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Image-Based Autodocking Without Calibration 
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Abstract 
The calibration requirements for visual servoing can 
make it dificult to apply in many real-world situa- 
tions. One approach to image-based visual servoing 
without calibration is to dynamically estimate the 
image Jacobian and use i t  as fhe basis for control. 
However, with the normal motion of a robot toward 
the goal, the estimation of the image Jacobian de- 
teriorates over time. We propose the w e  of addi- 
tional “ezploratory motion” t o  considerably improve 
the estimation of the image Jacobian. We study the 
role of such exploratory motion in a visual seruoing 
task. Simulations and experiments with a 6-DOF 
robot are wed to  verify the pmctical feasibility of 
the approach. 

1 Introduction 
Sensor-based control can play an important role in au- 
tonomous robotics. Computer vision, in particular, 
could help in providing a flexible feedback mechanism 
for overcoming uncertainties. There has been a growing 
interest in visual servo control in recent years [I], partly 
because of a decrease in hardware costs and the advances 
in computer vision. 

Visual servo control, based on the feedback represen- 
tation mode, can be classified as being either position 
based or image based. An image-based servoing system 
[2, 31 observes how differential changes in robot config- 
uration space relate to differential changes in image fea- 
tures space and then uses this relationship to control the 
robot motion to achieve the goal. The matrix that cap- 
tures the relationship between the differential changes 
in the robot joints and the image features is named the 
image Jacobian. Note that image features here refer to 
any measurable image parameters that can be used for 
control, for example, position, size, distance, or surface 
area of objects in the image. 

If the robot and camera are completely calibrated 
then the image Jacobian can be computed at each robot 
configuration and becomes a basis for visual servo con- 
trol. However, the process of calibration could be tedious 
and error prone and in some situations may be infeasible. 
Thus it is desirable to devise control techniques that can 
avoid calibration. The image-based approach is appeal- 
ing because by selecting a right set of image features it 
may be possible to carry out a task without calibration 

In this paper we follow the approach of dynamically 
[4,51. 

estimating the image Jacobian at each step. The esti- 
mated image Jacobian then forms the basis of visual con- 
trol. However, in following this approach, the estimation 
of the image Jacobian deteriorates since the update is 
only in the goal direction. To alleviate this situation, we 
introduce the idea of qlomtory motion to improve the 
estimate of the image Jacobian. We consider the issues 
and trade-offs involved in using the exploratory motions. 
The study was completed by conducting experiments on 
a 6-DOF robot and simulations using a computer model 
of the same robot. The results establish the utility of 
the exploratory motion for visual servoing without cali- 
bration. 

2 Servoing Scheme 
2.1 The image Jacobian 
Assume a robot manipulator with n joints and n degrees 
of freedom. Assume that a camera is mounted on the 
end-effector of the robot and that the servoing task is de- 
fined in terms of m image features. Let q = [el,. . . , 
be the n-dimensional vector that represents a point in 
the robot configuration space. Let r = [TI,. . . , be 
the pdimensional vector that represents the position of 
the end-effector in a Cartesian coordinate system. Let 
f = [fi, . . . , f,lT be the m-dimensional vector that rep- 
resents a point in image feature space. The relation be- 
tween joint velocity of the robot q = [&, . . . , and its 
corresponding velocity in task space, i. = [+I,. . . , 
is captured in terms of the robot Jacobian, J, as 

i . = J - 4 ,  

where 

A change in the end-effector position results in a 
change in the image parameters. A perspective projec- 
tion model can be used to capture this dependence. Thus 
the feature velocities f = [i~, . . . , fmIT are related to the 
task space velocities as follows: 

(3) 

where J, is the m x p matrix of the local Jacobian at 
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configuration q: 

(4) 

Thus the velocity of the image features can be di- 
rectly related to joint velocities in terms of a composite 
Jacobian, which we refer to as the image Jacobian: 

f = J,*q, (5 )  

where J, = J.Jr, thus 

Since its introduction [6], the image Jacobian has 
been used in many visual servo control applications [2, 

2.2 Dynamic estimation of image Jacobian 
The image Jacobian J, relates the image feature velocity 
as a linear combination of joint space velocity at a given 
robot configuration q. Based on this fact, a simple ser- 
voing mechanism can be derived. Because of the discrete 
nature of the simulation setup, instead of configuration 
space and feature space velocities, discrete infinitesimal 
motions in both spaces are assumed in the following de- 
scription. 

