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Abstract 
The classical Nadaraya-Watson estimator is shown to 
solve a generic sensor fusion problem where the un- 
derlying sensor error densities are not known but a 
sample is available. By employing Haar kernels this 
estimator is shown to yield finite sample guarantees 
and also to  be efficiently computable. TWO simulation 
examples, and a robotics example involving the detec- 
tion of a door using arrays of ultrasonic and infrared 
sensors, are presented to  illustrate the performance. 
Subject Terms: Sensor fusion, fusion rule estima- 
tion, empirical estimation, Nadaraya-?Vatson estima- 
tor. 

1 Introduction 
The area of distributed sensor fusion has witnessed a 
tremendous growth over the past decade due to, at 
least in part, rapidly expanding application domains 
[4, 51. Particularly in a number of robotics applica- 
tions, many researchers realized several fundamental 
limitations of single sensor systems [l]. By employing 
multiple sensors: (a) replicated sensors can be em- 
ployed for fault tolerance, and (b) sensors of different 
modalities can be used to  achieve tasks that cannot 
be performed by a single sensor. In either case, the 
fusion method must be designed carefully, for an inap- 
propriate fuser can render the system worse than the 
worst individual sensor. 

Many existing sensor fusion methods require either 
independence of sensor errors or closed-form analyti- 
cal expressions for error densities. In the former case, 
a general majority rule suffices, while in the latter a 
fusion rule can be computed using Bayesian methods. 
Most of the distributed decision fusion methods belong 
to  the latter class [4]. In robotics systems, however, 

independence can seldom be assured, and the problem 
of obtaining the required probability densities can be 
more difEcult than the fusion problem itself. These 
problems were overcome recently in several cases by 
using a “learning” method if the sensor system is avail- 
able for operation [13]. In this paper, we show that 
the classical Nadaraya-Watson estimator can be used 
to  solve a generic fusion problem that can be applied 
in a number of robotics applications. This estimator, 
originally proposed in the sixties, has been extensively 
used in statistical applications [9], but is seldom used 
for sensor fusion. Recently, we obtained finite sam- 
ple results for this estimator based on Haar kernels, 
and showed its relation to  neural network estimators 
[MI. Due to its effective performance in a number of 
nonlinear function estimation problems, we are moti- 
vated to  investigate this estimator for the sensor fusion 
problem in this paper. 

Consider a system of N sensors such that corre- 
sponding to input X E [0,1], the sensor Sj, j = 
1,2,. . . , N ,  outputs Y(j) E [0,1] according to  an un- 
known density pj(Y(j)IX) (see Figure 1)  l .  A train- 
ing n-sample (XI,  K), ( X 2 ¶ X ) ,  . . . , (X,,Y,) is given 
where E;: = (I$’), T(2), . . . , %(”I) and I$’) is the 
output of Sj in response to  input Xi. We consider the 
expected square error, I(f), given by 

/ [ X  - f(Y)]2p(YIX)p(X)dY(1)dY(2). . . dY(”)dX 

(1.1) 
to be minimized over a family of fusion rules 3 
based on the given n-sample data, where Y = 
(Y(l), Y(2) ,  . . . , Y(”)).  It is assumed that the func- 
tions of 3 satisfy the required measurability condi- 

‘The treatment of this paper can be generalized to X E Wd 
and Y E Wnd under certain boundedness conditions (see 1131). 

*The densities p(Y1X) and p(X) must be denoted by 
pylx(YIX). and px(X) respectively in a strict sense, but we 
retain the simpler notation since the correct density can be eas- 
ily inferred from the context. 
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Figure 1: Architecture of the fusion system. 

tions (see Pollard [lo]). The underlying densities, pj’s, 
are time-invariant (and are not required to  be inde- 
pendent or identical). This problem was first formu- 
lated in Rao [13], and several function classes such as 
empirical Bayesian rules [14], nearest neighbor rules 
[16], neural networks [15], etc., have been subsequently 
used in special cases. The popular decision fusion 
problem [4] corresponds to Y(;) E (0, l}N. 

This formulation of the sensor fusion problem is par- 
ticularly suited to robotics applications (see Example 
3 of Section 4) due to, in part, the following reasons: 

Multiple sensors are needed to accomplish several 
non-trivial robotic tasks, since most single sensor 
systems are of very limited functionality. 

The training samples can be easily obtained by 
operating the sensors in laboratory environments. 

