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An important issue that arises in the automation of 
many security, surveillance, and reconnaissance tasks 
is that of monitoring, or observing, the movements of 
targets navigating in a bounded area of interest. X 
key research issue in these problems is that of sen- 
sor placement - determining where sensors should be 
located to maintain the targets in view. In complex 
applications of this type, the use of multiple sensors 
dynamically moving over time is required. In this pa- 
per, we investigate the use of a cooperative team of 
autonomous sensor-based robots for multi-robot ob- 
servation of multiple moving targets. We focus pri- 
marily on developing the distributed control strategies 
that allow the robot team to attempt to  maximize the 
collective time during which each object is being ob- 
served by at least one robot in the area of interest. Our 
initial efforts in this problem address the aspects of 
distributed control in homogeneous robot teams with 
equivalent sensing and movement capabilities working 
in an uncluttered, bounded area. This paper first for- 
malizes the problem, discusses related work, and then 
shows that this problem is NP-hard. We then present a 
distributed approximate approach to solving this prob- 
lem that combines low-level multi-robot control with 
higher-level control. The low-level control is described 
in terms of force fields emanating from the targets 
and the robots. The higher level control is presented 
in the ALLIANCE formalism, which provides mecha- 
nisms for fault tolerant cooperative control, and allows 
robot team members to adjust their lowlevel actions 
based upon the actions of their teammates. We then 
present the results of the implementation of portions 
of our approach, both in simulation and on physical 
robots. 

1 Introduction 
An important issue that arises in the automation of 

many security, surveillance, and reconnaissance tasks 
is that of monitoring, or observing, the movements of 
targets navigating in a bounded area of interest. A key 
research issue in these problems is that of sensor place- 
ment - determining where sensors should be located 
to maintain the targets in view. In the simplest ver- 
sion of this problem, the number of sensors and sensor 
placement can be fixed in advance to ensure adequate 
sensory coverage of the area of interest. However, in 
more complex applications, a number of factors may 
prevent fixed sensory placement in advance. For ex- 

amdfe, there may be little prior information on the 
location of the area to  be monitored, the area may 
be sufficiently large that economics prohibit the place- 
ment of a large number of sensors, or the area may not 
be physically accessible in advance of the mission. In 
the general case, the combined coverage capabilities of 
the available robot sensors will be insufficient t o  cover 
the entire terrain of interest. Thus, the above con- 
straints in an application require the use of multiple 
sensors dynamically moving over time. 

In this paper, we investigate the use of a cooperative 
team of autonomous sensor-based robots for applica- 
tions in this domain. We focus primarily on developing 
the distributed control strategies that  allow the team 
to attempt to  minimize the total time in which tar- 
gets escape observation by some robot team member 
in the area of interest. Of course, many variations 
of this dynamic, distributed sensory coverage problem 
are possible. For example, the relative numbers and 
speeds of the robots and the targets t o  be tracked can 
vary, the availability of inter-robot communication can 
vary, the robots can differ in their sensing and move- 
ment capabilities, the terrain may be either enclosed or 
have entrances that allow objects to  enter and exit the 
area of interest, and so forth. hlany other subproblems 
must also be addressed, including the physical tracking 
of targets (e.g. using vision, sonar, IR, or laserrange), 
prediction of target movements, multi-sensor fusion, 
and so forth. Thus, while our ultimate goal is t o  de- 
velop distributed algorithms that  address all of these 
problem variations, we first focus on the aspects of 
distributed control in homogeneous robot teams with 
equivalent sensing and movement capabilities working 
in an uncluttered, bounded area. 

Section 2 defines the multitarget observation prob- 
lem of interest in this paper, followed by a discussion of 
related work in section 3. We then note the difficulty 
of the defined problem in section 4. Section 5 describes 
our approach, discussing each of the subcomponents of 
the system. Section 6 describes the implementation of 
portions of our approach on both a simulated and a 
physical robot team of four Nomad robots. Finally, 
we offer concluding remarks in section 7, as well as 
directions of continuing and future research. 

