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Abstract This  work considers sensor based motion 
planning for rod-shaped robots in unknown environ- 
ments. The  motion planning scheme is based o n  the 
rod hierarchical generalized Voronoi graph (rod-HGVG). 
The rod-HGVG i s  a roadmap for rod-like robots, and is 
a n  extension of a prior roadmap for point-like robots. 
W e  give a n  incremental method to  construct the rod- 
HGVG, thereby enabling exploration of unknown envi- 
ronments. An important practical feature of the algo- 
rithm is i ts  sole reliance upon the use of work space 
distance measurements t o  objects that are within line 
of sight. Such measurements can be readily provided by 
conventional range sensors. Moreover, motion planning 
in a configuration space i s  achieved without explicitly 
constructing each configuration space obstacle. A key 
result derived in this paper is  the distance gradient be- 
tween two convez sets. 

1 Introduction 
Sensor based planning makes use of sensor informa- 

tion reflecting the current state of the environment, in 
contrast to classical planning, which assumes full knowl- 
edge of the environment prior to planning. Recent work 
[4] includes the definition of a new roadmap structure 
termed the rod hierarchical generalized Voronoi graph 
(rod-HGVG) which serves as a basis for sensor based 
planning for a rod shaped robot operating in the plane. 

Recall that a roadmap is a geometric structure that 
captures the global topological properties of the robot’s 
free space and has the following important proper- 
ties: accessibility, connectivity, and departability. These 
properties imply that the planner can construct a path 
between any two points in a connected component of 
the robot’s free space by first finding a path onto the 
roadmap (accessibility), traversing the roadmap to the 
vicinity of the goal (connectivity), and then constructing 
a path from the roadmap to the goal (departability). 

The focus of current work is on the incremental con- 
struction of the rod-HGVG using only line of sight range 
data. An incremental construction procedure is neces- 
sary for sensor based planning because most environ- 
ments do not have one vantage point from which the 
robot can “see” the entire environment. Therefore, the 
robot must coordinate motion and sensing to explore an 
unknown environment. 

The primary advantage of rod-HGWG incremental 
construction procedure is that distance measurements 
are made entirely in the workspace, instead of the con- 

figuration space where measuring distance with conven- 
tional sensors is quite difficult. In fact, the incremental 
construction procedure for the rod robot bypasses the 
need for the explicit construction of the configuration 
space. While the primary intention is to use the rod- 
HGVG as a basis for sensor based planning, it can also 
be used for classical motion planning. 

The rod-HGVG definitions are based upon the defini- 
tions of the HGVG, a roadmap structure that serves as 
the basis for sensor based planning for a point robot [2]. 
Robots that can be modeled as a point include most cic- 
ular symetric mobile robot bases. Rod robots are useful 
for motion planning of long and narrow delivery robot 
systems and robot blimps; however this work is the next 
step towards the ultimate goal of sensor based planning 
for an articulatedmulti-body chain robot. To better dis- 
tinguish the two roadmaps, term the point based HGVG 
as the point-HGVG. 

2 Relation to Prior Work 
Sensor based planning has received increased atten- 

tion, as it is a requirement for realistic deployment of 
autonomous robots in unstructured environments. For 
a review of many sensor based planning techniques, 
see [14]. Unfortunately, current sensor based planning 
methods are limited because: (1) many are based on 
heuristic algorithms, and it is therefore impossible to 
prove if they will work in all possible environments; (2) 
proof of convergence for other algorithms is limited to 
the case of a point in two-dimensional environments (for 
example, Lumelsky’s “bug” algorithm [SI); or (3) the 
robot is assumed to be a point in configuration space, 
where its sensors can measure distance in configuration 
space. 

The rod-HGVG is based upon the generalized 
Voronoi diagram (GVD) which was aplied to motion 
planning of a disk by O’Dlinlaing and Yap [12]. How- 
ever, the method in [12] requires full knowledge of the 
world’s geometry prior to the planning event. This work 
was extended to the case where the robot is a rod in [ll], 
but it, too, requires full knowledge of the world’s geome- 
try prior to the planning event. Recently, Cox and Yap 
[6] developed an “on-line” strategy for path planning 
for rods. Although this method can be readily modi- 
fied with tactile sensors for sensor based use, it does not 
provide a roadmap of the rod robot’s free space. 