Bayesian fusion methods that require a complete 
knowledge of error distributions of all constituent 
sensors are not suitable because: 

(i) such detailed probabilistic modeling of sen- 
sors is very difficult, particularly so in the 
case of recent complex sensor systems, and 

(i) even if such knowledge is available, the com- 
putational problem is intractable [17], and 
hence fast computational fusion methods are 
not possible. 

In this paper, we show that sensor fusion problem 
stated above can be effectively solved using the classi- 
cal Nadaraya-Watson estimator f based on sample. 
The advantage of f over the nearest neighbor rule 

over the neural network method is in fast computa- 
tion. Also, f is applicable to a more general sensor 
fusion problem compared to  empirical Bayesian rule 
of [14] which is applicable to indicator functions only. 

Let 3 have uniformly bounded modulus of smooth- 
ness (see Section 2 for a precise definition) and f* E 3 
minimize I(.) .  In general, f* cannot be computed 
since the underlying densities are unknown. Further- 
more, since no restrictions are placed on the densities, 
it will not be possible to  infer f* (with probability 
one) based on onZy a finite sample. If 3 contains the 
regression function g(Y) = E(XIY) ,  we show that for 
Nadaraya-Watson estimator f, based on a sufficiently 
large sample, we have 

P [ I ( j )  - I(f*) > E]  < S (1.2) 

for E > 0 and 0 < S < 1 for continuous densities. 
Thus the “error” of f is within E of the optimal error 
(of f*) with arbitrarily high probability 1 - S (given a 
sufficiently large sample). If g(.) 4 3, then under the 
same conditions, we have P [ I ( f )  - I(f*) > E + E*] < 
S where E* = II(g) - I(f*)I. This is a reasonable 
criterion in the present formulation, and such criteria 
are extensively used in a number of machine learning 
and empirical estimation problems (see Vapnik [21] for 
more details). We estimate the sample size required to 
ensure (1.2) as a function of E ,  6, and the smoothness 
parameters of 3. We present two examples, involving 
fusion of (a) decision making modules, and (b) noisy 
function predictors, to illustrate the applicability of 
the proposed method. 

We now briefly discuss some related existing for- 
mulations to put the above formulation in perspec- 
tive. If the sensor error densities are known, sev- 
eral cases of the fusion rule estimation problem have 
been solved by methods not requiring the samples. 
Some of the earlier work in this direction was done 
in the areas of pattern recognition (Chow [2]), polit- 
ical economy (Grofman and Owen [7]), and reliabil- 
ity (von Neumann [23]). The distributed detection 
problem based on probabilistic formulations has been 
extensively studied; see Dasarathy [4] and Varshney 
[22] (also the recent special issue [5]) for comprehen- 
sive treatments. Many of the existing sensor fusion 
methods are based on maximizing a posteriori prob- 
abilities of hypotheses under a suitable probabilistic 
model. However, when the probability densities are 
unknown (or difficult to estimate) such methods are 
ineffective. One alternative is to  estimate the density 
based on a finite sample. But, as illustrated in general 
by Vapnik [20], the density estimation is more difficult 
than the subsequent problem of estimating a function 
chosen from a family with bounded capacity or a suit- 

is in lower memory requirements, and the advantage able E-cover. The latter property is satisfied in the 



present formulation as a result of smoothness of 3. Let 5’ be a set equipped with a pseuodometric d.  
The paper is organized as follows. Preliminaries are The covering number N(E,  d,  S )  is defined as the small- 

summarized in Section 2. In Section 3, we show that est number of closed balls of radius E, and centers in 
for a sufficiently large sample, the condition (1.2) can S, whose union covers S. Let Nm(e,3) = N(E,  11 . llm 
be satisfied. We present two simulation examples and , 3), where 11 f(y) Il,= 

YE[O,1lN 
The following cover size for the class of Lipschitz 

functions will be used in our sample size estimates. 

Lemma 2.2 Let  ~k = {fk : [o,1IN H W} denote the 
Let Q denote the unit cube [0, 1IN and C(Q) denote set Of Lipschitz f inc t ions  with Lipschitz constant k, 
the set of all continuous functions defined on Q. The i- e. for every f E Fk, we have Ifb) - f(z)I 5 11 
modulus of smoothness o f f  E C(Q) is defined as y - 11,. T h e n  lvm(E,3k) 5 i?k2{t[(t-1)N-1+1]}.0 

sup If(y)I. 
one robotics example in Section 4. 

