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Abstract 
We report on our preliminary studies of a new con- 
troller for a two-link brachiating robot. Motivated by 
the pendulum-like motion of an ape’s brachiation, we 
encode this task as the output of a “target dynamical 
system.” Numerical simulations indicate that the re- 
sulting controller solves a number of brachiating prob- 
lems that we term the “ladder”, “swing up)) and “rope” 
problems. Preliminary analysis provides some explana- 
tion for this success. We discuss a number of formal 
questions whose answers will be required to gain a full 
understanding of the strengths and weaknesses of this 
approach. 

1 Introduction 
This paper presents our preliminary efforts to develop 
a new controller for a two degree of freedom brachiat- 
ing robot, following the original success of the second 
author and colleagues [12, 131. A brachiating robot dy- 
namically moves from handhold to handhold like an ape 
swinging its arms. This study considers a simplified two- 
link point mass lossless model with one actuator at  the 
elbow connecting two arms, each of which has a gripper 
(see Figure 1).  Brachiating robots take an interesting 
place within the larger category of dynamically dexter- 
ous robotics [5] encompassing dexterous manipulation 
[1, 2, 3, 7, 111, legged locomotion [6, 10, 14, 151 and 
underactuated mechanisms [16]. 

Problems of dexterous manipulation have given rise 
to a growing literature concerned with explicit manip- 
ulation of an environment’s kinetic as well as potential 
energy [a, 3, 11, 7, 11. More specifically, the third au- 
thor and his students [6, 14, 151 have pursued a number 
of analytical studies of simple hopping machines that 
are directly inspired by Raibert’s landmark success in 
legged locomotion [lo]. The controller we introduce here 
bears many similarities to the work of Spong and his stu- 
dents [16], although the more extended problems of slow 
brachiation require a rather differently conceived notion 
of target dynamics. Finally, we mention the initial suc- 
cess in robot brachiation achieved by the second author 
and his student Saito [13, 121. 
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1.1 Problem Statement 
In our reading of the biomechanics literature [4] we dis- 
tinguish three variants of brachiation that we will refer 
to in this paper as the 

0 Ladder and swing up problem 

e Rope problem 

0 Leap problem 

The first arises when an ape transfers from one branch 
to another and controlling the arm position at  next cap- 
ture represents the central task requiremenl. A robotics 
version of this problem has been previously introduced 
to the literature by the second author and colleagues 
[la,  131, as mentioned above. The second problem arises 
from brachiation along a continuum of handholds-a 
branch or a rope. The third problem arises in the con- 
text of fast brachiation where the next branch is far out 
of reach and the task cannot be accomplished without a 
large initial velocity and a significant component of free 
flight. We consider this a fascinating and challenging 
problem to be addressed when the previous two simpler 
problems are better understood. Thus, we propose in 
this paper a control algorithm which is effective for the 
first two “slow brachiation” problems-i.e. the ladder 
and swing up and rope problems. 

Preuschoft e t  al. [9] studied lhe mechanics of ape 
brachiation and identified a close correspondence be- 
tween slow brachiation and the motion of a simplified 
pendulum. Accordingly, we have chosen formally to en- 
code the problem of slow brachiation in terms of the 
output of a target dynamical system-the harmonic os- 
cillator -and this task specification lends a slightly new 
twist to the traditional view of underactuated mecha- 
nisms, as we now discuss. 

2 Task Encoding via Target Dy- 
namics 

This section presents our control strategy for a two-link 
brachiating robot. We introduce the notion of “tar- 
get dynamics” as a particular instance of input/output 
plant inversion. Specifically, brachiation is encoded as 
the output of a target dynamical system-a harmonic 
oscillator, that we must force the robot to mimic. 
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Figure 1: The model of a two-link brachiating robot 

2.1 Input/Output Linearization 
The notion of target dynamics represents a variant on 
standard techniques of plant inversion. 

