
Sensor-Based Planning with the Freespace Assumption
�

Sven Koenig Yury Smirnov

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891

fskoenig, smirg@cs.cmu.edu

Abstract

A popular technique for getting to a goal location in un-

known terrain is planning with the freespace assumption.

The robot assumes that the terrain is clear unless it knows

otherwise. It always plans a shortest path to the goal lo-

cation and re-plans whenever it detects an obstacle that

blocks its path or, more generally, when it detects that its

current path is no longer optimal. It has been unknown

whether this sensor-based planning approach is worst-case

optimal, given the lack of initial knowledge about the ter-

rain. We demonstrate that planning with the freespace as-

sumption can make good performance guarantees on some

restricted graph topologies (such as grids) but is not worst-

case optimal in general. For situations in which its perfor-

mance guarantee is insu�cient, we also describe an algo-

rithm, called Basic-VECA, that exhibits good average-case

performance and provides performance guarantees that are

optimal up to a constant (user-de�ned) factor.

1 Introduction

In this paper, we analyze a navigation problem in
which a robot has to navigate from a given start loca-
tion to a given goal location in unknown terrain. This
path planning problem is complicated by the fact that
the sensors on-board a robot can typically sense the
environment only near its current position, and thus
the robot has to interleave planning with movement
to be able sense to its environment. As the robot
moves, it acquires more knowledge about the terrain
and consequently reduces its uncertainty about the en-
vironment, which also reduces the number of obstacle

�Thanks to Illah Nourbakhsh and Anthony Stentz for provid-

ing detailed comments on our ideas. Thanks to Leonard Schul-

man for detecting a problem with one of our previous examples

used to demonstrate that planningwith the freespace assumption

is not worst-case optimal. Thanks also to Howie Choset, Geo�rey

Gordon, Andrew Moore, Reid Simmons, and Manuela Veloso for

helpful discussions. This research is sponsored in part by the

Wright Laboratory, Aeronautical Systems Center, Air Force Ma-

teriel Command,USAF, and ARPA under grant number F33615-

93-1-1330, and NSF under grant number IRI-9502548. The views

and conclusions contained in this document are those of the au-

thors and should not be interpreted as representing the o�cial

policies, either expressed or implied, of the sponsoring organiza-

tions or the U.S. government.

con�gurations that the planner has to consider. Thus,
sensing during plan execution and using the acquired
knowledge for re-planning, often called \sensor-based
planning" [1], makes the planning problem tractable.
A popular technique for sensor-based planning is plan-
ning with the freespace assumption [2] [8] [11] [14]: The
robot assumes that the terrain is clear unless it knows
otherwise. It always plans a shortest path from its cur-
rent location to the goal location. When it detects an
obstacle that blocks its path or, more generally, when
it detects that its current path is no longer optimal,
it re-plans a shortest path from its current location to
the goal location using its knowledge about all obsta-
cles encountered so far. Planning with the freespace
assumption has been used on both grids and visibil-
ity graphs, but, di�erent from other sensor-based plan-
ning algorithms [6], it was unknown which performance
guarantees it provides. While we care mostly about its
average-case performance, it is also important that it
provides a good performance guarantee because only
then one can be certain that it performs well in all en-
vironments. We show that planning with the freespace
assumption provides good performance guarantees on
some restricted graph topologies (such as grids) but
is not worst-case optimal in general. For situations
in which its performance guarantee is insu�cient, we
also describe an algorithm, called Basic-VECA, that
exhibits good average-case performance and provides
performance guarantees that are optimal up to a con-
stant (user-de�ned) factor.