To our knowledge, the only sensor based adaptations 
of roadmaps for configuration space dimensions greater 
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than two are [15] (which is based on Canny and Lin's 
Opportunistic Path Planner (OPP) [l]), and [2] (which 
is where the hierarchical generalized Voronoi graph 
(HGVG) is defined). A limitation of these roadmaps 
is that distance measurements are assumed to be made 
in a configuration space (or some parameterization of 
it). Previous work [4] introduces the rod-HGVG, which 
is a configuration space roadmap defined in terms of 
workspace distance measurements which are obtainable 
from realistic sensors. 

This paper focuses on the incremental construction 
procedure of the rod-HGVG. The approach, described 
in this paper, is based on the point-HGVG incremen- 
tal construction procedure [3]. The advantage of the 
point-HGVG incremental procedure is that it uses only 
line of sight information and functions in non-planar 
environments. The drawback of the point-HGVG pro- 
cedure is that it assumes distance measuresments are 
made in a configuration space (or some parameteriza- 
tion of it). The rod-HGVG incremental construction 
procedure requires only work space distance measure- 
ments, and thus, the rod-HGVG is easy to construct 
using realistic sensors. 

point-GVD -+ point-GVG -+ point-HGVG 

rod-GVD -+ rod-GVG -+ rod-HGVG 
J- 

3 The Generalized Voronoi Graph 
Since this work is heavily based upon the point 

based GVG, this section is dedicated to the generalized 
Voronoi graph (GVG) [2]. The GVG is the foundation 
for a point robot roadmap (i.e., the point-HGVG). In 
this paper, we term the GVG the point-GVG in order 
to distinguish it from the generalized Voronoi graph for 
a rod, which is defined in a later section. 

The point-GVG is defined in terms of a distance func- 
tion 

d ; ( r )  = min Ilr - C I I  
CECi 

where r E W" and Ci is a convex obstacle. The basic 
building block of the point-GVG is the two-equidistant 
surjective surface which is the set of points equidistant 
to two convex obstacles, and is denoted 
S S i j  = {T E R" : (di--clj)(r) = 0 and V d ; ( r )  # V d j ( r ) } ,  
where V d ; ( r )  is a unit vector based at  r and pointing 
away from the minimizing c along a line defined by c 
and r (see Equation 1). In constructing the point-GVG, 
we are interested in a subset of SS;j  termed the two- 
equidistant face which is defined as 

F;j = {r  E cl(SS;j) : d ; ( r )  5 d h ( r )  Vh}. 
The intersection of F;j and Fj;.lc forms a three-equidistant 
face, denoted F;j;.lc, and it is the set of points equidistant 
and closest to three obstacles: c;, Cj, and ck [2]. 

~ 
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Fig. 1. The ticked line segments form the planar point-GVG for a 
bounded environment. The ticks point at the nearest point on 
an obstacle, and are thus the negated gradients of the distance 
function. 

In the plane, the two-equidistant faces and three- 
equidistant faces are one and zero-dimensional, respec- 
tively and the point-GVG is the collection of these one- 
dimensional edges and zero-dimensional vertices. In the 
plane, the point-GVG, which is the set of points equidis- 
tant to two or more closest obstacles, is always con- 
nected. See Figure 1. (In W", the point-GVG is the 
set of points equidistant to m obstacles and is always 
one-dimensional, though not necessarily connected [2].) 

A key feature of the point-GVG is that it can be 
incrementally constructed using line of sight range data. 
This incremental construction procedure is described in 
[31- 

4 Rod Distance Function 
DEFINITION 4.1 (ROD) A rod R is a line segment of 
length L that has two end points P and Q. 

The configuration space of the rod is SE(2) (SE(2)  N 

B2 x 6). Let q be the configuration of the rod, and let it 
be determined by the x and y coordinates of the point 
P,  and the orientation of the rod with respect to the 
horizontal, i.e. q = (x, y, e) .  See Figure 2. Let P(q)  be 
the x and y coordinates of the point P when the rod 
is at configuration q, let B(q) be the orientation of the 
rod when it is at configuration q, and let R(q) be the 
set of points in the plane that the rod occupies when it 
is at configuration q. Note that P(q)  E R2, 6(q) E S1, 
and R(q) c R2. Let superscripts and Y denote the x 
and y coordinates, respectively, of a point in the plane. 
For example, P(q)" is the 5 coordinate of the point P 
at configuration q. Finally, when X c R2, let q ( X )  be 
the set of configurations q* where R(q*) c X .  