2 Problem Description: CMOMMT 
The cooperative multi-robot observation of multiple 

moving targets (or CMOMMT for short) problem is 
defined as follows. Given: 
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S : 

R : 

a two-dimensional: simple polyhedral 
spatial region, with entrances/exits 
a team of M robots with 360° field of view 
observation sensors, noisy and of limited range 

is located within region S at time t )  
Define an iM x N matrix Aij(t), where 

1 

0 otherwise 

if robot T i  is monitoring target o j ( t )  
in S at time t 

We further define the logical OR operator over a 
vector H of IC elements as: 

1 if there exists an i such that hi = 1 (I l t z j  = { 0 otherwise . 
i=l  

We say that a robot is monitoring a target when the 
target is within that robot’s observation sensory field 
of view. Then, the goal is to  maximize: 

over time steps At under the assumptions listed below. 
In other words, the goal of the robots is to  maximize 
the collective time during which each object in S is 
being monitored by at least one robot during the mis- 
sion from t = 0 to’t = T. Note that we do not assume 
that 0 t ’s membership is known in advance. 

ing: Define sensor-coverage (rj) 
as the area visible to  robot Ti ’s observation sensors, for 
rj E R. Then we assume that, in general, 

U sensor-coverage (ri) << S. 

That is, the maximum area covered by the observation 
sensors of the robot team is much less than the total 
area to be monitored. This implies that fixed robot 
sensing locations or sensing paths mill not be adequate 
in general, and that, instead, the robots must move 
dynamically as targets appear in order to  maintain 
observational contact with them and to  maximize the 
coverage of the area S. 

In a 66 ressing this problem, we assume the follow- 

riER 

We further assume the following: 
0 The robots have a broadcast communication 

mechanism with bandwidth of order O(mn) (for 
rn robots and n targets) that allows them to talk 
with each other within the area S. 
For all ~i E R and for all o j ( t )  E 0( t ) ,  

where maz-w(a) returns the maximum possible 
velocity of entity a, for a E R U 0(t) .  

0 Objects in 0 can enter and exit region S through 
distinct entrances on the boundary of S. 

0 The robot team members share a known global 
coordinate system. 

In the general case, the observation sensor on each 
robot is of limited range and is directional (e.g., a cam- 
era), and can only be used to observe targets within 
that sensor’s field of view. However, to  simplify the 
problem initially, we report here the results of the case 
of an omni-directional 2D sensory system (such as a 
ring of cameras or sonars), in which the robot sensory 
system is of limited range, but is available for the en- 
tire 360’ around the robot, as depicted in figure 1. 

3 Related Work 
Research related to  the multiple target observation 

problem can be found in a number of domains, in- 
cluding art gallery and related problems, multitarget 
tracking,, and multi-robot surveillance tasks. While a 
complete review of these fields is impossible in a short 
paper, we will briefly outline the previous work that  is 
most closely related to  the topic of this paper. 

The work most closely related to  the CMOMMT 
problem falls into the category of the art gallery and 
related problems [ll], which deal with issues related 
to  polygon visibility. The basic art gallery problem is 
to  determine the minimum number of guards required 
to  ensure the visibility of an interior polygonal area. 
Variations on the problem include fixed point guards 
or mobile guards that can patrol a line segment within 
the polygon. Most research in this area typically uti- 
lizes centralized approaches to  the placement of sen- 
sors, uses ideal sensors (noise-free and infinite range), 
and assumes the availability of sufficient numbers of 
sensors to  cover the entire area of interest. Several au- 
thors have looked at the static placement of sensors for 
target tracking in known polygonal environments (e.g., 
141). These works differ from the CMOMMT problem, 
in that our robots must dynamically shift their po- 
sitions over time to ensure that as many targets as 
possible remain under surveillance, and their sensors 
are noisy and of limited range. 

