
To appear in 1997 IEEE Int’l Con$ on Robotics and Automation 

Fast Swept-Volume Distance for Robust Collision Detection* 

Patrick G. Xavier 

Abstract: The need for collision detection arises in 
several robotics areas, including motion-planning, online 
collision avoidance, and simulation. At the heart of most 
current methods are algorithms for interference detection 
andor distance computation. A few recent algorithms and 
implementations are very fast, but to use them for accu- 
rate collision detection, very small step sizes can be neces- 
sary, reducing their effective efficiency. We present a fast, 
implemented technique for doing exact distance compu- 
tation and interference detection for translationally-swept 
bodies. For rotationally swept bodies, we adapt this tech- 
nique to improve accuracy, for any given step size, in dis- 
tance computation and interference detection. We present 
preliminary experiments that show that the combination 
of basic and swept-body calculations holds much promise 
for faster accurate collision detection. 

1 Introduction 
1.1 Overview 

Collision detection is a basic problem in robotics and 
related areas, arising in motion planning, control, graphi- 
cal programming, motion-preview, virtual reality, and dy- 
namical simulation. The collision detection problem asks 
whether a rigid body moving along a given path intersects 
with any of a set of obstacles at any point on that path. 
In a fuller version of the problem, all contacts must also 
be determined. In both cases, accuracy is of extreme im- 
portance when the results of collision detection between 
modeled objects affect the behavior of physical robots or 
influence the outcomes of physical simulations, such as 
those used in process and product design and evaluation. 

*This research was supported by DOE Contract DE-AC04- 
94AL85000, and by the Laboratory Directed Research and Development 
Office of Sandia National Laboratories. 

v Most current methods for collision detection rely on in- 
terference detection and/or distance computation. A few 
recent algorithms are very fast, but to use them for ac- 
curate collision detection, very small step sizes between 
queries become necessary because of the difficulty in de- 
termining whether a collision occurs between consecutive 
interference or distance computations. This reduces effec- 
tive efficiency. 

We recently developed a technique, based on a novel 
use of Gilbert’s Algorithm [12], for computing exact dis- 
tances between linear-translationally swept rigid bodies. 
For bodies swept with a rotational component, we have 
extended this technique to improve accuracy, for any 
given step size, in distance computation. The same tech- 
niques trivially suffice for interference detection between 
the swept bodies. In both cases, the bodies can be non- 
convex, and the combination of basic and swept-body 
distancehnterference calculation is suitable for fast, ac- 
curate collision detection. We report on our algorithms, 
our implementation, and preliminary tests involving 1OK- 
60K polygon examples that illustrate the potential of our 
swept-body distance techniques. 

1.2 Background: Collision, Interference, 
and Distance 

We first review definitions of interference detection, 
distance computation, and collision detection for a sin- 
gle moving body. Interference detection (or clash detec- 
tion) for a rigid body R at a position and orientation x 
and obstacles 0 means to determine whether R ( x )  n 0 
is non-empty, with R(x) denoting the image of R in the 
world. Distance computation means to determine the min- 
imum distance between all points in R ( x )  and those in 
0. Simple collision detection for a rigid body R moving 
over a path segment among obstacles 0 means to deter- 
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mine whether at any point along the path the body con- 
tacts or intersects any obstacles. In other words, if we let 
C denote the space of positions and orientations and let 
p : [0,1] -+ C denote the path segment, then collision 
detection asks whether there is any t E [0,1] such that 
R ( p ( t ) )  n 0 is non-empty. 

Figure 1 : Between queries, the triangle moves linearly from A to A’. 
Because there is no interference with the obstacle at the query times, sim- 
ple interference checking fails to detect the collision with the obstacle. 
Basic distance queries at the query points would indicate that it might 
be possible that there is a collision, but further computations would be 
needed to decide. The swept hull of the moving triangle intersects the 
obstacle, so a swept-body interference check would detect the collision. 