Suppose a plant 

T i  = F(w,v) (1) 
Y = H(w) (2) 

(3) 

is input/output linearizable. That  is, given 

Lf-H(w,  v) = DH . F(w, v) 

if there can be found an implicit function such that for 
every U E U and w E W ,  then 

v = L F H - l ( W '  U) (4) 

LFH(W, v) = U, (5) 
implies 

one calls (4) an input/output linearizing inverse con- 
troller in the sense that y = U. 

2.2 Target Dynamics 
It  is traditional in the underactuated robot control lit- 
erature to  use a linearizing feedback to  force an output 
of a system to track some reference trajectory rd ( t ) .  In 
the present article, we find it more useful to  mimic a 
reference dynamical system. Consider the dynamics of 
the two-link brachiating robot which take the form of a 
standard two-link planer manipulator 

r 1 

Now identify w = Tq = [ q ,  q I T ,  r = v and C = F in 

Suppose we desire the output y to  have the charac- 
(1)- 

teristics of a target dynamical system 

Y = f(Y) (7) 

Then substituting f for U in (4) we have 

u=L~H-'(w,f(y)) = L~H-'(w,foH(w)) (8) 

According to the biomechanics literature [9] slow brachi- 
ation of apes resembles the motion of a pendulum. Al- 
though the ape's moment of inertia varies during the 
swing according its change of posture, the motion of a 
simplified pendulum gives a fairly good approximation. 
Motivated by this pendulum-like motion of brachiation, 
we choose to  encode the task in terms of the even simpler 
linearized version, 

that will serve as the target dynamical system in this 
paper. 

Thus, we will find it useful to  introduce a submersion 
arising from the change of coordinates from joint space 
to  polar coordinates on R2, 

Specifically, we will take the second component of (10). 

1 
2 =: qcr) := e = LO, 11 g ( q )  = el + -e2 (11) 

so that the ;application of (8) in the example of interest 
takes the foirm 
7 =  := L ~ H - '  (Tq9fw o Th(Tq)) 

= (D,h [ ])-I [-w26 - (D&)4 f D,hM-'(B + k) ]  

l 1 1 
= -- pl.12 f i n 2 2  [-wz(el + ,e2) + (rill + 2 n 2 1 ) ( ~ 1  +U] 

- t B 2 + k 2  (12) 

Notice t h,at 

i.e., the invertibility condition of L F H  is satisfied in the 
particular setting of concern. 

3 Ladder and Swing up Problem 
We now move on to  the specific problems of robot 
brachiation. First, we apply the target dynamics 
method to  tlhe ladder problem. Then, we consider the 
swing up problem. The target dynamics is modified to  
introduce a llimit cycle to  achieve the task. Numerical 
simulations are provided to  suggest the effectiveness of 
the proposed algorithms. 

3.1 Ladder problem 
As we have pointed out, the ladder problem arises when 
an ape transfers from one branch to  another and the 
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control of arm position at  the next capture represents 
the control task requirement. Here, we restrict our at- 
tention to  brachiation on a set of evenly spaced bars at 
the same height. The target dynamics method is ap- 
plied to  the ladder problem. We show how a symmetry 
property of an appropriately chosen target system- (9) 
in the present case-can solve this problem. 

3.1.1 Neutral Orb i t s ,  

This section follows closely the ideas originally devel- 
oped in [14, 151. We discuss a reverse time symmetry 
inherent in the brachiating robot’s dynamics. First, we 
show that the natural dynamics of the two-link brachi- 
ating robot admit a reverse time symmetry, S. Then, 
we give a condition under which feedback laws result in 
closed loops that still admit S. Lastly, following Raib- 
ert [lo], we introduce the notion of the neutral orbits of 
the symmetry, and show how they may be used to solve 
the ladder problem. In the sequel, we will denote the 
integral curve of a vector field f by the notation f” 

Definition 3.1 f : X +. T X  admits a reverse time 
symmetry S : X -+ X if and only if S o ft = f-’ o S. 