2 The Navigation Problem

We formalize the sensor-based planning problem as
follows: A robot is given an undirected, �nite graph
(\map") with positive edge (\street") lengths and ver-
tices (\junctions") that are either blocked or unblocked
(by, say, \construction sites"). The status of the ver-
tices does not change over time. One unblocked ver-
tex is labeled the starting vertex; one vertex is labeled
the goal vertex. The robot can always move from its
current vertex to any unblocked neighboring vertex.
Initially, it does not know the status of any vertex,
but it always senses the status of its neighboring ver-

goal

= blocked square = unknown= unblocked square

goal

start

goal

= blocked vertex = unknown= unblocked vertex

all edge lengths are one

Figure 1: Outdoor Navigation Problem

tices. The robot is started at the starting vertex and
has to either move to the goal vertex or recognize that
this is impossible. In the literature, this problem has
been studied in the context of actual robot navigation
problems. For example, the purpose of NAVLAB II,
Carnegie Mellon's unmanned robot HMMWV, is to
reach speci�ed coordinates in unmapped static terrains
[13]. To do so, the vehicle discretizes the unknown area
into a coarse-resolution map of square cells. Each cell
is either traversable or untraversable. The vehicle al-
ways occupies exactly one cell and can move in all eight
compass directions to traversable adjacent cells. Its
sensors always detect which of its eight adjacent cells
are traversable, and integrate all new information into
the map. Figure 1 (center) shows the initial knowledge
that NAVLAB II has when it operates in the (unreal-
istic, but simple) terrain of Figure 1 (left). Figure 1
(right) shows the corresponding traversability graph.1

Other robot navigation problems have been modeled in
similar ways, for example the indoor navigation prob-
lem described in [8].

3 The Freespace Assumption

Planning with the freespace assumption is a greedy
way for solving sensor-based planning problems: The

robot always makes the optimistic assumption that ver-
tices are unblocked if it does not know their status.
It uses this assumption to plan a shortest potentially
traversable path (a path that does not contain vertices
that are known to be blocked) from its current vertex
to the goal vertex and traverses it until it learns about
a blocked vertex on the path. At this point, it repeats

1We assume, for clarity purposes, that the robot is omni-

directional, point-sized, equipped with only a radial short-

distance sensor, and capable of error-free motion. It is possible

to drop these assumptions, but the example and proofs would

get more complicated. Also, NABLAB II does not only dis-

tinguish between traversable and untraversable cells, but di�er-

entiates more �ne-grained by assigning traversal costs to them.

Re-planning occurs whenever a new traversal cost is assigned to

a cell. Our description is a special case of this approach that dis-

tinguishes only two traversal costs, one of which is in�nite. This

does not a�ect our conclusions, because a sensor-based planning

algorithm that is not worst-case optimal for a special case is not

worst-case optimal in general either.

the procedure, taking into account its knowledge about
which vertices are blocked. If it reaches the goal ver-
tex, its stops and reports success. If, at any point in
time, it fails to �nd a traversable path from its current
vertex to the goal vertex, it stops and reports that the
goal vertex cannot be reached.

Theorem 1 Planning with the freespace assumption is

correct.

Proof: Every time the robot cannot follow a planned

path, it has learned about at least one additional blocked

vertex. There are only a �nite number of them, implying

that planning with the freespace assumption terminates in

�nite time. Planning with the freespace assumption reports

success only if it is at the goal vertex and has thus solved

the sensor-based planning problem. It reports failure only if

no traversable path from its current vertex to the goal ver-

tex exists. Since there is a traversable path from its current

vertex to the starting vertex, there is no traversable path

from the starting vertex to the goal vertex either. Conse-

quently, reaching the goal vertex is impossible in this case.

Planning with the freespace assumption has been
used on actual robots. For example, it has been applied
to the outdoor [13] and indoor [8] navigation problems
mentioned above. Planning with the freespace assump-
tion has several advantages: It is easy to implement.
Its computations can be done e�ciently. (The most
time-consuming step is to re-calculate a shortest path
after new knowledge about obstacles has been acquired
and the Dynamic A* algorithm [10] does this without
unnecessary re-calculations.) It immediately takes ad-
vantage of newly acquired knowledge and always uses
all of its knowledge. Without any changes to the algo-
rithm, it is able to use prior knowledge about blocked
vertices. It learns an optimal trajectory over multiple
trials with the same starting and goal vertices, since
the freespace assumption encourages the exploration of
vertices with unknown status. Finally, when it is used
in conjunction with grids (as in the outdoor navigation
problem), it does not need to make assumptions about
the shapes of obstacles.