Sugihara et  al. [15] address the searchlight schedul- 
ing problem, which involves searching for a mobile 
“robberY: (which we call target) in a simple polygon by 
a number of fixed searchlights, regardless of the move- 
ment of the target. Their objective is t o  determine 
whether a search schedule exists, given a polygon and 
the locations of the searchlights. They develop certain 
necessary and sufficient conditions for the existence of 
a search schedule in certain situations, under the as- 
sumption of a single target, no entrances/exits, and 
fixed searcher positions. 

Suzuki and Yamashita [16] address the polygon 
search problem, which deals with searching for a mo- 
bile target in a simple polygon by a single mobile 
searcher. They examine two cases: one in which the 
searcher’s visibility is restricted to  k rays emanating 
from its position, and one in which the searcher ccan 
see in all directions simultaneously. Their work as- 
sumes that the searcher has an infinite sensory range, 
that the target cannot enter or exit the polygon after 



0 =robot 
A =object to be monitored 

0 = field of view of robot 

-1 = entrancdexit 

Figure 1: 
directional 2D robot sensors. 

The problem depicted in terms of omni- 

the start of the problem, and that  only one searcher is 
available. 

Another large area of related research has addressed 
the problem of multitarget tracking (e.g. [ l ,  3, 2, 71). 
This problem is concerned with computing the trajec- 
tories of multiple targets by associating observations of 
current target locations with previously detected tar- 
get locations. In the general case, the sensory input 
can come from multiple sensory platforms. Our task in 
this paper differs from this work in that our goal is not 
to calculate the trajectories of the targets, but rather 
to find dynamic sensor placements that minimize the 
collective time that any target is not being monitored 
(or observed) by at least one of the mobile sensors. 

Finally, a number of authors have developed sys- 
tems for multi-robot surveillance (e.g., [5, 6, 171). 
However, this related research in multi-robot surveil- 
lance does not deal with the issue of interest in this 
paper - the dynamic placement of mobile sensors in 
areas in which targets may enter and exit. 

, 

4 Problem Difficulty 
The CMOMMT problem outlined above is a diffi- 

cult problem; we now show that it is NP-hard. Let 
us consider the simpler, static, problem of determin- 
ing the optimal placement of robots at one instant in 
time, given that we know the location of all targets. 
The goal is to determine the optimal placement of the 
robots to ensure that the maximum number of targets 
lie within the sensory range of some robot. We assume 
that the robots have homogeneous sensing capabili- 
ties, and that the targets are stationary. We can then 
show NP-hardness by reduction to  the well-known NP- 
complete problem VERTEX COVER [SI. We sketch 
the idea of the proof below. 

The VERTEX COVER problem is as follows: given 
a graph G = (V,E) and a positive integer K 51 V I, 
determine whether there is a vertez cover of size K or 

less for G that is, a subset VI C V such that I VI 15 If' 
and, for each edge {u,v} E E, at least one of u and 
belongs to  V. We then liave the following: 

Theorem 1 The CMOMMT (cooperative multi-robot 
observation of multiple moving targets) problem is NP- 
hard in the number of targets und the number of robots. 

Proof Sketch: 
By reduction to VERTEX COVER Let Pi and Pj 

be the Cartesian (2, y) point locations of targets oi(t) 
and o j ( t ) ,  and d be the sensor range of the robots. 
Define: 

v = 
E = 

Pk I O k ( t )  E O(t)} 
{Pi, P.) I the distance between oi(t)  

and oj  t )  at time t is less than 2d 
for oi(t \ E O(t ) }  

Then it can be shown that the CMOMMT problem 
is reducible to  the VERTEX COVER problem, where 
G = (V, E )  as defined above, and K = M, where ill 
is the number of robots. The solution to VERTEX 
COVER, T I ' ,  would give the optimal positions for the 
iW robots in CMOMMT. 0 

t 

Thus, since finding the optimal solution is computa- 
tionally prohibitive, we instead investigate an approx- 
imate solution. 