2 Preliminaries 

wm(f; T )  = SUP I f  (Y) - f (41 
3 Nadaraya-Watson Estimator llY-zll-x<rr YVZEQ 

IM 
where 11 y - z Ilm= ~ - L X  Iyj - zil. 

cubes (Haar system) such that Q = 

2 - 1  Given n-sample, the Nadaraya-Watson estimator 
For m = 0,1,. . .. let Qm denote a family of diadic based on Haar kernels is defined by 

J ,  J n  J‘ = 0 u 
JEQm 

for J # J’, and the N-dimensional volume of J ,  de- 

function of J E Qm:  1 ~ ( y )  = 1 if y E J ,  and 1 ~ ( y )  = 0 
otherwise. For given m, we define the map P, on 

5 xjpm(y,yj) c xj 
j=1 

(3.4) 
YjEJ - - ’noted by IJI, is 2-Nm.  Let 1 ~ ( y )  denote the indicator fm+(y) = 

5pm(y,~;:) 5 E j  1J(%) 
j=1 

for y E J [12] (see also Engel [SI) 4. The second expres- 
sion indicates that fm.n (y) is the mean of the function 

C(Q) as follows: for f E C(Q), we have Pm(f) = Pmf 
defined by 

~ , ,-, 

values corresponding to  E;:% in J that contains y. This 
property is the key to  efficient computation of the es- 

Pmf(Y) = S, f(z)dz 

for y E J and J E Qm [3]. Note that P,f : Q H timate [181. 
[0,1] is a discontinuous (in general) function which The Nadaram-Watson estimator based On more 
takes constant values on each J E Q ~ .  Consider the general kernels is classical in statistics literature [9]. 

Haar kernel given by Pm(y,.Z) = l j (y) l j (z)  Since its introduction in early sixties, this estimator 
was successfully employed in a number of applications 

for y, a E Q. Then an estimator for a density p E C(Q) involving nonlinear regression estimation. The classi- 
based on n-sample is given by [3] cal analysis of this estimator was restricted to  asymp- 

totic results, and is not particularly directed towards 
hear-time computation. This computationally effi- l n  

Bm,n(Y) = ; CPm(y,E;.) 
cient version based on Haar kernels is due to  Engel 
[6], which was subsequently shown to  yield finite sam- 

which can also be written in the form jm,n(y)  = 
ple guarantees by Rao and Protopopescu [MI. The 

I ~ ~ ( ~ )  = h l J ( y ) .  Note that a random variable is de- addition to  smoothness, and here we require only the 
latter. We first present a simpler version of the result noted by an uppercase letter (e. g. Y) and its deter- 
when 3 contains the regression function. ministic version is denoted by the corresponding low- 

ercase letter (e. g. y). Theorem 3.1 Consider a fami ly  of func t ions  F s 
The following result, due to Ciesielski [31, will be C(Q) with range [0,1] such that w , ( ~ ; T )  5 kr for 

used subsequently in the special case Q = 1. 
3N. S. V. Rao, V. A. Protopopescu, and H. Qiao, Function 

Lemma 2.1 /3/ Let  0 < (Y 5 1 and f E c(Q) be estimation by feedforward sigmoidal networks with bounded 
given. T h e n  the condition w,(f; r )  5 krQ, form some weights, manuscript, Oak Ridge National Laboratory, Oak 

k > 0 as T + O+ implies Ridge, TN, 1996. 
4Conventionally this estimator is used to fit functions of the 

form f(X) = Y (or its regression version). Due to the form 
of the present sensor fusion problem, namely fitting functions 
of the form f(Y) = x, the conventional notational roles of the 
variables X i  and yi are switched in this expression. 

1 

JEQm 

j=1 

C n(J)hJ(y) with n(J )  = +I{j : E;: E J)I and result of [la] requires finiteness of capacity of 7 in 
JEQm 

11 f - Pm f C/Pm US m co 

for Some c > 0, where 11 f (y) Il,= sup If(y)l. 0 
YE[O,1lN 

’ I  



some O < k < 03. W e  assume that: (i) the regression 
funct ion g(Y) = E(XIY) is contained F; (ii) there 
exists a fami l y  of densities P C(Q); (iii) f o r  each 
p E P, w , ( ~ ; T )  I kr; and (iv) there exists ,u > 0 
such that for each p E P,  p(y) > ,u for all y E [0,1]". 
Suppose that the sample size, n, is larger than  