Assume a rod robot R is operating in a subset W of 
Et2 .  W is populated by obstacles Cl,. . . , C, which are 



Fig. 2. The configuration of a rod is determined by the x and y 
coordinates of P and the orientation of the rod with respect 
to the horizontal. 

P 
Fig. 3. The distance from the rod (thick solid line) to an obstacle 

is the distance (dotted line) between the nearest point on the 
rod to the obstacle and the nearest point on the obstacle to 
the rod. 

convex sets. Non-convex obstacles are modeled as the 
union of convex shapes. It is assumed that the boundary 
of W is a collection of convex sets, which are members 
of the obstacle set {C;}. 

DEFINITION 4.2 (ROD SINGLE OBJECT DISTANCE) 
The rod single object distance func t ion  is the distance 
between an obstacle C; and a rod R when the rod is at 
a configuration q. It is determined by 

An important characteristic of D;(q) is that it can be 
readily computed from sensor measurements made in 
the workspace. For example, the rod robot in Figure 3 
may have range sensors distributed around its perime- 
ter. The distance between the obstacle and the rod is 
the measurement of the range sensor associated with a 
local minima of measurements. It can be shown that 
the rod-distance function is continuous and smooth in 
the interior of the workspace for convex sets. 

The discussion of the gradient VDi(q) is defined in a 
later section. However, it should be noted that VDi(q)  
is continuous for convex sets. 

5 Rod-HGVG 
The rod-GVG, defined below, serves as a basis for 

the rod-HGVG. A key feature of the rod-GVG is that 
it is defined in terms of a distance function. The ba- 
sic building block of the rod-GVG is the configuration 
two-equidistant face which is the set of rod configura- 
tions equidistant to two obstacles such that these two 
obstacles are the closest obstacles and no two gradient 

~ 
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Fig. 4. The thick solid lines represent three configurations of 
the rod whose configurations are in the configuration three- 
equidistant face defined by obstacles Ci, Cj and C k .  The thin 
dotted lines represent the distance between the rods and the 
obstacles. 

vectors are co-linear. That is, 

In the planar case, the rod-GVG edges are configura- 
t ion three-equidistant faces and the the rod-GVG nodes 
are configuration four-equidistant faces. A configura- 
tion three-equidistant face, denoted eF;jk, is the set of 
rod configurations that are equidistant to  three obsta- 
cles such that (1) these three obstacles are the closest 
obstacles and (2) no two gradient vectors to  any of the 
three obstacles are co-linear. That is, 

(4) 

Note that we only consider configuration three- 
equidistant faces that comprise the transversal intersec- 
tion of configuration two-equidistant faces (a stability 
and generic assumption described in [2], [ 5 ] ) .  The con- 
figuration four-equidistant faces are defined in a similar 
fashion. In the planar case, the configuration three- 
equidistant faces are the rod-GVG edges and the config- 
uration four-equidistant faces are the rod-GVG vertices. 

DEFINITION 5.1 (ROD-GVG) The collection of rod- 
GVG edges and of rod-GVG vertices is the rod-GVG. 

Alas, the rod-GVG is not  necessarily connected as can 
be seen in Figure 5. In order to connect the rod-GVG, 
we define additional structures, termed R-edges, which 
link disconnected rod-GVG edges by  exploiting the prop- 
erty that the point G V G  is connected in the plane. See 
Figure 6. The R-edges (Figure 7) are the set of rod con- 
figurations, q, whose R ( q )  are in the tangent space of a 
point-GVG edge at  a point, r ,  such that (I) T E R(q) 
and T is closer to obstacles Ci and Cj than any other 
point on the rod and (11) no other obstacle is closer 
to the rod than the two equidistant obstacles. In other 



Fig. 5. The two clusters of solid lines represent rods whose con- 
figurations are triply equidistant to three obstacles. The left 
cluster represents rods whose configurations are elements of 
the rod-GVG edge t!F*,k, and the right cluster are elements 
of t!Frkl. In this example, both rod-GVG edges are Meomor- 
phic to S1 (i.e., they are cyclic) and neither rod-GVG edge is 
connected to any other rod-GVG edge. 