Note that  when S is linear, this definition might by 
equivalently stated as S o  f = - f o S. In this paper, we 
are concerned specifically with the symmetry operator 

(where 12 denotes the 2 x 2 identity matrix). 
Now, supposing we have chosen a feedback law, 

- r ( q , i ) ,  denote the closed loop dynamics of the robot 
as 

Tq = f r (Tq)  = C (n, +?I)) (15) 
Say that T “respects S’ if and only if C, admits S.  

Proposition 3.2 The closed loop dynamics C ,  admits 
S ,  i.e., S o  C7(Tq)  = -LT o S(Tqj if and only zf r(q, q )  
has the property r(--q, 4) = -r(q, 4). 

This result follows from direct computation, and we refer 
the reader t o  [8] for the details. 

Define the fixed points of the symmetry S to  be 

FixS := {Tq E TQ IS(Tq) = Tq} (16) 

In the present case, i.e., for S in (14) note that 

FixS = { ( q ,  i )  E TQlq = 0) 

Define the set of “neutral orbits” to be the integral 
curves which go through the fixed point set, 

N : =  U L*(FixS) (17) 
t E R  

Note that a neutral orbit has a symmetry property 
about its fixed point-namely, if Tqo E FixS, then 

s 0 P(Tq0) = c-‘ 0 S(Tq0) = P ( T q 0 )  

3.1.2 

Define the “ceiling” to be those configurations where the 
hand of the robot reaches the height y = 0 as depicted 
in Figure 2. 

The Ceiling, C, and its Neutral O r b i t s  

Figure 2: A ceiling configuration. The ceiling is 
parametrized by the distance between the grippers d. 
A left branch c-(d)  and right branch c+(d) are defined 
in this manner. 

C = { q  E QI C O S O ~  + c o s ( O ~  + 0,) = 0 }  . (18) 
Note that C can be parameterized by two branches, 

C = Im c- UIm e+ (19) 

of the maps 

In the sequel, we will be particularly interested in initial 
conditions of (15) originating in the zero velocity sec- 
tions of the ceiling that  we denote TCo. Now note that 
S(TCo) E TCo since 

Proposition 3.3 If a feedback law, r ,  respects S and if 

[ ‘-id) ] E N n  TCo, then there can be found a time 

tw E R such that if v = 9 then 

i.e., a time a t  which the left branch a t  zero velocity in 
the ceiling reaches the right branch in the ceiling also at 
zero velocity. 

Again we refer the reader to [8] for details of the proof 
of Proposition 3.3. Thus, we conclude that any feedback 
law, T, which respects S,  solves the ladder problem, as- 
suming we can find a d such that [ c - (d ) ,  0 IT E N .  
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Note that finding such a ceiling point requires solving 
the equation 

, where v = %, for d and t N  simultaneously. Of course 
solving this equation is very difficult: it requires a “root 
finding” procedure that entails integrating the dynam- 
ics, L. 

3.1.3 Appl ica t ion  of Target Dynamics  

Now we apply the notion of target dynamics described 
in (9). The feedback law to  achieve this is given by (12). 
Notice that r, respects S since r,(-q,i) = -r,(q,q). 
Notice, as well, that (9) has a very nice property relative 
to  the difficult root finding problem (23). Namely, using 
this control algorithm, t N  is given by 

because 0 follows the target dynamics B = -w20. In 
this light, then, we need merely solve (23) for d. More 
fomally, we seek an implicit function d* = X-’(w) such 
that @ (X- ’ (w),  s) = 0. Of course, we are more likely 
in practice to  take an interest in tuning w as a func- 
tion of a desired d*.  Thus, we are most interested in 
determining 

w = X(d*). (25) 

In general, we can expect no closed form expression for 
X or A-’,  and we resort instead to  a numerical procedure 
for determining an estimate, A. The details of the nu- 
merical procedure is discussed in [8]. We plot in Figure 
3 a particular instance of for the case where the robot 
parameters are 1 = 1, ml = 3, m2 = 1. We will use these 
parameter values throughout the sequel for the sake of 
comparison between this and subsequent figures. 

omega 

d-s t ar 
0 . 5  1 1.5 

Figure 3:  Numerical approximation w = j\(d*). Tar- 
get dynamics controller, r,, is tuned according to  this 
mapping, A, that is designed to locate neutral orbits 
originating in the ceiling. 