7 [(F [ ( ~ - 1 ) ~ - ' + 1 ]  +m) 

5 P [sup IP(~) - pmp(y)l> z/2] 

+P sup Ipmp(y) -lim,n(Y>I > z/2] - 
Y 

[ ,  
The first term is made zero by choosing C/2m 5 
2/2 and the second term is upperbounded by 
b ( 2 / ~ ) l / ~ + l - l / ~ P  for suitable constant b (from proof 
of Theorem 3.13 of [3]). Now we have the first term 
of Nadaraya's decomposition bounded by 

P [sup Ifm,n(Y) - f(y)p(y)l > T] 

In (2m+1vE1) +In ((6 - A)€': 22m+0 >I 
lo n5 Y where €1 = E(P - ~ ) / 4 ,  0 < P < 20, m = [+-I 

and x = b ($) 1/N+1- 1/2p + ($) 1/N+1--1/2P . T h e n  

for a n y  f E F ,  we have P [ ~ ( j j  - I ( ~ * > I  > E] < S. 

Proof: Vapnik [20] showed that I(.) is minimized by 
the regression function g(y) = f*(y) = ~ [ x l y ] .  Con- 
sider I(f7m.n) - I(f*) given by 

N 

I P [sup IPmfp(y) - f(y)p(y)l> ./2] 

+P [sup Ifm,n(Y> - pmfp(y)l> T/2] . 
Y 

Y 

The first term in the right hand side can be made zero 
by suitably choosing m, and the second term is esti- 
mated using the cover size estimate for the function 
class {f(.>1J(.>} for any fixed J. Forthe latter we use 
the following inequality: 

I[(. - fm.n(y))2 - ( E  - f*(y))2]p(yl.)p(.)dydx 

where the operand of the integral can be expressed as P [lPmfp(y) - fm,+(y)I > ~ / 2 ]  5 



method preprocessing 
complexity 

nearest neighbor 
feedforward threshold NP-complete 
networks 
Nadaraya-Watson O(n(logn)N-l) 

Table 1: Summary of performances of Nadaraya- 
Watson estimator, feedforward neural network, and 
nearest neighbor rule. 

storage function computation 
complexity complexity 

O(n> 
O(s) O(S) 

O(2'") = O(n) O((1ogn)") 

where X = b (3) . The 

Sample Size Test set size Sl s 2  s 3  s4 

100 100 7.0 20.0 33.0 35.0 
1000 1000 11.3 18.5 29.8 38.7 

10000 10000 9.56 20.19 30.38 39.82 
50000 50000 10.038 20.136 29.854 39.904 

sample size is obtained by noting*that the inequal- 
ity 6 - X 2 ane-bn is ensured by choosing n 2 
f ln(a/b2(6 - A)). 

We now consider the case when the regression func- 
tion g ( y )  is not contained in F, i. e. g ( y )  need not 
satisfy the smoothness conditions. 

Corollary 3.1 Under the conditions of Theorem 3.1 
with the exception of (i), i. e., the regression func- 
t ion  g ( y )  is not necessarily contained in 3, we have 
P [ I ( ~ )  - ~ ( f * )  > E + € * ]  < 6 wiLere E* = I I (g )  -I(f*)l. , 

SS Nadaraya-Watson 
55.0 12.0 
51.6 10.6 

49.68 8.58 
50.050 8.860 

Proof: Note that I(?) -I( f *) 5 I ( f )  - I ( g )  + I I (g )  - 
I ( f  *)I 5 I(f) - I(g) + E*. By the proof of Theorem 
3.1, with probability 1 - 6, we have I I ( f )  - I(g)[ < E.  

0 
Computation of fm,n(y) at a given y involves ob- 

taining the local sum of Xi's in J that contains y. 
The range-tree (see Preparata and Shamos [ll]) can 
be constructed to store the cells J that contain at 
least one x; with each such cell, we store the num- 
ber of the K's that are contained in J and the sum 
of the corresponding Xi's. This computation can be 
achieved by known methods [ll] in O(n(logn)N-l) 
time, and the values of J containing y can be retrieved 
in O((logn)N) time. Thus, fm,n(y) can be computed 
in O((logn)N) time after a preprocessing step in 

O(n(logn)N-l) time (see [IS]). 
For non-linear function estimation problems, two of 

the most commonly used estimators are feedforward 
neural networks and nearest neighbor rules. A sum- 
mary of relative performance of these b o  methods 
compared to  Nadaraya-Watson estimator is presented 
in Table 1, where s denotes the size of the feedfomard 
neural network. A preprocessing step is needed in neu- 
ral network and proposed method, which results in a 
reduced complexity for computing a function value. 