start

v4v3v2v1v0 v8v7v6v5 v10v9 v22v20v18v16v15v14v13v12v11 v26v24 v27=vnnv25v23v21v19v17

branches

stem

= blocked vertex

1 2 3 4 5 6 7 8 9

101112

13

the order in which paths

= unblocked vertex

to the goal are tried out
goal

all edge lengths are one

Figure 2: Graph G1 for n = 3

4 Performance Guarantees

We measure the performance of sensor-based plan-
ning algorithms using the total distance that the robot
has to travel before it reaches the goal vertex or discov-
ers that this is impossible. This is reasonable because
robots move so slowly that the total problem solving
time is completely dominated by the travel distance.
The performance guarantee of an algorithm is optimal
according to the standard notion of optimality used in
computer science theory i�, for any problem size, the
worst-case performance of the algorithm over all prob-
lems of this size (here: sensor-based planning problems
on graphs with the same weight) is no worse than the
worst-case performance of any other algorithm over the
same problems. To derive lower and upper bounds
on the performance guarantee of planning with the
freespace assumption in the worst case (its performance
guarantee) we need the following notation: weight(G)
denotes the weight of graph G = (V;E) (the sum of the
lengths of all its edges), and distG(v1; v2) denotes the
length of a shortest path between v1 2 V and v2 2 V

in G.

4.1 Lower Performance Bounds

Lower bounds on the performance guarantee of plan-
ning with the freespace assumption can be established
by example. Our graph topology is planar since maps
often have this property. It makes Basic-VECA tra-
verse the same path repeatedly forward and backward,
and this travel distance is large compared to the lengths
of the edges that are necessary to mislead planning with
the freespace assumption.2

Theorem 2 The performance guarantee of planning

with the freespace assumption on graphs G = (V;E)

is
(log jV j
log log jV j

weight(G)).

2We have assumed that the robot is only able to sense the

status of its neighboring vertices. The example can easily be

adapted to sensors with larger lookaheads, say of x vertices, by

replacing each edge with x consecutive edges that are connected

via x� 1 unblocked intermediate vertices.

Proof: Graph G1 = (V1; E1) (Figure 2) consists of a

stem with several branches that connect the stem to the

goal vertex. All edge lengths are one. The stem has length

nn for some integer n � 1 and consists of the vertices

v0; v1; : : : ; vnn . For each integer i with 1 � i � n there are

nn�i branches of length 1+
Pi�1

j=0
nj each. These branches

attach to the stem at the vertices vj ni for integers j; if i

is even, then 0 � j � nn�i � 1, otherwise 1 � j � nn�i.

All vertices not directly connected to the goal vertex are

unblocked, and so are the goal vertex and the vertex on the

longest branch that is directly connected to the goal vertex.

All other vertices are blocked. v0 is the starting vertex.

Planning with the freespace assumption can behave as fol-

lows: It starts at v0 and traverses the whole stem, trying to

use the branches of length 2 to get to the goal vertex, only

to discover that they are untraversable. It then switches

directions and travels along the whole stem in the oppo-

site direction, this time trying to use the branches of length

n+2 to get to the goal vertex, and so forth, switching direc-

tions repeatedly. It succeeds when it �nally attempts to use

the longest branch. To summarize, the edges connected to

the goal vertex are tried out in the order indicated in Fig-

ure 2. The total travel distance is
(nn+1) since the stem

of length nn is traversed n times. n =
(log jV1 j

log log jV1j
) since

weight(G1) = �(jV1j) and weight(G1) = jE1j = �(nn)

[4]. Put together, it follows that the total travel distance

is
(nn+1) =
(nweight(G1)) =
(log jV1 j

log log jV1j
weight(G1)).