5 Approach 
Figure 2 shows the overall design of the control sys- 

tem within each robot team member. This design 
is based upon the ALLIANCE architecture [12, 131, 
which facilitates the fault tolerant cooperative con- 
trol of multiple robot teams. We now provide a brief 
overview of ALLIANCE, and then describe how we use 
this approach to  develop the overall control system for 
robots performing the CMOMMT application. 

The ALLIANCE software architec- 
ture is a behavior-based, fully distributed architecture 
that utilizes adaptive action selection to  achieve fault 
tolerant cooperative control. Robots under this archi- 
tecture possess a variety of high-level functions (mod- 
eled as behavior sets) that they can perform during 
a mission, and must at all times select an appropri- 
ate action based on the requirements of the mission, 
the activities of other robots, the current environmen- 
tal conditions, and their own internal states. Since 
cooperative robotic teams often work in dynamic and 
unpredictable environments, this software architecture 
allo.rvs the team members to  respond robustly and re- 
liably to  unexpected environmental changes and mod- 
ifications in the robot team that may occur due to  me- 
chanical failure. the learning of new skills, or the addi- 
tion or removal of robots from the team by human in- 
tervention. This is achieved through the interaction of 
mathematically modeled motivations of behavior, such 
as impatience and acquiescence, within each individ- 
ual robot. These motivations allow robots to  take over 
tasks from other team members if those team members 
do not demonstrate their ability -through their effect 
on the world - to accomplish those tasks. Similarly, 
it allows a robot to  give up its own current task if 

. 
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Figure 2: Control within an individual robot for the 
CMOMMT mission, in the ALLIANCE formalism. 

its sensory feedback indicates that adequate progress 
is not being made to accomplish that task. The pri- 
mary mechanism for achieving adaptive action selec- 
tion in this architecture is the motivational behavior. 
The output of a motivational behavior is typically the 
activation level or importance weighting of its corre- 
sponding behavior set, represented as a non-negative 
number. The current level of activation controls the 
output of its corresponding behavior set. 

In the CMOMMT problem, each robot has two 
highest-level behavior sets: “Observe Known, Nearby 
Targets” and “Seek Out Targets”. The ”Observe 
Known, Nearby Targets” behavior set controls the 
robot’s movement in relationship to  other nearby 
robots and nearby targets. It is responsible for en- 
suring that the current robot maintains a viewpoint 
on the proper targets, dependent upon other robots’ 
movements and the positions of the targets. The ‘Seek 
Out Targets” behavior set allows robots to  intelligently 
search the area S when no objects are nearby. In fig- 
ure 2, the motivational behaviors are indicated by the 
small rectangle attached at the top of the behavior 
sets. 
5.1 Observe Known, Nearby Targets 

The “observe known, nearby targets” behavior 
set is responsible for controlling the current robot’s 
movements to  maintain observation of certain targets 
nearby. These movements within S are based upon 
the movements of nearby targets and the actions of 
other robot team members. This part of the control 
scheme is modeled by a collection of lower-level mo- 
tivational behaviors, each of which is spawned auto- 
matically when a robot has become aware of a target 
nearby. The motivational behaviors in this subsystem 
are responsible for determining the weight, or impor- 
tance, of the current robot’s continued monitoring of 
target oi. If any target Oj leaves the current robot’s 
predictive tracking range, the corresponding motiva- 

tional behavior is terminated. The generated weights 
are then factored into the output of the “Observe ...,’ 
behavior set (described below) to  calculate the desired 
direction of motion of the current robot. This com- 
bination of information is modeled in figure 2 as the 
combine module. 

Subsections 5.1.1 and 5.1.2 describe how the local 
control information based upon robot arid target lo- 
cations is derived. Subsection 5.1.3 describes how the 
motivational behaviors derive the weights correspond- 
ing to each target. Subsection 5.1.4 discusses the com- 
bination of the lower-level and higher-level informa- 
tion. 