In practice m is chosen such that 2'" 5 nt for some 
t < 114 for Nadaraya-Watson estimator. In terms 
of complexity, Nadaraya-Watson estimator exhibits a 
trade-off in that  its preprocessing complexity is poly- 
nomial in n (unlike neural networks) and the estima- 
tion complexity is polynomial in log n (unlike the near- 
est neighbor rule). 

It is also common to  employ sigmoid networks for 
function estimation problem which is closely related 
to  the present fusion problem. Finite sample results 
for such method are based on computing an empir- 
ically best neural network, the complexity of which 
is an open problem [19]. We note that the popular 
backpropagation algorithm for sigmoid networks is not 
known to provide performance guarantees based on fi- 
nite samples for the present problem (when 3 has only 
the smoothness property). 

4 Implementation 

We first present two simulation examples to  illustrate 
the performance of Nadaraya-Watson estimator for 
the sensor fusion problem. The first example is a spe- 
cial case of the fuser problem where Y corresponds 

Table 2: Performance of Nadaraya-Watson Estimator 
for decision fusion problem. 



~ 

Training Set 
100 

1000 
10000 

Testing Set Nadaraya-Watson Nearest Neighbor Neural Network 
10 0.000902 0.002430 0.048654 
100 0.001955 0.003538 0.049281 
1000 0.001948 0.003743 0.050942 

Table 3: Performance of Nadaraya-Watson Estimator 
for fusion of noisy function estimators. 

Training Set Testing Set 
100 10 
1000 100 

10000 1000 

to  binary decisions. Problems of this type have been 
studied under the title of distributed decision fusion 
[4, 161. In the second example each sensor is a noisy 
function estimator. Then we present a robotics exam- 
ple based on ultrasonic and infrared sensors. In all 
examples, the training sample is used to  compute the 
Nadaraya-Watson estimator, f, in the first step. This 
step is achieved by computing the cells of Qm; with 
each cell J of Qm, the list of Xi’s that correspond to  
J is stored. Teen, given the sensor output, Y ,  the 
fuser’s output, f(Y), is computed in the second step. 
In this step, the cell J that contains Y is computed 
first; if no X’s lie in J then f ( Y )  is taken to  be 0, 
otherwise Eq. (3.4) is used to  compute the estimator. 

Example 1: Decision Fusion: We consider a system 
with 5 sensors such that Y E { H o , H ~ } ~ .  To each X 
there corresponds a “ c ~ r r e c t ~ ~  decision; in the train- 
ing data  the correct decision (HI or Ho) is generated 
with equal probabilities for each Xi,  i. e., P(H0lX) = 
P ( H l [ X )  = 1/2. The sensor Sj, j = 1,2,. . . ,5, intro- 
duces an error as follows: the output corresponds to  
the correct decision with probability of 1 - i / l O ,  and 
with probability i/10 output is the opposite. The indi- 
vidual sensor behavior is implemented by generating a 
uniform random variable in the range [0, D] and check- 
ing whether it falls within the interval [0, iD/lO]. The 
sensor fusion problem is to  compute a rule that com- 
bines the outputs of the sensors to  predict the correct 
decision. Table 2 is an illustration of the percentage 
error of the individual detectors and the fused system 
based on an adaptation of Nadaraya-Watson estima- 
tor. Here we use m = 2 and Q = [0, lI5 such that HO 
and HI are represented by 0 and 1 respectively; f is 
thresholded at 0.5 to  generate final output. Note that 
the fuser is consistently better than the best sensor 
SI beyond the sample sizes of the order of 1000. Thus 
this example illustrates that the performances 

Nadaraya-Watson Nearest Neighbor Neural Network 
0.004421 0.014400 0.018042 
0.002944 0.003737 0.02 1447 
0.001949 0.003490 0.023953 

exceeding the best of the individual sensors can be 
achieved through fusion methods. 0 