I I I 

C. 
1 

CE. 
1Jk 1Jl 

I I 
CF.. I GVG edge fragment 

Fig. 6. The dark line segment on the left represents a rod configu- 
ration in t !F~; jk,  and the dark segment on the right represents 
a rod configuration in t!F+. These rods are connected by 
the point GVG edge Fjj. The point GVG edge gives rise to 
a linking structure termed the R-edge which connects t !F i jk  
and CYiji. 

words. 

Xij = ( 4  E cl(4(TT3’;j)) : r E F;j and 

(I) 0 5 4(.) Idi(. i)  \Jri E R(4) and 

(11) &(r)  I Dh(4) Vh # i,j}. (5) 
In SE(2),  an R-edge is one-dimensional[4]. 

DEFINITION 5.2 ( ROD-H GVG) The rod hierarchical 
generalized Voronoi graph (rod-HGVG) is the collection 
of rod-GVG edges and R-edges. 

In the planar case, the rod-HGVG is accessible, con- 
nected, and departable [4]. Current work includes ex- 
tending the rod-HGVG to the three-dimensional case. 

6 Incremental Construction 
6.1 Incremental Accessibility 

It was shown in [4] that accessibility is achieved in 
two steps. Assume the robot starts at a point closest 
to a single object C;. Boundedness of the workspace 
guarantees that a rod robot that follows a path traced 
by VD;(q)  arrives at a configuration that is equidistant 
to two objects, Ci and Cj. Then, maintaining double 
equidistance, the robot increases distance from objects 
C; and Cj. Again, boundedness guarantees that the 

Fig. 7. The rod is moving from left to right while remaining tan- 
gent to the point GVG edge defined by obstacles C, and C,. 
The thick solid lines represent different configurations of the 
rod in an R-edge. The dotted lines represent the shortest dis- 
tance between the rod and the nearby obstacles. Note, for 
all configurations where the rod is tangent to F,, but not at  
r-, the closest point on the rod to C, and C, is either P or 
Q- 

C. 
1 

Fig. 8. The solid lines represent the rod, which is moving from 
an initial configuration to the rod-GVG. The solid arrow rep- 
resents the portion of the path in which the rod is following 
the gradient to the nearest obstacle. The dotted arrow corre- 
sponds to the final portion of the path where the rod moves 
toward c k  while remaining equidistant to C, and C, (i.e., the 
rod follows VD, (d - TT* e~~~ V D k  (q)) .  

robot arrives at a configuration that is equidistant to 
three obstacle, i.e., a configuration on a rod-GVG edge. 
A key feature of this procedure is that it requires only 
line of sight information. See Figure 8. 

6.2 Traceability 
In an incremental context, the property of connectiv- 

ity is interpreted as traceability. More specifically, trace- 
ability implies that using only local data, the robot can: 
(1) “trace” the point-GVG edges; (2) determine when to 
terminate the edge tracing process, and (3) determine 
when to start new edge tracing procedures. 

6.2.1 Rod-GVG edges 
As described in Section 5, there are two structures 

that compose the planar rod-HGVG: rod-GVG edges 
and R-edges. Both of these structures can be incremen- 
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tally constructed using only line of sight information in a 
fashion similar to the incremental construction of point- 
GVG edges described in [3]. Just like the point-GVG 
edges, the rod-GVG edges are traced in an incremental 
manner using an adaptation of numerical continuation 
techniques [ 71. 

Let zl be the basis of the tangent space of a config- 
uration q in the rod-GVG edge and let 21, z2, z3 be the 
tangent space of q in SE(2). That is, 21,22,z3 can be 
viewed as a coordinate frame whose origin is located at 
q. Let A be a parameter which represents a displace- 
ment in the z1 direction and let y be the plane spanned 
by z2 and z3. This plane is termed the “normal plane” 
and is orthogonal to z1, the tangent of the rod-GVG. In- 
cremental construction of the rod-GVG edge is achieved 
by tracing the roots of the expression Grod(y; A) = 0 as 
the parameter X varies. 