Exact or accurate collision detection is often avoided 
for the sake of speed. Usually, either interference detec- 
tion or distance computation queries are applied at closely 
spaced points on the path. Simple use of interference 
detection can obviously miss collisions. (See Figure 1.) 
Growing the objects by a safety margin can prevent this, 
but at the risk of detecting false collisions. With distance 
computation, one can vary the step size reduce the number 
of queries needed to obtain a given resolution, but resolu- 
tion is limited to the minimum step size. The result can be 
reduced step sizes and application speed. One can collect 
all pairs of polygons closer than the step size and then ap- 
ply more sophisticated methods (including ours) to these 
pairs, and our discussion attempts to account for this. 

1.3 Results 
We present results that help to bridge the gaps between 

robust space-time methods for collision detection (e.g., 
[4,7]) and fast exact interference detection (e.g., [13]) and 
distance computation (e.g., [22]) techniques. Specifically, 
we present an easily implemented technique for exact dis- 
tance computation for linear-translationally swept bodies. 
We then extend this technique to the improve accuracy, 
for any given step size, in distance computation and in- 
terference detection for rotationally swept bodies. Our 
techniques enable conservative approximations when de- 
sired. We assume that all bodies, previous to sweeping, 

are represented by boundaries composed of convex poly- 
gons andlor by unions of convex polygons and polyhedra. 
We do not require the bodies to be manifolds. 

In Section 2 we describe our techniques, which com- 
bine a convex-hull-based hierarchy with a previously un- 
reported use of Gilbert’s Algorithm. In Section 3 we 
present preliminary experimental results obtained using 
our implementation. We compare the linear-translational 
swept-body technique against its non-swept-body coun- 
terpart in both distance computation and interference de- 
tection. Both are implemented in our geometry library, 
the C-Space Toolkit. Our test scenarios have 10K to 60K 
polygons and include semi-pathological cases with over 
500 pairs of polygons in contact per step. 

1.4 Previous and Related Work 
We review some of the extensive body of work on inter- 

ference detection and distance computation between two 
rigid bodies. An overview covering a more complete set 
of previous and related work (from three research com- 
munities) can be obtained by consulting [13-151. A re- 
lated and important problem concerns collision detection 
among members of a collection of objects that move ar- 
bitrarily but continuously with respect to each other. For 
example, see [2,9,17,20]. 

For a number of years, hierarchical geometric repre- 
sentations have been used to avoid all pairs comparisons 
in interference detection, distance computation, and colli- 
sion detection. The binary-space partitioning tree (BSP- 
tree) [11,21] and variants (e.g., [24]) have been success- 
fully used in exact interference checking and contact de- 
termination, but they do not readily yield distance infor- 
mation. The octree [16,19] is another space-partitioning 
data-structure that has been used in interference detection 
(for example, [ l]), but it must be used with other geomet- 
ric objects to obtain computations matching the accuracy 
of faceted boundary representations or BSP-trees. 

Other hierarchical structures use various primitives to 
bound an object or its surface at each level of the hierar- 
chy, although sometimes holes are treated explicitly, as in 
[9,10]. Successful implementations for exact interference 
detection and distance computation have been based on 
several geometric primitives. The convex-hull based im- 
plementations of [5,6,9,23], the sphere-based techniques 
of [22], and bounding-prism methods of [13] are among 
those known to be fast. However, none of these results 
cover swept-body distance or swept-body interference de- 
tection. 
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Much work has also been done on optimizing the 
minimum-distance computation between primitives. The 
convex-hull distance algorithm of [12], referred to as 
“Gilbert’s Algorithm” is used by many of the systems 
mentioned above. [5,8] have presented fast incremen- 
tal convex-hull distance schemes, which exhibit constant- 
time complexity when the object configurations change 
only by small amounts between queries. There is poten- 
tial to adapt these techniques into our system. 

[7] describes a technique for exact collision detection 
for convex polyhedra moving along path segments linear 
in translation and the quaternion representation of SO(3). 
Finally, [4] uses space-time techniques and develops al- 
gorithms and hierarchical structures for exact collision 
detection for non-convex objects. Both these results are 
more general than ours in allowing exact time intervals of 
contact and penetration to be computed directly, but they 
are considerably more expensive. 