4.2 Upper Performance Bounds

To derive upper bounds on the performance guaran-
tee of planning with the freespace assumption, we �rst
prove properties of the \multiple shortest path algo-
rithm." This algorithm is given an undirected, �nite
graph G = (V;E) with positive edge lengths (all ver-
tices are unblocked) and a sequence [wi]

n
i=0 of distinct

vertices wi 2 V . When it is started at w0, it moves
on a shortest path to w1, then moves on a shortest
path to w2, and so forth until it reaches wn and stops.
Any path that can result from this behavior is called a
([wi]

n
i=0; G) path. We utilize the following simple prop-

erties of the multiple shortest path algorithm:

Theorem 3 Any ([wi]
n
i=0; G) path on any tree G =

(V;E) with unblocked vertices contains any edge e 2 E

at most min(2jV1j; 2jV2j) times, where G1 = (V1; E1)
and G2 = (V2; E2) are the two disconnected graph com-

ponents that are obtained from G by removing e.

Proof: Without loss of generality, assume that jV1j �

jV2j. The multiple shortest path algorithm traverses e to-

wards G1 only when it takes a shortest path from a vertex

wi in G2 to a vertex wi+1 in G1. Since the graph is a tree,

the traversals of e alternate directions. If w0 2 V1, then the

all edge lengths are one

= unblocked vertex

Figure 3: Spanning Tree

edge is traversed at most jV1j�1 times towards G1 and jV1j

times towards G2. If w0 2 V2, then the edge is traversed at

most jV1j times towards G1 and jV1j times towards G2.

Theorem 4 Let G1 = (V;E1) and G2 = (V;E2)
be any two graphs with unblocked vertices and

distG1
(v; v0) � distG2

(v; v0) for all vertices v; v0 2 V .

Then, the length of any ([wi]
n
i=0; G1) path is at most as

long as the length of any ([wi]
n
i=0; G2) path.

Proof: Since distG1
(v; v0) � distG2

(v; v0) for all vertices

v; v0 2 V , the length of any shortest path from vertex wi to

vertex wi+1 in G1 is at most as long as the length of any

shortest path between the same two vertices in G2.

The relationship between the multiple shortest path
algorithm and planning with the freespace assumption
is the following:

Theorem 5 A path of planning with the freespace as-

sumption on graph G = (V;E) is a ([wi]
n
i=0; G

0) path

on graph G0 that is obtained from G by removing all

blocked vertices and all edges that are incident to them.

w0 is the starting vertex, wi for i = 1 : : :n � 1 are the

vertices at which planning with the freespace assump-

tion successfully re-planned paths, and wn is the vertex

at which it reported success or failure.

Proof: The vertices wi are pairwise distinct, since plan-

ning with the freespace assumption only re-plans paths at

vertices at which it has never been before. This is the case

because it only re-plans when it realizes that its current

path is untraversable and it would have known that the

path was untraversable had it been at that vertex before. It

moves on a shortest path from wi to wi+1, because the path

it takes is a subpath of a shortest potentially traversable

path to the goal.

Theorem 5 implies that the performance guarantee
of planning with the freespace assumption is no worse
than jV jweight(G) on any graph G = (V;E). This
follows by summing the values of Theorem 3 over all
edges, since min(2jV1j; 2jV2j) � V . It is currently un-
known whether this bound is tight in general, but for
some graph topologies one can easily obtain tighter
bounds. The following theorem holds for all super-
graphs of the spanning tree shown in Figure 3, such as
grids or environments similar to that shown in Figure
1:

Theorem 6 The performance guarantee of planning

with the freespace assumption on graphs G = (V;E) is
O(jweight(G)j3=2) if the graph topology shown in Fig-

ure 3 is a spanning tree of the graph G0 = (V 0; E0) that
is obtained from G by removing all blocked vertices and

all edges that are incident to them.