3.1.4 Sinnulation 

Consider the case d* =: 1.4 for this parameter set above. 
The initial condition of the robot is Tqo = [ c-(d*) ,  0 I T .  
From the numerical solution depicted in Figure 3, w = 
i(1.4) = 2.2512. Figure 4 shows the resulting movement 
of the robot. The closed loop dynamics have a neutral 
orbit which achieves the task. 

Figure 4: Movement of the robot. The symmetry prop- 
erties of the neutral orbit from the ceiling solves the 
ladder problem. 

3.2 Swing up Problem 
The swing up problem entails swinging up from the sus- 
pended posture at rest and catching the next bar. In 
order to achieve this task it is necessary not only to  
pump up the energy in a suitable fashion but also to  
control the arm position a t  the capture of the next tar- 
get bar. This suggests that we need to  introduce a stable 
limit cycle to  the system with suitable magnitude and 
relative phase in state. The idea we present here is a 
simple modification of the foregoing target dynamics. 
We define the “pseudo energy” with respect to  the tar- 
get variable and add a compensation term to the target 
dynamics in order t o  introduce the desired limit cycle. 

3.2.1 Modif ied Target Dynamics 

As we have mentioned, swing up requires energy pump- 
ing in a suitable fashion. To achieve this we modify the 
target dynarnics (9) as 

0 
T x =  [ -U2 

Ta: := fE*(TX) - K e ( E  l l  - E*)  
where, 2 = 6 = 61 + $62 as defined in (11) 

Ke: a positive constant 
E .- ‘e2 -+ l w ~ ~ 6 ~ :  2 “pseudo energy” 
E*:  the desired pseudo energy level 

.- 2 

To achieve this target dynamics, the control law is for- 
mulated as 
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Now consider the time derivative of E along the motion 

1.6. 

1.4 

1.2 

1 
0.8 

0 . 6  

0 . 4  

0.2 

0-  

E = -]<,(E - E * ) P  (28) 

I_f E >_ E* then the pseudo energy E dgcreases, and if 
E < E* then E increases. Therefore, E will converge 
to  the desired level E* eventually. This implies that  
the target dynamics with respect to  8 coordinates has 
a stable limit cycle whose trajectory is characterized by 
l e 2  2 + 3 ~ ~ 8 ~  = E* on the phase plane of (8 ,  e ) .  

Although we have experienced very favorable results 
in numerical simulations introducing the desired limit 
cycle to  the “target variable” using the ideas set out 
above, the procedure remains somewhat ad hoc. Most 
importantly, we need to bring the effective actuated por- 
tion of the state space, 8,  to  the right pseudo energy 
level, while simultaneously ensuring that the unactu- 
ated degree of freedom, r ,  coincide with the regulated 
length, d* , when the trajectory enters the ceiling, T C .  

As the simulation suggests, some experience is help- 
ful in determining the proper choice of the parameters 
K,, w to  give the desired motion of the robot to  achieve 
the task. For example, large I(, seems to  yield chaotic 
motion and small choice of K ,  is preferred. Of course, an 
elucidation of these relationship awaits a proper math- 
ematical analysis. 

3.2.2 Simulation 

Suppose the next target bar is located at  the distance 
d* = 1.4. The initial condition is qo = [ 0.01, 0 IT 
and 4.0 = 0. We choose the parameters in the target 
dynamics as w = i(1.4) = 2.2512, I<, = 0.75, E* = 
t W 2  ($ 

- 0 . 2 5  

-1.1 

-0.71 

.. ., ,, .> ,,,, ., .. 
I 

2 
1 l..C, 

-1.11 2 

:? i: :: :: 
i 

Figure 5: Left: The movement at the capture of a bar 
t = 33 - 33.625 sec. The swing up task is achieved 
under the modified target dynamics. Right: Joint tra- 
jectories (81: solid, 8 2 :  dashed). The desired limit cycle 
is achieved. 