2 Algorithm 
We now describe our techniques. First, we review a ba- 

sic method of hierarchical exact distance calculation. We 
then describe our extension of this method to exact dis- 
tance calculation for linear-translationally swept bodies. 
Finally, we describe two extensions that compute approx- 
imate distances for bodies that are swept linearly and ro- 
tationally simultaneously. 

2.1 Basic Hierarchical Distance Calculation 
We represent the boundary of a body with a bounding- 

volume hierarchy generated with a variant of our algo- 
rithm described in [25]. The hierarchy is a binary tree 
whose nodes each contain a convex polygon or convex 
polyhedron. The subtree rooted at a node represents the 
union of the primitives at its leaves. Thus, each node of 
our hierarchical geometric representation contains a con- 
servative approximation, or wrapper, of the object rep- 
resented by its subtree. In particular, our trees contain a 
convex hull (polyhedron) at each interior node, and con- 
vex polygon or polyhedron at each leaf. 

To perform basic distance computation, we use a recur- 
sive algorithm similar to those of [22] and others. (See 
Figure 2.) At each stage we consider a pair of nodes, one 
from each tree. We begin at the roots, with the distance 
dist set at infinity. In the base case, we simply calculate 
the distance between two convex primitives, and set dist 
to this distance if it is smaller than the current value. In 

Simple Basic Distance 
real cstkDist(body *R, body * S )  

real dist t 00; 

pairstack stack; 
body *bl,*b2; 
stack.push(R,S); 
while (!stack.isEmpty()) { 

{ 

stack.pop(&bl ,&b2); 
if(isLeaf(b1) A isLeaf(b2)) 

else if(hullDist(bl,b2) > dist) 

else if(isLeaf(b1) V 

dist t min(dist,primDist(bl ,b2)); 

continue; 

(!isLeaf(b2) A len(b1) < len(b2))) { 
stack.push(b1, b24childl); 
stack.push(b1, b24child2); 

stack.push(b1 +childl, b2); 
stack.push(b1 +child2, b2); 

} else { 

1 
1 
return dist; 

} 

Figure 2: This pseudo-code gives the simple basic algorithm, using a 
stack to implement recursion. It should look familiar to many readers. 

the recursive case, if the distance between the hulls of the 
current nodes is no greater than dist, then we recurse us- 
ing the current node from one tree paired with each of 
the children of the current node from the other; otherwise, 
we cut the current branch of the recursion. The Zen(b1) < 
Zen(b2) test is a heuristic, comparing principal axis lengths 
to decide which one of bl  and b2 should be descended. 

Both huZlDist(..) andprimDist(..) compute the distance 
between two convex polygons or polyhedra. This can be 
efficiently done with Gilbert’s Algorithm [ 121. 

2.2 Hierarchical Distance Calculation for a 
Translationally-Swept Body 

We now make three observations. 
First, although Gilbert’s Algorithm is usually applied 

to convex polyhedra and convex polygons, it can do more: 
given two finite sets of points, it computes a minimum 
distance vector between their convex hulls. To see that 
this is true without going into the details, we observe that 
points in the interior of the hulls are never returned by the 
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support functions in [ 121. 
Second, the convex hull of the vertices of a polyhe- 

dron (polygon) and their images under a translation x is 
equal to the swept hull of that polyhedron (polygon) un- 
der translation x .  Thus, we can use Gilbert’s Algorithm to 
compute the the distance between two polygons (or poly- 
hedra) swept by linear translations. We do this by adding 
the new positions of the vertices to the lists of input ver- 
tices. 

Third, if A, B, and C are convex and A U B c C,then 

sweep(A,x) U sweep(B,x) C sweep(C,x). 

This means that the conservative approximation nature of 
our hierarchies is preserved under translation. 

Together, this means we can do the following to the 
algorithm in Figure 2. First, we add vectors x and 
y, which give the translations to be applied to R and 
S, to the parameter list. We then replace the function 
calls primDist(bl,b2) and hullDist(bl,b2) with the call 
transGilbert(bl,x, b2, y), which calls Gilbert’s Algorithm 
on the vertices of bl unioned with their images under 
translation x, and on the vertices of b2 unioned with their 
images under translation y. 