The function Grod(y;X) assumes a zero value only 
on a point-GVG edge. Hence, if the Jacobian of Grad, 
which is 

is surjective, then the implicit function theorem asserts 
that the roots of Grod(y; A) locally define a rod-GVG 
edge as X is varied. A rod-GVG edge is constructed by 
numerically tracing the roots of G. 

(In actuality, we are using the differential, not the 
gradient, in Equation 7, but for the sake of discussion, 
when we state gradient, we mean differential. Note that 
there is a natural relationship between the two. Discus- 
sion of the gradient appears in Section 7) 

The explicit edge construction procedure has two 
steps: a predictor step and a corrector step. The pre- 
dictor step moves the robot for a small distance along 
the tangent of the rod-GVG. The tangent direction is 
the null space of V,Grod [16]. Since V,Grod comprises 
distance information, it can be readily computed with 
line of sight sensor information. 

Typically, the prediction step takes the robot off of a 
rod-GVG edge, so a correction procedure is required to 
bring the robot back to the rod-GVG. If step size along 
the tangent is “small,” then the graph will intersect a 
“correcting plane” (Figure 9), which is a plane orthogo- 
nal to the tangent. The correctionstep finds the location 
where the rod-GVG intersects the correcting plane (Fig- 
ure 9) and is achieved via a iterative Newton’s Method. 
If yk and Xk are the kth estimates of y and A, the k+ 1st 
iteration is defined as 

\z2 

(Slice) Tangent 
a 

Fig. 9. Sketch of continuation method. 
where V,G,,d is the Jacobian of G od restricted to the 
correcting plane evaluated at (yk, A‘). 

Now, it needs to be shown that: 

PROPOSITION 6.1 The matrix  V,Grod i s  invertible. 
Proof Assume that V,G,,d is not  invertible. That 
is, assume TqeFij = ~ T ~ e 3 i k .  By definition, for all 
w E Tqe3ij, (V(D;(q) -Dj(q) ) ,  w) = 0. Since T‘e3ij = 

This implies that Tqe3ij = TqeF& which violates the 
assumption that eFij and C 3 i k  transversally intersect. 
Therefore, TqC3ij # ~T,eFik, and V,Grod is invert- 
ible. 

Since V,Grod is invertible, Equation (8) is well 
posed. Practically speaking, this result states that the 
numerical procedure defined by Equation (8) will be ro- 
bust for reasonable errors in robot position, sensor er- 
rors, and numerical round off. 

6.2.2 R-edges 
The incremental construction of the R-edges requires 

a slight modification of the already existing point-GVG 
incremental edge construction procedure [3]. The pre- 
diction step is identical: the rod robot takes a step in the 
tangent direction of a point-GVG edge. Since by defi- 
nition of the R-edge, the rod already lies in the tangent 
space of the point-GVG edge that defines the R-edge, 
the rod simply takes a step in the direction of the tan- 
gent space with fixed orientation. 

As a result of the prediction step, the rod may break 
contact with the point-GVG edge that defines the R- 
edge being traced. In this case, let r be the point on 
the rod that was in contact with the point-GVG edge 
prior to the prediction step. In this situation, the cor- 
rection procedure has three steps: (1) using the point 
point-GVG corrector method with r as a point robot, 
correct the point robot r back to the point-GVG edge; 
(2) rotate the rod so that it is in the tangent space of the 
point-GVG edge; and (3) slide the rod along the tangent 
space of the point-GVG edge so that the inequalities of 
Equation 5 are satisfied. See Figure 10. 

Now, consider the other case of when the rod does 

KTqCYik, for all W E TqeFij, (v(Di(Q) -Dk(Q)), W) = 0. 
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Fig. 10. Thick solid lines represent the prediction and correction 
steps of a rod as it traces out an R-edge defined by the point- 
GVG edge represented by the thin curved line. 

not break contact with the point-GVG edge during the 
prediction phase. Let rbefore be the point on the rod 
where the rod intersected the point-GVG prior to the 
prediction step, let r be the point on the rod that is in 
contact with the point-GVG edge after to the prediction 
step. If r satisfies the inequalities of Equation 5 ,  then 
the rod is already on an R-edge and thus there is no need 
to invoke a correction procedure. If r does not satisfy 
these inequalities, treat rbefore as a point robot, and 
invoke the correction procedure outlined in the previous 
paragraph. 