Proof: According to Theorem 4, for each sequence

[wi]
n
i=0 of vertices, the travel distance of the multiple short-

est path algorithm on graph G0 is at most as large as that

on its spanning tree. Thus, the maximum travel distance

on graph G0 over all sequences [wi]
n
i=0 is at most as large

as that on the spanning tree. An upper bound on the max-

imum travel distance on the spanning tree is obtained by

summing the values of Theorem 3 over all of its edges. The

resulting bound is O(jV j3=2) = O(jweight(G)j3=2). Accord-

ing to Theorem 5, the maximum travel distance on graph G0

over all sequences [wi]
n
i=0 is an upper bound on the perfor-

mance guarantee of planning with the freespace assumption

on graph G, and the theorem follows.

It is currently unknown whether the upper bound of
Theorem 6 is tight and thus whether planning with the
freespace assumption provides an optimal performance
guarantee for graph topologies such as grids.

5 Better Performance Guarantees

Sensor-based planning problems can be solved with
a variety of graph search algorithms. A complete and-
or graph search always provides the worst-case optimal
solution, but is intractable [7]. Agent-centered search
algorithms [3], such as planning with the freespace as-
sumption, make the problem tractable by interleaving
planning and execution. So far, we have shown that the
performance guarantee of planning with the freespace
assumption is, at best, superlinear in the weight of
the graph (even for planar graphs) except for some re-
stricted graph topologies. Other sensor-based planning
algorithms guarantee a performance that is always lin-
ear in the weight of the graph. Chronological back-
tracking is an example: The robot always moves from
its current vertex to a neighboring unblocked vertex
that has not yet been visited; if such a vertex does not
exist, it leaves the current vertex along the edge with
which it was entered for the �rst time. If it reaches the
goal vertex, its stops and reports success. If, at any
point in time, it is at the starting vertex and has al-
ready traversed all of the edges that leave the starting
vertex and lead to unblocked vertices, it stops and re-
ports that the goal vertex cannot be reached. Chrono-
logical backtracking solves every sensor-based planning
problem with at most two traversals of every edge and
consequently provides a performance guarantee of twice

Given a graph G = (V;E), Basic-VECA uses the following variables
for all v;w 2 V with (v;w) 2 E: count(v;w) keeps track of how
often the edge has been traversed from v to w, reserve(v;w) is the
reserved VECA cost for its traversal from v to w, and cost(v;w) is
the actual VECA cost for its traversal from v to w. Basic-VECA
always makes the optimistic assumption that vertices are unblocked
if it does not know their status. Consequently, we call a path poten-
tially traversable if it does not contain vertices that are known to be
blocked.

1. Set count(v;w) := cost(v;w) := 0 for all (v;w) 2 E. Set i := 0
and s to the starting vertex.

2. If s is the goal vertex, then stop and report success.

3. If no potentially traversable path with �nite actual VECA cost
from s to the goal vertex exists, stop and report that the goal
vertex cannot be reached. Otherwise, consider all traversable
paths that start at s, end in an untraversed edge, and contain
only traversed edges in between. (At least one such path ex-
ists. All these paths are guaranteed to contain only unblocked
vertices, including the endpoints.) Select a path with mini-
mal actual VECA cost from these paths. (This path has �nite
actual VECA cost.) Break ties by selecting a path with the
smallest value, where the value of a path is the length of the
shortest potentially traversable path from s to the goal vertex
that contains the path as pre�x. (At least one such path exists).

4. Repeat the following steps until the selected path has been tra-
versed:

(a) Let (s;w) 2 E be the next edge on the path.

(b) Traverse the edge by moving to vertex w.

(c) Set count(s;w) := count(s;w) + 1.

(d) If count(s;w) + count(w;s) = 1, then set i := i+ 1 and

afterwards reserve(s;w) := reserve(w;s) := 2�i .

(e) If count(s;w)+count(w;s) � k and cost(s;w) = 0, then
set cost(s;w) := cost(w; s) := reserve(s;w).

(f) If count(s;w) + count(w;s) > k, then set cost(s;w) :=
1.

(g) Set s := w.