These extensions are clearly easy to implement. To see 
heuristically that the extended distance algorithm should 
be fast, we first observe that the divide-and-conquer ef- 
fects of the geometric hierarchy are still valid in d - 1 of d 
dimensions, i.e., in the directions normal to the sweep di- 
rection. Second, the loss of divide-and-conquer effective- 
ness in the sweep direction varies roughly with the ratio of 
the sweep length to the diameter of the environment in the 
sweep direction. Finally, since the number of vertices in 
each call to Gilbert’s algorithm only doubles, the cost of 
each call should at most double or triple in typical cases 
(in which the algorithm is (O(N1ogN)). 

Finally, we observe that when both bodies are in mo- 
tion, computing the swept-body distance gives a conser- 
vative estimate of how close the bodies come during the 
motion. However, when two bodies each undergo a linear 
translational motion, the relative motion is also a linear 
translation. Therefore, we can transform the problem to 
one with one linearly translating body and one stationary 
body, and get an exact answer. 

2.3 A Rotational Sweep Approximation 
For motions that include a small single-axis rotation,l 

we describe two approximation techniques - a simple 
‘A mathematical description of the transformation is given by (4). 

one that might underestimate or overestimate the distance, 
and a conservative one that will never overestimate but 
might underestimate. Both require the rotation angle to be 
less than :. 

The simple approximation technique replaces the func- 
tion calls to primDist(bl,b2) and huElDist(bl,b2) with 
calls to a function that calls Gilbert’s Algorithm on the 
unions of the vertices of bl and b2 and their final images 
under the sweep motions, just as in the translational case. 
By convexity, it suffices to consider the case of a line seg- 
ment. First, we consider a vertex rotated by angle 9 about 
an axis a distance r away. (See Fig. 3a.) The distance 

B’ 

1 
I 
I 
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I 
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I 

Figure 3: (a) Line segment AA’ approximates arc AA’. If segments 
and DA’ are tangents, then triangle ADA‘ bounds the arc. (b) Line 

segment AB rotates by 0 about C; new term must bound the maximum 
distance between segment AB’ (or A’B)  and the union of sectors ACA’ 
and BCB‘.  

- -  

between the arc the vertex follows and the line segment 
between its original and final locations is bounded by 

r (l--cos(;)) 

For a line segment that has projected length 1 perpendic- 
ular to the axis of rotation, we bound the maximum dis- 
tance between the region swept by the segment and the 
(4-vertex) convex hull of its vertices at their original and 
final locations. This is (1) plus the greatest minimum dis- 
tance possible between an axis of rotation on the segment 
and the boundary of the 4-vertex convex hull (see Fig. 3b), 
or 

I 
r (I - cos (!)I + ;;sing. (2) 

(2) thus bounds the error in distance computation that 
can result. Compared to the r sin( i) error bound resulting 
from just computing distance before and after the rotation, 
we see that the part of the error dependent on rotational 
radius r decreases quadratically with the rotation angle 
instead of linearly. (Consider the series expansions.) 

A more sophisticated technique, which builds on one 
from [ 181, is similarly bounded in error but conservative, 

\ \ A / /  A 
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returning distances no greater than the actual distance. In 
the planar case, the position of a vertex during motion is 
bounded by the triangle formed by its initial and final po- 
sitions and the intersection of the tangents at the initial 
and final positions. (See Fig. 3a.) The distance from the 
two new edges to the arc is bounded by r tan ( E )  sin ( g  ) , 
which is greater than (1). Substituting this into (2), we 
obtain an error bound, 

(3) 
1 

r tan (!) sin (g) + 5 sine. 

Now, suppose that a vertex p is subjected to a simul- 
taneous translation normal to the rotation axis, so that its 
position for s E [0,1] is given by 

R,, ( S ~ ) ( P  - 1.0) + ro + sx, (4) 

where R,, (a) is the rotation matrix for angle a about ne 
and the original axis of rotation goes through ro. Then 
the same construction bounds the motion of the vertex, 
and the error bound remains (3). 