Given a goal feature f9 to be achieved and the cur- 
rently observed feature vector fC, a current feature error 
can be calculated as Af = fg - fc. Based on the current 
image Jacobian J,, a joint motion (Aq) that reduces this 
error is given by 

3, 5,  71. 

Aq = JG'Af. (7) 

Since the image Jacobian J, is only correct ;n the neigh- 
borhood of q, Aq should be treated as directional infor- 
mation. Hence, the next joint motion, dq, is calculated 
as a scaled version of normalized Aq. 

Since no calibration is done, the true image Jacobian 
at each configuration point is unknown. However, it can 
be dynamically estimated based on several differential 
changes in the joint space (joint space displacements) 
with their corresponding changes in the feature space 
(feature space displacements). 

A t  step j ,  the system extracts feature vector f j  from 
the image and configuration vector qJ from the robot 
joint encoders. Instead of configuration and feature 
space velocities, the system uses derived configuration 
space vector displacement dqj = qj - qj-' and feature 
space displacement dfj = fj-fj-' to estimate the image 
Jacobian. 

In order to uniquely control the robot joints, the 
feature space dimension must be greater than or equal 
to the configuration space dimension (n 5 m). To 
get an estimation.of image Jacobian 3,, n pairs of 

configuration and feature space vector displacement 
[(dqj-n+' ,dfj'"+'), . . . , (dd,  dfj)] are needed. Ma- 
trix DQ and DF can be comDosed by concatenating the 

nd n feature above n-configuration space displacements 
space displacements, respectively. 

DQ = [ dqj-"+' ... dqj 
d&"+' , ... d d  

(9) 

Every dq' = [dqf , . . . ,dq;lT and df' = [df,', . . . , dfklT is 
an n- and m-dimensional column vector respectively; 
hence, DQ is an n x n  matrix and DF is an m xn matrix. 
Thus, the estimated image Jacobian is computed as a 
product matrix given by: 

3, = DF - DQ-l. (10) 
Using the estimated image Jacobian 3, the next 

robot motion dqj" can be determined based on Equa- 
tion (7). After the robot executes the prescribed motion, 
the corresponding feature vector displacement dfj+' is 
observed. The new vector pair, dqjf' and dfj+l, up- 
dates DQ and DF matrices for estimating the next cycle 
of image Jacobian matrix. The latest pair has the most 
accurate information about the current image Jacobian; 
hence, the easiest update can be done by replacing the 
oldest pair (dqj-"", dfj-n+') with the newly acquired 
pair (dqj+', dfj+'). 
2.3 Initial estimate of the image Jacobian 
When the visual servoing starts, DQ and DF can be 
acquired either (1) by random movements near the ini- 
tial configuration or (2) by systematically making small 
moves one joint at a time and observing the correspond- 
ing feature vector displacements. The latter approach 
is preferred because it guarantees capturing all possi- 
ble robot joint movements, thus guaranteeing that DQ 
is well behaved and its inverse can be calculated accu- 
rately. This process is called acquiring the true image 
Jacobian in .contrast to estimating the image Jacobian, 
which is done at every step toward achieving the goal as 
given by Equation (10). 

3 Exploratory Motion 
Image-based servoing estimates the current image Jaco- 
bian based on the observed relationship between joint 
movement and image feature changes. The estimation 
should consider only those relationships near the cur- 
rent configuration; otherwise, the estimation would be 
less accurate. We consider how the estimation could be 
related to the normal goal-seeking motion or a more de- 
liberate motion aimed at  improving the estimation of the 
image Jacobian. 



of 57.268 steps with the expensive method of reacquiring 
the image Jacobian at every step (INF). 

Mean 
Std. Dev. 

6)  (ii) (iii) 

Figure 5: Camera view of the port as the visual servoing 
progresses. 

Number of steps to converge 
BSC E X P L  INF 

72.317 59.374 57.268 
37.259 27.584 29.108 

3 

Thus the set of experiments helped in establishing 
the feasibility of an image-based servoing scheme with- 
out calibration and showed its flexibility in terms of ar- 
bitrary camera positions and port locations. The next 
subsection considers simulation experiments to study the 
effect of the exploratory motion on the performance of 
the servoing. 

4.3 
The simulations were conducted using the model of the 
6-DOF Mitsubishi robot described earlier. The simula- 
tions were used to study the relative benefits and costs 
involved in using the exploratory motions. 