5. Go to step 2.

Our implementation of Basic-VECA uses Dijkstra's algorithm in con-
junction with priority lists on lexicographic path orderings to avoid
exponentially decreasing VECA costs.

Figure 4: Basic-VECA

the weight of the graph. No sensor-based planning al-
gorithm can provide a better performance guarantee.
On the other hand, planning with the freespace as-
sumption exhibits a much better average-case perfor-

mance than chronological backtracking in typical robot
navigation domains since chronological backtracking
does not focus its search towards the goal vertex.3 In
the following, we describe a sensor-based planning al-
gorithm that combines the advantages of these two al-
gorithms.

The Basic Variable Edge Cost Algorithm (Basic-
VECA, Figure 4) uses planning with the freespace as-
sumption as a subroutine (tie breaker) in Step 3. It

3Experimental results for planningwith the freespace assump-

tion are reported in [10]. Its average-case performance is very

good, although recent experimental evidence [12] suggests that,

at least in some domains, one can improve the total travel dis-

tance slightly by assuming that the status of a vertex is simi-

lar to the status of its neighbors instead of assuming that it is

unblocked. Another advantage of planning with the freespace

assumption over chronological backtracking, that we do not ad-

dress in this paper, is that it is also correct on in�nite graphs.

monitors the behavior of planning with the freespace
assumption until it discovers that it performs unsys-
tematically on some part of the graph, as indicated
by the kth traversal of an edge (k is a parameter of
Basic-VECA). It then discourages planning with the
freespace assumption from traversing this edge again
unless it is absolutely necessary, and thus switches
gradually from focusing its search towards the goal
vertex to exploration. Basic-VECA achieves this by
increasing the VECA cost of the edge (which is dif-
ferent from its length) when it traverses the edge for
the kth time. Initially, all VECA costs are zero and
thus no restrictions are placed on planning with the
freespace assumption. Thus, Basic-VECA behaves ex-
actly like planning with the freespace assumption until
some edge has been traversed k times, and Basic-VECA
with k =1 always behaves identically to planning with
the freespace assumption. Basic-VECA with k = 0,
on the other hand, behaves identically to chronological
backtracking except that it skips cycles that consist
exclusively of backtracking moves when it has to back-
track multiple times. Values of k between zero and
in�nity produce behaviors that mediate between plan-
ning with the freespace assumption and chronological
backtracking.

Theorem 7 Basic-VECA is correct for all parameter

values k = 0; 2; 4; : : : no matter how ties are broken

in Step 3. Its performance guarantee on graphs G =
(V;E) is at most (k+2)weight(G), i.e. O(weight(G))
for �xed k.

The proof is given in [5]. The parameter k can be
used to trade-o� average-case and worst-case perfor-
mance. The average-case performance of Basic-VECA
is similar to that of planning with the freespace as-
sumption for su�ciently large values of k; the larger
the value of k is, the longer both algorithms behave the
same. On the other hand, the performance guarantee of
Basic-VECA is the better, the smaller the value of k is.
A small value of k, however, also causes Basic-VECA
to deviate earlier from planning with the freespace as-
sumption, which can force it in some situations to ex-
plore parts of the graph unnecessarily and increase its
total travel distance.

To summarize, in all environments in which planning
with the freespace assumption performs well (examples
are grids), Basic-VECA behaves similarly and thus has
a good average-case performance. For instance, the
scatter plot in Figure 5 compares the average-case per-
formances of Basic-VECA (with k = 2) and depth-
�rst search (an e�cient version of chronological back-
tracking) in randomly generated acyclic mazes of size
64 � 64. The �gure shows that Basic-VECA consis-