The case with a translational component parallel to the 
rotation axis is similar, but requires a four-vertex bound- 
ing hull instead of a triangle. We again first consider the 
tangents to motion at the endpoints, but instead find their 
intersections with the plane that bisects the initial and fi- 
nal vertex positions. The four-vertex hull then bounds the 
vertex’s motion. A simple but not tight error bound dou- 
bles (4), so that for a moving line segment of projected 
length 1, we have the bound, 

2r tan (;) sin (:) + I sin e. ( 5 )  

Note that this bound is independent of the translation x. 
Now, let %(p, n g ,  ro, x) denote the vertices so con- 

structed for a vertex p. Then for a convex polygon with 
vertex set V ,  the convex hull of the set of vertices given by 

(J WPi,ne,ra,x) 
PiEV 

bounds the volume swept by the polygon. By convexity, 
the distance error bound (5) for the line-segment case also 
holds for a polygon(dron) that projected has diameter I 
perpendicular to the rotation axis. This is particularly sig- 
nificant because 1 is typically much smaller than r, and be- 
cause a more careful analysis eliminates the l sin 8 term 
when it is not. 

Using ?f to expand the vertex sets in the calls to 
Gilbert’s Algorithm in the hierarchical distance algorithm 

results in a conservative distance approximation algo- 
rithm. An error bound can be computed from (5) and the 
I and T for the closest pair of polygons (polyhedra) found. 
The expanded vertex sets and the distance underestima- 
tion makes the cost greater than the simpler approximation 
technique, but guarantees conservative results. 

3 Implementation, Examples, and 
Discussion 

3.1 Implementation 
The algorithms sketched in Section 2 have been imple- 

mented in C++ as a part of our geometry engine, the C- 
Space Toolkit. Our implementation contains several opti- 
mizations that we describe briefly in the Appendix and is 
still under development. We use the Quickhull code [3] 
from the University of Minnesota for computing convex 
hulls. The runs described in this paper were done on an 
SGI Indigo2 R4400/250. 

To get a rough idea of our implementation’s speed, we 
tested it on the “Complex Torus” motion sequences [I31 
from the U. North Carolina at Chapel Hill, featuring a 
20K-polygon body moving along a 98K polygon envi- 
ronment. It averaged at 44Hz when performing complete 
interference detection between the bodies (collecting all 
pairs of interfering polygons), and at 31Hz when doing 
distance computation. 

3.2 Interference Detection and Distance 
Computation: Basic Versus Swept- 
Body 

In this section and the next we present examples com- 
paring the performance of our swept-body distance code 
with the basic distance code. We include interference de- 
tection computations, which we implement as distance 
computation subject to maximum and minimum thresh- 
olds. We consider only linear translations; the rotational 
case will be covered in future work. 

Our examples covered two model scenarios. In the 
first (Figure 4), coded “FY, a truck chassis (10K poly- 
gons) moves through an environment containing other 
truck chassis and a teapot (42K polygons total). The ob- 
jects are up to 10 units in scale, and the translational path 
is 20 units long. Zero-distance occurs near both ends of 
the path, and the interference and distance queries are typ- 
ical of gross-motion problems or free-flight. In the second 
scenario (Figure 5), coded “GPM’, a gear (3920 poly- 
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Figure 4: IT, an example typical of gross-motion problems or free- 
flight. The light-colored truck chassis translates from right to left, shown 
at path start and finish. 

. .  
D 1.6 I 1.9 I 2.2 I 2.9 I 5.3 
I .32 I .49 I .83 I 1.5 I 2.7 

gons) drops through a hole in a flat plate (4054 polygons) 
and onto the spindle of a motor (2252 polygons). The mo- 
tor is roughly unit scale, and the translational path is one 
unit long. The clearance between the gear and the motor 
spindle is 0.00125 units. Except where noted, an initial 

GPM 
GPM 

Figure 5: GPM, an example with tight tolerances and semi- 
pathological difficulty due to concavities and symmetries. The gear is 
shown at the middle and the end of its path downwards. 

D 2.0 3.3 5.9 10.7 20.9 
I .59 1.1 1.7 3.1 6.0 

call is always made to the distance function to initialize 
the caches, so that the runs reflect steady-state behavior. 