6.2.3 Initiating and Terminating Conditions 
So far, it has been shown how to get on the rod- 

HGVG and how to trace its components. The following 
two lemmas, whose proofs are omitted due to space lim- 
itations, list the conditions of when to terminate the 
tracing procedure. 

LEMMA 6.2 The terminating conditions of a rod-GVG 
edge are either in the boundary of the environment or 
when the rod is equidistant to four obstacles, i.e., a rod- 
GVG vertex. 

LEMMA 6.3 The terminating conditions of an R-edge 
are either on the boundary of the environment or when 
the rod is equidistant to three obstacles, i.e., a point on 
a rod-GVG edge. 

Incremental construction of the rod-HGVG is akin 
to a graph search where the rod-GVG edges and the 
R-edges are the “edges” and the above described termi- 
nating conditions are the L‘nodes.” The robot terminates 
exploration of the rod-HGVG when there are no more 
unexplored directions associated with any nodes. If the 
robot is looking for a particular destination whose co- 
ordinates are known, then the robot can invoke graph 
searching techniques, such as the A-star algorithm, to 
control the tracing procedure. 

6.3 Departability 
This section quickly reviews how the rod-HGVG is 

incrementally constructed. Incremental departability is 
a consequence of incremental departability of the point- 
GVG in the plane. The remaining point deals with com- 

L 
Fig. 11. Description of the variables 

puting the gradient of D. 

7 Distance Gradient 
In actuality, the rod-distance function definition also 

applies to measuring distance between two convex sets. 
Therefore, this section is devoted to the gradient of the 
distance between two convex sets. The distance between 
the robot and a convex obstacle is simply the distance 
between the pair of closest points on the robot and ob- 
stacle. That is, 

measures the distance between a convex robot and a 
convex obstacle, where q E SE(2) and R(q) are the set 
of points in R2 that the robot occupies. Note that this 
definition is identical to  Equation (2). 

Assume a world coordinate frame whose axes are X 
and Y and a body fixed coordinate frame on R whose 
axes are A and B. Let (z, y)’ be the origin of the body 
fixed coordinates in the world coordinate frame and let 
6’ denote the orientation of the body fixed coordinate 
frame with respect to the world coordinate frame. Let 
c be the closest point on the obstacle Ci to the robot 
R and let r be the closest point on the robot R to the 
obstacle C,. Finally, let ( ~ , b ) ~  be r in the body fixed 
coordinate frame. See Figure 11. Therefore, the world 
coordinates of r is 

cos 6’ - sin81 [;I 
r = i;‘ + [sin@ cos0 

(9) 

y +as in8  + bcos0 1 ‘ - - z + acos6 - bsin6’ 

The distance D;(q)  is ( (cz  - r”)2 + (cy - r.,”) ‘. 
3432 



First, consider the partial derivative with respect to z. 

bsin8 - acos8 
From Equation (9), 

= 1 + 2 cos8 - 2 sin8 
(11) . ,  

I> ax = %sin8 + g c o s ~  
bsin8 - acos8 

Substitute the above into in Equation 10. 

= + ( c - r ) x U  Di q 

Note that the vector c - r  is orthogonal to the tangent 
space of the boundary of the obstacle at c,  as well as to 
the tangent space of the boundary of the robot at r .  
Note that [%, is an element in the tangent space 
of the boundary of the obstacle and that [%cos8 - 
2 sin 8, e sin 8+ cos BIT is an element in the tangent 
space of the boundary of the robot. Therefore, the dot 
products of c - r with both of these vectors is zero and 
thus we have: 

Using similar analysis, we can easily conclude that 

Finally, consider $$i. 

+ (cy  - ry) (g - g)) (14) 

From Equation (9), 

= - z; cos8 - asin8 - %sin0 - bcos6 

= 2 sin8 + acosd + cos0 - bsin8 (15) 

Substitute the above into in Equation (14). 