Figure 5 depicts the movement of the robot at the 
capture of a bar, and the joint trajectories of 81,82. 
These simulation results suggest that  the robot can 
achieve the swing up and catching task via the modi- 
fied target dynamics. 

4 Rope problem 
In this section, we consider the rope problem: brachia- 
tion along a continuum of handholds such as afforded by 
a branch or a rope. First, the average horizontal veloc- 
ity is characterized as a result of the application of the 

target dynamics controller, r,, introduced above. Then, 
we consider the regulation of horizontal velocity using 
this controller. An associated numerical “swing map” 
suggests that we indeed can achieve good local regula- 
tion of the foward velocity through the target dynamics 
method. 

4.1 The Iterated Ladder Trajectory In- 
duces a Horizontal Velocity 

Supposing that the robot starts in the ceiling with zero 
velocity, then it must end in the ceiling under the tar- 
get dynamics controller since 8 follows the dynamics 
$ = d 8 .  However, if d and w are not “matched” 
as w = X(d), then the trajectory ends in the ceiling, 
Tq E TC+, with 0 = 0 but r # d and r # 0. We 
have found from our numerical studies [8] that when 
d = d’ + 6 for small 6, then 7: at Tq E TC+ is also 
small. Assuming that any such small nonzero velocity 
is killed in the ceiling, brachiation may be iterated by 
opening and closing the grippers at left and right ends. 
Imagine that the robot starts the swing and by grasping 
the bar with its gripper firmly in the ceiling damps out 
the kinetic energy before opening the other gripper and 
beginning the next swing. We will call such a maneuver 
the Iterated Ladder Trajectory (“ILT”). 

It is natural to  inquire as to  how quickly horizon- 
tal progress can be made along the ladder in so doing. 
When a gripper moves a distance 2d* in the course of 
the ladder trajectory, and if the trajectory is immedi- 
ately repeated, as described above, then the body, ml, 
will also move a distance of d* each swing, hence, its 
average horizontal velocity will be 

according to the discussion in Section 3.1. - In Figure 
6, we now plot the ceiling-to-velocity map h = V2(d*) 
for the robot parameters 1 = 1 , m l  = 3,mZ = 1, where 
v 2  is computed using the numerical approximation, fi 
discussed in Section 3.1.3. 
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4.2 Inverting the Ceiling-to-Velocity 
Map 

Consider now the task of obtaining the desired forward 
velocity h of brachiation. If v 2  is invertible, then d* = 
ccl(h ) and we can tune w in the target dynamics as 

;* 
- *  

w = x 0 i q l ( i L * )  
;* 

to  achieve a desired h where X is again the mapping 
(25). We have found in our numerical work that vz 
does, indeed, seem to be nicely invertible as suggested 
by the particular case of Figure 6. 

4.3 Horizontal Velocity Regulation 
Consider the ceiling condition with zero velocity 

Define the maps, C6, and their inverses, Czl, as 

Note that if w = w* = A(#), then 

o ; ( d ” )  = d* 

that is, d” is a fixed point of the 
swing map. 

(39) 

appropriately tuned 

I t i s  now clear that the dynamics of the ILT maneuver 
can be modeled by the iterates of this swing map, 0;. 
Namely, suppose we iterate by setting the next initial 
condition in the ceiling to be, 

Tqo [ I C  + 11 = c- (a, (44)) (40) 
Numerical evidence suggests that the iterated dynam- 
ics converges, limk+oo U;..(&) = d’, when d is in the 
neighborholod of d* as depicted in Figure 7 (local asymp- 
totic stability of the fixed point d*) .  We plot the 
swing - map calculated numerically for the case where 
h = 0.9,d’ = 1 . 2 6 8 1 5 , ~  = 2.2270 and the robot pa- 
rameters are l = l ,  ml = 3, m2 = l (see Figure 7) .  