Our first series of experiments compares the costs of 
four types of queries: basic distance (D), interference de- 
tection (I), swept-body distance (DS), and swept-body in- 
terference detection (IS). For each model scenario, we 
broke the motion into 25-400 steps. The results are shown 
in Table 1. They show swept-body interference detec- 
tion and distance computation costing up to 30-50 per- 
cent more time than their basic counterparts. Swept-body 
interference detection was typically half as expensive as 
basic distance computation. 

An interesting observation is that despite the much 
smaller polygon count, the GPM examples are computa- 
tionally more intensive than the FT examples. Not only 
are clearances small in the hole and on the spindle, but in 

numsteps I 25 I 50 I 100 I 200 I 400 
scenario I exDt I time (secs.) 

FT I DS I 1.5 I 1.9 I 2.5 I 3.8 I 6.4 
F T I  IS I .44 I .64 I 1.1 I 2.0 I 3.5 

GPM I DS 1 3.1 I 5.1 I 9.3 I 17.3 I 31.9 
GPM I IS I 1.0 I 1.6 I 2.6 I 4.6 I 8.6 

Table 1: Distance computation (D) and interference detection 
(I) in both the basic and swept-body (S) cases. Scenario FT: 
1OK polygons moving, 42K polygons stationary; scenario GPM: 
3.9K polygons moving, 6.3K polygons stationary. 

both cases, the geometric symmetry means that there are 
many pairs of polygons approximately the minimal dis- 
tance (0.00125) apart. This is a semi-pathological but re- 
alistic occurrence. While the gear moves onto the spindle 
in the last 20-25 percent of the motion, there are typically 
500 pairs of polygons that are about the same, minimal 
distance apart, and distance calculation slows to 10-15Hz. 
For comparison, if we set the interference threshold to 
0.00128, our implementation exploits cached information 
to detect interference at over 2 H z  in that segment. 

3.3 Tkanslational Sweeps and Collision De- 
tection 

We now consider how basic and swept-body distance 
computation might be used in robust collision detection. 

Two important problems that arise in assembly plan- 
ning are to determine: (i) whether a linear translation 
causes interference, and (ii) which pairs of polygons in- 
terfere during the motion. Basic interference detection 
can only answer (i) and (ii) to a resolution equal to the 
step size. Accuracy is attainable if both the step size and 
the interference threshold (safety margin) can be precisely 
manipulated. Basic distance algorithms have the advan- 
tage of efficient step size estimates. Both (i) and (ii) can be 
reduced to polygon-polygon collision detection problems 
by stepping through the motion and collecting all polygon 
pairs less than a step size apart. 

In contrast, a single swept-body interference query is 
sufficient to answer (i) exactly. On an implementation that 
can automatically collect all pairs of interfering polygons 
(i.e., witness pairs), a single query is also sufficient for 
(ii). Because the translational swept-body distance algo- 
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ISe I .44 .6 .84 1.49 2.85 
ISWe 1 1.9 3.0 5.1 8.7 16.8 

rithm is exact, it is not necessary to step through the mo- 
tion. In the GPM scenario, our implementation required 
0.45 seconds each for (i) and (ii) when there was no con- 
tact (€ = 0.00124), and 0.45 seconds for (i) and .89 sec- 
onds (1335 witness pairs) for (ii) when there was contact 
(e = 0.00126). For this test, no cache initialization queries 
were done, since it is likely that this sort of query would 
be done “cold” in practice. 

Sequential-motion collision detection queries occur in 
dynamical simulation and other applications. An addi- 
tional problem is (iii) to determine contact initiation and 
termination points during a timestep. Computing a con- 
servative approximation of (ii) - finding a guaranteed 
superset of polygon pairs that interfere sometime during 
a step - reduces this problem to a collection of polygon- 
polygon problems.2 

For an example of this sub-task, we considered two 
cases of the gear-plate-motor example, one in which the 
0.00125 unit clearance is considered interferencekollision 
( E  = 0.00128), and one in which it is not. We conducted 
five experiments. (See Table 2.) Using basic thresholded 
interference detection with witness collection, we set the 
interference threshold to half the step size (TW) and to 
the same value plus E (TWc). Swept-body interference de- 
tection with witness collection was tested both with the E 

(ISWc) and without (ISW). Our swept-body tests use a hy- 
brid implementation - the swept-body code is triggered 
when basic code would collect witnesses. This accounts 
for GPWSW being faster than G P M S  (see Tablel). We 
also ran the swept-body interference detection with the E 

but without witness collection (IS€). 

numsteDs I 25 I 50 I 100 I 200 I 400 I 
scenario I expt I time (secs.) 