= U x Vd; ( r ) ,  

where U is described in world coordinates. 
U = Rot(d)[a, bIT. Therefore, the gradient is 

That is, 

where Vdi(r)  is a 3 x 1 vector that is the gradient of a 
single object distance function evaIuated at r and U is 
as described above. Current work includes generalizing 
this result to SE(3). 

It is interesting to note that this gradient definition 
reflects the lack of bi-invariance of all metrics in SE(2) 
and SE(3) [13]. A left-invariant metric in SE(3) is one 
for which given any two points p1,pz E SE(3) ,  the dis- 
tance between these points, d(pl,pz), is the same as 
d(Tp1,Tpz) for all T E SE(3) .  This means, chang- 
ing the location of the world coordinate frame does not 
change the distance between two points in SE(3). A 
right-invariant metric in SE(3)  is one for which given 
any two two points pl,pz E SE(3),  the distance be- 
tween these points, d(pl,pz), is the same as d(plT,paT) 
for all T E SE(3) .  This means that changing the lo- 
cation of the body fixed coordinate frame does not af- 
fect the distance between two points in SE(3) .  It was 
shown in [13] that no metric in SE(3) can be both 
left-invariant and right-variant, i.e., no metric in SE(3) 
can be bi-invariant. Note that the gradient in Equa- 
tion (16) depends upon the choice of a body-ked co- 
ordinate frame; this reflects the lack of bi-invariance in 
SE(2) and SE(3). 

3433 



Recall the example in Section 6.1 of the rod accessing 
the rod-HGVG in Figure 8. The choice of base frame 
on the robot affects the path traced out by the gradient, 
but it does not affect the location of the local maxima. 

Also note that the definition of the rod-HGVG uses 
the gradient in Equation (16). This means that the rod- 
HGVG is dependent upon the choice of the body-fixed 
frame. In [4], the rod-HGVG was defined in terms of 
a translational gradient, VD;(q), which is a 3 x 1 unit 
vector [Vd;(r) 0IT, where r is the closest point on the 
rod R to obstacle C;. 

8 Conclusion 
This paper introduces the incremental construction 

procedure for a roadmap called the rod hierarchical gen- 
eralized Voronoi graph. The rod-HGVG is defined in 
terms of line of sight workspace distance information, 
which is the upper bound to what sensors can read- 
ily provide. This makes the rod-HGVG well suited for 
sensor based motion planning. Although this incremen- 
tal construction procedure was specifically developed for 
sensor based implementation of a rod, it can be used for 
classical motion planning as well. Simulations of this 
method are underway. 

The ultimate goal of this research program is to en- 
able highly articulated robots equipped with sensors to 
explore unknown environments, via construction of a 
roadmap. The first step towards this goal was the de- 
velopment of the point hierarchical generalized Voronoi 
graph (point-HGVG) and its incremental construction 
procedure. The point-HGVG is a roadmap for robots 
that can be modeled as a point; the point-HGVG results 
are general to three-dimensional workspaces. Based on 
the point-HGVG results, the next step was the develop- 
ment of the rod-HGVG and the introduction of its incre- 
mental construction procedure, described in this paper. 
The next step is to extend the results of the rod roadmap 
to that of a convex set, which in turn will be extended 
to the development of a roadmap for a chain of convex 
sets which model a highly articulated robot. 

A key feature of the rod-HGVG (and future roadmap 
definitions) is that it is defined in terms of work space 
distance measurements. Nevertheless the rod-HGVG is 
a subset of SE(2), and thus the gradient (really, the 
differential) of the distance function D;(q) requires ad- 
dition analysis because Di(q) is a non-Euclidean met- 
ric. A key result of this paper is the derivation of the 
gradient (differential) of D;(q). (Note that this gradi- 
ent reflects the lack of bi-invariance property of distance 
metrics in SE(2) and SE(3).) 

The above described gradient technique is useful in 
path planning for non-holonomic robots, such as a mo- 
bile robot with a minimum turning radius. Replac- 

ing the standard Euclidean metric with one that mea- 
sures distances only along feasible paths of the robot 
gives a more realistic measure of proximity to obstacles, 
accounting for the constraints on the robot’s motion. 
Planning using a GVG constructed with this feasible 
path metric results in lower complexity paths for the 
robot [9]. Details on the differentiability of a feasible 
path metric for car-like robots are discussed in [lo]. 
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