d[k+ll 

A target dynamics controller (9 )  gives 

L:: o C- (d)  E TC+ , where v = - 
2w (34) 

since 0 follows the dynamics 6 = -w20. Now, if w = 
X(d), then 

Figure 7: Swing - map, au, (solid) and identity (dashed) 
for the case h = 0.9,d’ = 1 . 2 6 8 1 5 , ~  = 2.2270 where 
G* = X(d*) ,  and the robot parameters are 1 = 1 , m l  = 
3, m2 = 1.  This swing map has an attracting fixed point 
at d‘. 

where v = &, because of the symmetry properties of 

Define a projection 11, from the ceiling’s tangents into 
the neutral orbits, demonstrated in Proposition 3.3. 

the zero velocity section, 

11 : TCi TCoi. (36) 

In other words, II is a map that “kills” any velocity in 
the ceiling. We introduce this projection to  model the 
ILT maneuver in cases when i # 0 for Tq E TC. 

We now have from (34) 

f 
11 o L:: o C - ( d )  E TCo+ where v = - 

2w (37) 

hence we may define a “swing map”, o;, as a transfor- 
mation of [O,21] into itself, 

nu(d) := CT1 o II o L:: o C - ( d )  : [0,24 + [0,21] (38) 

4.4 Simulation 
Suppose we want to  achieve the desired horizontal ve- 
locity, h = 0.9(m/s). The parameters of the robot are 
I = 1 ,ml  =: 3,mz = 1. The procedure to  obtain the 
numerical approximation of (30) as follows: 

First, the ceiling-to-velocity map (29) is approxi- 
mated by the third order polynominal. 

;* 

- 
= -0.044L6d*3 + 0.1278d*2 + 0.7052d* - 0.1040 (41) 

Then, to obtain the approximating solution to 
pZ-’(O.9), - (41) is solved for d* numerically by setting 
h = 0.9, and we get d* = 1.26815. Lastly, from the nu- 
merical solution depicted in Figure 3, w = i (1.2682) = 
2.2270. 

First, consider ILT with the proper initial condition 
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7* - 
which is proper in the sense h = V2(d*) .  The simula- 
tion result in this case is shown in Figure 8-a faithfully 
executed ILT at d'. 

do =d' L d = d ' d  

Figure 8: Brachiation along the bar with the initial con- 
dition (42). The desired locomotion with the fixed point 
d* is achieved. 

Suppose, instead, that assuming w = X(d*) but the 
initial do is wrong. We present simulation results with 
the initial condition 

Tqo = [ c - ( d ; ) + 6 )  ] ,where 5 = -0.3 (43) 

in Figure 9. As the numerical swing map  of (7) suggets, 
we can nevertheless achieve the desired locomotion, i.e., 
d + d*. 

With the assumption that any velocity in the ceiling 
is killed, the size of the domain of attraction to d' under 
CT,,,. is fairly large according to the numerical evidence 
shown in Figure 7. 

do = d ' + 6  
U 

d=d '  
w 

Figure 9: Brachiation along the bar with the initial con- 
dition (43). Convergence of d -+ d' is illustrated as the 
numerical swing map (Figure 7) indicates. 

5 Conclusion 
We have presented some preliminary studies of a new 
brachiating controller for a simplified two-link robot. 
The algorithm uses a target dynamics method to solve 
the ladder, swing up and rope problems. These tasks 
are encoded as the output of a target dynamical sys- 
tem inspired by the pendulum-like motion of an ape's 
(slow) brachiation. We provide numerical simulations 
suggesting the effectiveness of the proposed algorithm. 
However, these numerical results also indicate that the 
sensitivity of the linearization scheme (12) to the re- 
quired kinematic and dynamical parameters, I ,  ml and 
m2, may damage the resulting closed loop motion when 
available estimates are not extremely close to the true 
values. In general, even with exact calibration data, our 

observations suggest that  the approach taken in this pa- 
per works well only when roughly w oc and ml is 
larger than 7712. Under these circumstances, we present 
more numerical evidence in [S] that the proposed al- 
gorithm is practically feasible in terms of the required 
actuator torque and power. 
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