Example 2: Fusion of Function Estimators: [18] We 
consider five function estimators each of which out- 
puts the value of an unknown function g(X)  E [0,1] 
at the input X E [0,lld. In particular Sj out- 
puts a corrupted value gj (X)  of g ( X )  when pre- 
sented with input X E [O,lId. The fusion problem 
is to  compute a function f : [O,1I5 H [O,1] such 
that f (g l (X) ,  . . . ,gs(X)) closely approximates g(X) .  
Here g is realized by a feedfonvard neural network, 

where Z is uniformly distributed over [-1,1]; note 
that 1/2 - i/10 5 gi(X)/g(X)  5 1/2 + i/10. Table 
3 corresponds to  the mean square error in the esti- 
mation of f for d = 3 and d = 5, respectively, us- 
ing the Nadaraya-Watson estimator, nearest neighbor 
rule and a feedfonvard neural network with backprop- 
agation learning algorithm. Notice the superior per- 
formance of Nadaraya-Watson estimator compared to  
the other two methods in this example. 0 

Example 3: Detection of DOOT Using Ultrasonic and 
Infiared Sensors: We consider the problem of recog- 
nizing a door (an opening) wide enough for a mobile 
robot to move through. The mobile robot (TRC Lab- 
mate) is equipped with an array of four ultrasonic and 
four infrared Boolean sensors on each of four sides as 
shown in Figure 2. The sensors are periodically polled 
while the robot is in motion. This example deals with 
only the problem of detecting a wide enough door 
when the sensor array of any side is facing it. The 
ultrasonic sensors return a measurement correspond- 
ing to distance to  an object within a certain cone as 
illustrated in Figure 2. The infrared sensors return 
Boolean value based on the light reflected by an ob- 
ject in the line-of-sight of the sensor; white smooth 
objects are detected due to  high reflectivity, and ob- 
jects with black or rough surface are generally not de- 
tected. Both ultrasonic and infrared sensors are unre- 
liable. The ultrasonic sensors are susceptible to  mul- 
tiple reflections and the profiles of the edges of the 

and, for j = 1,2,. . . , 5, gj(X)  = g(X)(1/2 + jZ/lO) 



TRC Labmate Mobile Robot 5 Conclusions 

1 u I trasonic 

infrared 

Front and Figure 2: Schematic of sensory system. 
back sensor arrays are not shown for simplicity. 

door. The infrared sensors are susceptible to surface 
texture and color of the wall and edges of the door. It 
is very difficult to  derive accurate probabilistic models 
for these sensors since it requires expertise in device 
physics, statistics, and non-linear mathematics. Thus 
a Bayesian solution to this problem is very hard to im- 
plement. we propose to  employ the proposed estimate 
to derive a non-linear relationship between the width 
of the door and the sensor readings. Here the training 
sample is generated by actually recording the mea- 
surements while the sensor system is facing the door. 
Positive examples are generated if the door is wide 
enough for the robot, and the sensory system is fac- 
ing the door. Negative examples are generated when 
the door is not wide enough or the sensory system 
is not correctly facing a door (wide enough or not). 
The robot is manually located in various positions to 
generate the data. Consider the sensor array of a par- 
ticular side of the mobile robot. Here YI,Y~,Y~,Y~ 
correspond to the normalized distance measurements 
from the four ultrasonic sensors, and Y5 , Yo, Y7, Ys cor- 
respond to the Boolean measurements of the infrared 
sensors. X is 1 if the sensor system is correctly facing 
a wide enough door, and is 0 otherwise. The train- 
ing data  included 6 positive examples and 12 negative 
examples. The test data included 3 positive examples 
and 7 negative examples. The Nadaraya-Watson esti- 
mator predicted the correct output in all examples of 
test data. 0 

The classical Nadaraya-Watson estimator is shown to  
solve a generic sensor fusion problem where the under- 
lying sensor error densities are not known but a sample 
is available. In particular, by employing Haar kernels 
this estimator has been shorn to  yield finite sample 
guarantees and also to be efficiently computable. This 
sensor fusion problem is particularly useful in solving 
a number of robotics problems. We presented two 
simulation examples, and a robotics example involv- 
ing the detection of a door using arrays of ultrasonic 
and inbcared sensors. 

Several questions for future research arise in the 
present study. First, lower bounds for the required 
sample sizes will be useful in judging the tightness of 
the proposed sample size. Second, it would be of inter- 
est to identify other kernels for the Nadaraya-Watson 
estimator that  yield finite sample results and support 
efficient computation. Third, the effectiveness of this 
estimate for other robotics applications would be of 
future interest. 
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