5.1.1 Target and Robot Detection 
Ideally, we would like robots to  be able to passively 
observe the actions of nearby robots and targets, to 
ascertain their current positions and velocities. Re- 
search fields such as machine vision have dealt exten- 
sively with this topic, and have developed algorithms 
for this type of passive position calculation. However, 
since the physical tracking and 2D positioning of vi- 
sual targets is not the focus of this research, we instead 
assume that robots use a global positioning system 
(such as GPS for outdoors, or the laser-based MTI 
indoor positioning system [9], which is in use at our 
CESAR laboratory) to  determine their own position, 
and communicate this information to  other robot team 
members. In our approach, robots do not store posi- 
tion information for robots that  are not relatively close 
(made explicit below). 

In addition to  robot position information, team 
members need to  determine the positions and veloci- 
ties of the targets within their own field of view. Since 
previous work [lo, 141, has shown that communica- 
tion and awareness of robot team member actions can 
significantly improve the quality of a distributed solu- 
tion for certain task domains, we supplement a robot’s 
knomled e of target movements gained from direct 
sensing 8e.g. from its cameras or sonar) with position 
and derived velocity information on target sighting 
that is communicated by other robot team members 
within a given communication range. Thus, targets 
can be one of two types: directly sensed or :‘virtually” 
sensed through predictive tracking. In our approach, 
each robot communicates to  its teammates the posi- 
tions and velocities of all objects within its own view 
(i.e. the virtual targets). However, a team member 
does not store position information for targets that are 
not within its own vicinity. Note that this approach 
requires the available communication bandwidth to be 
O(mn), for m robots and n targets. 

To clarify this idea, figure 3 depicts three ranges 
that are defined with respect to  each robot ri .  The in- 
nermost range is the sensing range of ~ i ,  within which 
the robot can use a sensor-based tracking algorithm 
to maintain passive contact with targets in its field 
of view. The middle range is the predictive tmckiny 
Tange of the robot r i ,  which defines the range in which 
targets localized by other robots T k  # ~i can affect ri7s 
movements. The outermost range is the communica- 
t ion range of the robot, which defines the extent of the 
robot’s communicated messages. Here, it is assumed 
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Figure 3: Definition of the sensing range, predictive 
tracking range, and communication range of a robot. 
Although the exact range values may change, we as- 
sume that the relative ordering of range distances re- 
mains the same. 

that the communication range covers the entire area 
S. For simplicity, we assume that the sensing, pre- 
dictive tracking, and communications ranges are the 
same, respectively, across all robot team members. 

When a robot receives a communicated message re- 
garding the location and velocity of a sighted target 
that is within its predictive tracking range, it begins a 
predictive tracking of that target’s location, assuming 
that the target will continue linearly from its current 
state. If the communicated information indicates that 
a target is within robot T ~ ) S  predictive tracking range, 
that information is held in memory and used as de- 
scribed in the following subsections. 

We assume that if the targets are dense enough that 
their position estimations do not supply enough infor- 
mation to disambiguate distinct targets, then exist- 
ing tracking approaches (e.g. [2]) should be used to  
uniquely identify each target based upon likely trajec- 
tories. 

5.1.2 Local Force Vector Calculation 
The local control of a robot team member is based 
upon a summation of force vectors which are attractive 
for nearby targets, and repulsive for nearby robots. 
Figure 4 defines the magnitude of the attractive forces 
of a target within the predictive tracking range of a 
given robot. Note that the robot is repelled from a 
target if it is too close (distance < d o l )  to that target, 
and it is strongly attracted to the target if the robot 
is nearby (distance < do*). Beyond a given distance 
do2, the attraction falls off linearly until the predicted 
tracking range is met, at which point the attraction 

Figure 5 defines the magnitude of the repulsive 
forces between robots. If the robots are too close to- 
gether (distance < d r l ) ,  they repel strongly. If the 

goes to  0. 