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000

T
ot

al
 T

ra
ve

l D
is

ta
nc

e
fo

r
D

ep
th

-F
irs

t S
ea

rc
h

Total Travel Distance for Basic-VECA

Figure 5: Basic-VECA versus Depth-First Search

tently outperformed chronological backtracking and re-
sulted in travel distances that were about 40 percent
shorter on average. On the other hand, in all en-
vironments in which planning with the freespace as-
sumption does not perform well (examples are Fig-
ures 2 and ??), Basic-VECA acts as a \safety net"
and its performance guarantee results in a much better
average-case performance than that of planning with
the freespace assumption. At the same time, Basic-
VECA does not add much computational overhead to
planning with the freespace assumption. Since The-
orem 7 does not depend on which algorithm is used
to break ties in Step 3, Basic-VECA is a general tech-
nique for combining any heuristic navigation algorithm
(not just planning with the freespace assumption) with
chronological backtracking. This combination inherits
the e�ciency of the heuristic navigation algorithm and
its performance guarantee is optimal up to a constant
(user-de�ned) factor. A more complete description of
Basic-VECA and empirical results for di�erent values
of k are contained in [9].

6 Conclusion

In this paper, we have studied a popular approach
to goal-directed navigation in unknown environments.
Planning with the freespace assumption, a sensor-based
planning approach, always plans a shortest path to the
goal, assuming that the terrain is clear unless it knows
otherwise. We showed that its performance guaran-
tee is not optimal. For situations in which its per-
formance guarantee is insu�cient, we described an al-
gorithm, called Basic-VECA, that uses planning with
the freespace assumption as a subroutine. It exhibits
good average-case performance and provides perfor-
mance guarantees that are optimal up to a constant
(user-de�ned) factor.

References

[1] H. Choset and J. Burdick. Sensor based planning and

nonsmooth analysis. In Proceedings of the IEEE In-

ternational Conference on Robotics and Automation

(ICRA), pages 3034{3041, 1994.

[2] G. Foux, M. Heymann, and A. Bruckstein. Two-

dimensional robot navigation among unknown sta-
tionary polygonal obstacles. IEEE Transactions on

Robotics and Automation, 9(1):96{102, 1993.

[3] S. Koenig. Agent-centered search: Situated search

with small look-ahead. In Proceedings of the National
Conference on Arti�cial Intelligence (AAAI), 1996.

[4] S. Koenig and Y. Smirnov. Graph learning with a
nearest neighbor approach. In Proceedings of the Con-

ference on Computational Learning Theory (COLT),

pages 19{28, 1996.

[5] S. Koenig and Y. Smirnov. Assumptive planning and

generalized depth-�rst search. Technical Report CMU-
CS-97-110, School of Computer Science, Carnegie Mel-

lon University, 1997.

[6] V. Lumelsky. Algorithmic and complexity issues of

robot motion in an uncertain environment. Journal of

Complexity, 3:146{182, 1987.

[7] I. Nourbakhsh. Interleaving Planning and Execution.
PhD thesis, Department of Computer Science, Stan-

ford University, 1996.

[8] I. Nourbakhsh and M. Genesereth. Assumptive plan-

ning and execution: a simple, working robot architec-

ture. Autonomous Robots, 3(1):49{67, 1996.

[9] Y. Smirnov, S. Koenig, M.M. Veloso, and R.G. Sim-

mons. E�cient goal-directed exploration. In Proceed-
ings of the National Conference on Arti�cial Intelli-

gence (AAAI), pages 292{297, 1996.

[10] A. Stentz. The focussed D* algorithm for real-time

replanning. In International Joint Conference on Ar-

ti�cial Intelligence (IJCAI), pages 1652{1658, 1995.

[11] A. Stentz. Optimal and e�cient path planning for un-
known and dynamic environments. International Jour-

nal of Robotics and Automation, 10(3):89{100, 1995.

[12] A. Stentz. Map-based strategies for robot navigation in

unknown environments. In AAAI Spring Symposium

on Planning with Incomplete Information for Robot
Problems, pages 110{116, 1996.

[13] A. Stentz and M. Hebert. A complete navigation sys-
tem for goal acquisition in unknown environments. Au-

tonomous Robots, 2(2):127{145, 1995.

[14] A. Zelinsky. A mobile robot exploration algo-

rithm. IEEE Transactions on Robotics and Automa-

tion, 8(6):707{717, 1992.