In this study, around 200 cases were simulated. For 
each case, an initial configuration within the effective 
range of the robot was generated randomly. A servoing 
algorithm with exploratory motion was used to dock the 
robot. Several behaviors of this docking with exploratory 
motion were recorded. Henceforth, this method is called 
EXPL for ease of reference. The same problem was pre- 
sented to the basic servoing algorithm without the ex- 
ploratory motion, referred to as BSC, and then the two 
results were compared and analyzed. For benchmarking 
purposes, the same problem was also presented to an 
algorithm with complete information of the image Jaco- 

We refer to this method as INF. 
Three different measurements are used to evaluate 

the performance of these methods: (1) the number of 
steps to converge to the goal, (2) the average directional 
error, and (3) the average condition number of the esti- 
mated image Jacobian. 

Number of steps t o  converge. Table 1 presents 
the statistics of the mean and standard deviation of the 
number of steps to converge for each method. It shows 
that adding exploratory motions (EXPL) on the average 
reduces the number of steps needed to converge (from 
72.317 steps to 59.374 steps). The improvement is sig- 
nificant since it is close to the best possible performance 

Simulations t o  study exploratory motion 

c. bian; Le., the image Jacobian is acquired at every step. 

Directional Errors 
BSC ~~~EXPL 

Mean 52.42" 50.24" 
Std. Dev. 18.99" 21.84" 

Table 1: The number of steps to converge for each 
method. 

Table 2: Statistics of directional errors. 

Condition number of matrix MQ. As men- 
tioned in Section 3.4, matrix MQ represents the con- 
figuration space ellipsoid which defines the level of con- 
fidence of knowing the correlation of joint movement 
in that direction with its corresponding feature space 
changes. 

Hence, for the INF method where at every step a cor- 
rect image Jacobian is acquired by moving a single joint 
at a time, this confidence ellipsoid has a perfect spher- 
ical shape (the feature changes in all directions of joint 
space are equally known). Thus, the condition number 
is always 1 or its logarithmic value is 0. The smaller the 
condition number, the closer the confidence ellipsoid to 
a sphere. 

The statistics in Table 3 show that having ex- 
ploratory motion improves the shapes of the confidence 
ellipsoid, that is, a more balanced information in all di- 
rections in the joint space. 
4.4 Conservative vs aggressive exploration 
All of the above results are gathered with maximum 
weight of exploratory motion set to be one-half, or, in 
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Mean 52.42" 50.24" 
Std. Dev. 18.99" 21.84" 

Figure 6: Feature error profile during servoing. 

Thus the set of experiments helped in establishing 
the feasibility of an image-based servoing scheme with- 
out calibration and showed its flexibility in terms of ar- 
bitrary camera positions and port locations. The next 
subsection considers simulation experiments to study the 
effect of the exploratory motion on the performance of 
the servoing. 

4.3 
The simulations were conducted using the model of the 
6-DOF Mitsubishi robot described earlier. The simula- 
tions were used to study the relative benefits and costs 
involved in using the exploratory motions. 

In this study, around 200 cases were simulated. For 
each case, an initial configuration within the effective 
range of the robot was generated randomly. A servoing 
algorithm with exploratory motion was used to dock the 
robot. Several behaviors of this docking with exploratory 
motion were recorded. Henceforth, this method is called 
EXPL for ease of reference. The same problem was pre- 
sented to the basic servoing algorithm without the ex- 
ploratory motion, referred to as BSC, and then the two 
results were compared and analyzed. For benchmarking 
purposes, the same problem was also presented to an 
algorithm with complete information of the image Jaco- 
bian; i.e., the image Jacobian is acquired at every step. 
We refer to this method as INF. 

Three different measurements are used to evaluate 
the performance of these methods: (1) the number of 
steps to converge to  the goal, (2) the average directional 
error, and (3) the average condition number of the esti- 
mated image Jacobian. 

Number of steps to converge. Table 1 presents 
the statistics of the mean and standard deviation of the 
number of steps to  converge for each method. It shows 
that adding exploratory motions (EXPL) on the average 
reduces the number of steps needed to converge (from 
72.317 steps to  59.374 steps). The improvement is sig- 
nificant since it is close to the best possible performance 

Simulations to study exploratory motion 

k 

of 57.268 steps with the expensive method of reacquiring 
the image Jacobian at every step (INF). 

Directional error. Another way to measure the 
performance of both the basic and exploratory methods 
is to measure how close the approximated image Jaco- 
bian is to the actual image Jacobian. This can be cal- 
culated as the directional error of the gradient of the 
approximated image Jacobian from the actual correct 
gradient to the goal. In other words, given the current 
feature error Af, the approximated image Jacobian 3, 
prescribes a direction A 4  = 3, . Af in configuration 
space. If the actual image Jacobian at current config- 
uration point J, is known, the "correct" direction in 
configuration space can be calculated as Aq = J, Af. 
The angle between directional information given by A 4  
and Aq is considered as the directional error. 

