at points other than the origin, then 
these points are not a solution of the system. 

Then the origin is asymptotically stable and all mo- 
tions starting in i2 converge to the origin eventually. 

To use this result, we first choose Q to be the set of 
configurations with its direction S restricted in the 
range, IS1 < ;, 

Second, we construct the following Lyapunov func- 
tion: 

b b2 c 
V = -n2 + -0' + -y2 + by8 + nsin S + a ( l  -cos S), 

* 2c 2c 2 
(23) 

where a ,  b,  c are positive constants in Equation (9). 
It is easy to see that V ( 0 )  = 0. Now we need to show 
that V is a positive definite function for some values 
of a.  b and c. 

Lemma 3.1 Forpositive constant a ,  b and c that sat- 
isfy the relationship ab > c the Lyapunov function, V 
is positive definite in Cl i f  x # 0 .  
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For the rest of the conditions in the Theorem, we need 

Lemma 3.2 For values a ,  b,  c such that ab > c 

r i S O i n R  

and the points at which V = 0 are not a solution i o  
the system of equations. 

We can now summarize the results on the estimate 
of the region of asymptotic stability in the following 
proposition. 

Proposition 3.2 If ab > c,  all trajectories starting 
and remaining in R wall eventually converge to  the 
X-axis. 

4 Results and Applications 

4.1 Fundamental Results 

In this example, the vehicle is supposed to track a 
directed straight line L with the direction of 61 = ~ / 4 ,  
where its initial direction 60 is one of five distinct 
directions: -T, -n/2,0,~/2, T. 

d / 61 = ~ / 4  

((0, loo), 0,O). The effect of using distinct values of 
smoothness with a = 20,40,80, and 160 is clearly 
seen in this figure. The smoothness of a vehicle mo- 
tion is perfectly controlled by a. 

Y 

I \  

t 
Figure 4: Effect of Smoothness 

Y 
1 

60 = -T ,,' 

Figure 3: Line Tracking 

4.2 Effect of Smoothness c 

The only parameter in the steering function is the 
smoothness a. Selecting an appropriate smoothness 
in a given situation is fundamentally important. Gen- 
erally speaking, using a larger smoothness is better 
for obtaining a smoother motion so that a faster mo- 
tion is possible. However, in a tighter space, we need 
to use a smaller smoothness in order to make sharper 
turns. In this section we show the effect of the value 
of smoothness on the resultant vehicle motions. 

Figure 4 shows how the vehicle tracks the X- 
axis after leaving an initial configuration, qo = 
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Figure 5 :  Results from Real Experiments (solid lines) 
and Simulation (broken lines) 

This line tracking algorithm is already imple- 
mented as a part of the Yamabico autonomous ve- 
hicle software system. Figure 5 shows the difference 
between the results obtained by simulation and by 
real experiments. Both results are pretty close and 
the performance by Yamabico is satisfactory. 

4.3 Wall Tracking 

The wall tracking problem is one of planning a mo- 
tion for a vehicle to track non-flat parallel walls with 
a given constant clearance of do, where the vehicle is 
equipped with side-looking range finders. The vehicle 
obtains the current clearance Ad to the wall by the 
sensor in real time in order to keep the clearance A d  
equal to the given desired clearance do by steering the 
vehicle. Unless the vehicle is in a transition status, 
the vehicle's orientation must be equal to the wall 
direction 81 and its curvature must be 0. This prob- 
lem can be easily solved using the steering function 



method. We use a term c(Ad - do) instead of c a d  in 
Equation (7). One simulation result is given in Fig- 
ure 6, Part (I). This behavior shows how the vehicle 
faithfully follows the exact profile of the walls. 

- 
~H do ---do . . . . . . . . . .  . . . . . . . . . .  , dol ,. . . . . , . . . . . . . . . .  !..~ . . . .  . . !! ::_. . . .  . . . . .  . .  . . . . . . .! . .  r . .  . . .  . .  . . . I  

 do^ 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  

(I) Wall Tracking with Exact Clearance 

(11) Wall Tracking with Allowance 

Figure 6: Wall Tracking 

We can loosen the strict wall tracking requirement 
in order to reduce the frequency of lateral transitions. 
One method is that the vehicle keeps clearance Ad 
to try to satisfy the condition d,in 5 Ad 5 dm,,, 
where dman and d,,, are positive constants with 
d,,, i= d,,,. Namely, the clearance has some al- 
lowance. By this method, the vehicle executes steer- 
ing so that slight wall-position changes do not cause 
vehicle’s lateral motions (Fig. 6, Part (11)). Only 
when B significant change occurs, the vehicle steers. 

5 Conclusion 

In this paper, the new principle of controlling the 
derivative of path curvature for smooth nonholonomic 
motion planning is proposed and is specifically ap- 
plied to line tracking. Through linearization and the 
Lyapupov stability theory, we have shown exponen- 
tial cohvergence of the vehicle’s path from an initial 
condition to a given straight line. This algorithm 
workslwell not only in simulation, but also in real 
vehiclq navigation on the Yamabico autonomous mo- 
bile robot. 

We will report on the application of this principle 
to other path tracking problems such as tracking a 
circle, or a more general C1 curve in future work. 
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