GPM I TW I 3.7 I 3.6 I 5.7 I 9.8 I 7.8 
GPM I TWe I 3.7 I 3.7 I 5.8 I 9.4 I 17.8 
GPM I ISW I .83 I 1.2 I 2.1 I 3.5 I 7.8 

Table 2: Some queries that might be used in collision detection. 

We see two important comparisons. First, we com- 
pare GPM/ISW and GPWSE against GPh4fMV and 
GPIWTWe to consider how useful swept-body interfer- 
ence detection might be in answering problem (i) - de- 
termining whether a collision takes place during a motion 

2These, in turn could be solved by using sub-steps, binary search and 
swept-polygon distance, or a space-time method [4,7]. 

step. The data shows the swept-body method to be much 
faster except when there is no interference and the step 
size is smaller than the clearance. To consider efficiency 
in collecting witnesses for accurately answering problems 
(ii) and (iii), we compare GPMSW and GPWSWc to 
GPM/TW and GPM/TWc, and find that the basic code is 
several times as costly as the swept-body code when the 
former must collect many polygon pairs that the latter can 
rule out, when the latter rules many collisions that the for- 
mer does not, and that the two methods cost about the 
same when they find similarly high numbers of collision 
candidates. Given the algorithms and analysis in Section 
2.3, we expect that these more general algorithms could 
similarly increase performance in accurate collision de- 
tection for motions with a rotational component. 

4 Conclusions and Future Work 
We have presented methods for extending basic hierar- 

chical distance computation to swept-body distance com- 
putation, both in linear translational and combined trans- 
lational and rotational sweeps. Our methods are exact for 
the translational case, and include an improved conserva- 
tive approximation in the rotational case. The methods 
apply Gilbert’s Algorithm in a simple but previously un- 
reported way. They have been implemented as a part of 
our geometry library, the C-Space Toolkit. 

We have presented simple experiments for the linear- 
translational case comparing the swept-body and basic 
techniques in distance computation, interference detec- 
tion, and collision detection. These experiments indicate 
that the computing the linearly- swept-body distance is no 
more than 50 percent more expensive than the basic tech- 
nique in practice, and that our methods hold the potential 
to speed up robust collision detection. 

We are currently building a fast, robust, full-contact col- 
lision detection system around our basic and swept-body 
distance code. In addition, we see room for speeding up 
our code by by upgrading our implementation of Gilbert’s 
Algorithm to use incremental computations, e.g., [5,23]. 
We soon hope to report soon on improved results. 
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A Main Optimizations in the C- 
Space Toolkit 

We list five main optimizations our distance-computa- 
tion code uses that result in much greater speed over the 
algorithm in Figure 2. They will be reported in detail in 
a forthcoming publication. (1) For a given body pair, our 
implementation caches which leaf pair results in the min- 
imum distance; on the subsequent call, it uses this pair in 
intially bounding the distance. (2) Our version of Gilbert’s 
Algorithm takes an optional maxdist argument and can cut 
short computation if the actual distance exceeds it. (3) 
Our implementation keeps a cut-table of pairs of interior 
nodes for which it believes a comparison against the cur- 
rent best distance might cause a cut in the recursion; the 
pre-recursion check is only done on node-pairs in this ta- 
ble. (4) At interior nodes, our hierarchies use convex hulls 
with no more than some a priori fixed number of ver- 
tices. (5 )  Our implementation caches minimum-distance 
simplices found in calls to Gilbert’s Algorithm and uses 
them as initial simplices the when same arguments are en- 
countered again; this was suggested in [ 121. 
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