Table 2 shows that adding exploratory motions on 
the average reduces the directional errors (from 52.42" 
to 50.24"). As a side note, in general a directional error 
less than 90" implies that the prescribed direction and 
the best direction are at the same n-dimensional hemi- 
sphere; hence, it usually still reduces the feature error 
even though it is not at the greatest descent. 

Directional Errors 
BSC I EXPL 

Condition number of matrix MQ. As men- 
tioned in Section 3.4, matrix MQ represents the con- 
figuration space ellipsoid which defines the level of con- 
fidence of knowing the correlation of joint movement 
in that direction with its corresponding feature space 
changes. 

Hence, for the INF method where at every step a cor- 
rect image Jacobian is acquired by moving a single joint 
at a time, this confidence ellipsoid has a perfect spher- 
ical shape (the feature changes in all directions of joint 
space are equally known). Thus, the condition number 
is always 1 or its logarithmic value is 0. The smaller the 
condition number, the closer the confidence ellipsoid to 
a sphere. 

The statistics in Table 3 show that having ex- 
ploratory motion improves the shapes of the confidence 
ellipsoid, that is, a more balanced information in all di- 
rections in the joint space. 

4.4 Conservative vs aggressive exploration 
All of the above results are gathered with maximum 
weight of exploratory motion set to be onehalf, or, in 



Mean 
Std. Dev. 

Table 3: The log average of the condition number of 
MQ. 

Average log,, of the 
Condition Numbers of MQ 

BSC; EXPL 
9.133 6.592 
1.826 2.150 

other words, the minimum portion of the goal reaching 
motion to be retained [variable p of Equation (16)l is 0.5. 
A more aggressive exploratory motion can be attained by 
setting p to a lower value. Thus, when the feature error 
is high, exploratory motion can exceed the goal-reaching 
motion. Alternatively, we can set more conservative ex- 
ploratory motion by raising p .  Our experiments show 
that, for our cases, setting p to 0.6 yields the best aver- 
age result. 

Another way of varying the aggressiveness of explo- 
ration is by adjusting the condition number threshold of 
matrix MQ. In all of the above simulations, exploratory 
motion is added every time the condition number of MQ 
passes 100 (or 2 in log,, scale). The higher the condi- 
tion number threshold, the more conservative the ex- 
ploration. The effect of varying the condition number 
threshold is shown in Figure 7. This figure also shows 
that setting the log of condition number threshold to 
around 2.5 results in the best average performance. 

Figure 7: The effect of varying the condition number 
threshold on the EXPL method. 

Even though the particular numbers presented here 
will not be the same for different robots or different tasks, 
the experiment shows that there is an optimum mixture 
of goal reaching movement and exploratory movement 
which produces the best performance: an overly conser- 
vative exploratory method will still suffer the same prob- 
lem as the basic approach (incorrect Jacobian), whereas 
an overly aggressive exploratory method may end up ex- 
ploring the space without reaching the goal. 

5 Discussion and Conclusions 
The context of the exploratory motion is the dynamic es- 
timation of the image Jacobian. Other calibration-free 
approaches could also have been used. Alternatively, the 
method could have been combined with approaches that 
use partial calibration. The study helps in understand- 
ing the interplay between the improvement in the image 
Jacobian estimation and the cost in terms of the path 

length. A basis is provided for introducing the requisite 
magnitude and direction of the exploratory motion to 
meet the needs of the servoing task. 

One disadvantage of the image-based approach is 
that the effective working space is small since the goal 
needs to be visible to the camera at all stages of the 
servoing task. When features black out occurs during 
servoing, a simple strategy of using the last state with 
all features visible can be employed, thereby enlarg- 
ing the working space. However, even with the limited 
workspace, some interesting problems can be solved, for 
example, the autodocking problem for the Army resup- 
ply vehicle which was the task that originally motivated 
the study. 

The performance of an image-based autodocking sys- 
tem highly depends upon the set of features chosen for 
controlling the robot. Research has been devoted to the 
issues of feature selection, e.g., [8, 91. Most of these 
measures relate to how the features can monitor errors 
as they occur; hence, a better control system can be 
derived. However, some features may be better for PO- 
sitioning, while others are better for orientation control. 
Future work needs to explore a performance measure 
that considers this decoupling. 
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