% I  Robot-Object 
0 .  

Distance between robot and object 

Figure 4: Function defining the magnitude of the force 
vector of nearby targets. 

Robot-Robot 

Figure 5: Function defining the magnitude of the force 
vector of nearby robots. 

robots are far enough apart (distance > d ~ p ) ,  they 
have no effect upon each other in terms of the force 
vector calculations. The magnitude scales linearly be- 
tween these values. 

As defined so far, the force vectors are equivalent 
for all objects, and for all robots. However, we need 
to  inject additional high-level control into the system 
to take into account more global information. This is 
modeled as predictive weights that  are factored into 
the force vector calculation, as described in the next 
subsection. 

5.1.3 High-Level Control via ALLIANCE 
One problem with using only force vectors is that of lo- 
cal minima. To help resolve some of these problems, we 
use higher-level control via motivational behaviors to  
differentially weight the contributions of each target’s 
force field on the total computed field. This higher- 
level knowledge is expressed in the form of two types 
of probabilities: the probability that  a given target ac- 
tually exists, and the probability that no other robot 
is already monitoring a given target. Combining these 
two probabilities helps reduce the overlap of robot sen- 
sory areas toward the goal of minimizing the likelihood 
of a target escaping detection. 

The probability that a target exists is modeled as a 
decay function based upon when the target was most 
recently seen, and by whom. In general, the probabil- 
ity decreases inversely with distance from the current 
robot. Beyond the predictive tracking range of the 
robot, the probability becomes zero. 

The probability that no other robot is already mon- 
itoring a nearby target is based upon the target’s po- 
sition and the location of nearby robots. If the target 
is in range of another robot, then this probability is 



generally high. However, we also incorporate a feal 
t,ure of “impatience’:, as modeled in the ALLIANCE 
framework, if a nearby robot does not appear to be sat- 
isfactorily observing its local targets. This impatience 
effectively reduces tlie probability that the other robot 
is already monitoring nearby targets. In more com- 
plex versions of the CMOMMT problem, robots could 
also learn about the viewing capabilities of their team- 
mates, and discount their teammates’ observations if 
that teammate has been unreliable in the past. 

The output of the motivational behavior corre- 
sponding to a given target is the product of the proba- 
bility that the target exists and the probability that no 
other robot is currently monitoring that target. These 
probabilities have the effect of causing a robot to  prefer 
the observation of certain targets over others. 

5.1.4 Combination of Local and Higher-Level 
Information 

The local force vectors are combined with the higher- 
level information, resulting in the commanded direc- 
tion of robot movement. This direction of movement 
for robot ri is given by: 

L N 
C ( F V 0 j  x PT(esistsj) x Pr(NTj)) + 
j = O  if1 

FVRi  

where FVOk is the force vector attributed to object 
o k ,  PT(ezistsk) is the probability that object Ok exists, 
N T k  is the probability that  object Ok is not already 
being tracked, and F V R ,  is the force vector attributed 
to robot T,. This movement command is then sent 
to the robot actuators to  cause the appropriate robot 
movements. 
5.2 Seek Out Targets 

When a robot does not detect any target nearby, the 
sum of the force vectors as described above will cause 
the robot to move away from its robot neighbors and 
then idle in one location. While this may be acceptable 
in some applications, in general, we mould like to have 
the robots actively and intelligently seek out potential 
targets in the area. In [l6], Suzuki and Yamashita dis- 
cuss search schedules for ’L30-searchers”, and define the 
derivation of these search schedules for certain special 
cases. An :‘m-searcher” is a mobile searcher that has a 
3G0° infinite field of view. A search schedule for an m- 
searcher is a path through a simple polygonal area that 
allows the searcher (or robot) to  detect a mobile “in- 
truder” (or target), regardless of the movements of the 
target. While clearly related to  the CMOMMT prob- 
lem, this earlier work makes a number of assumptions 
that do not hold in the CMOMMT problem: infinite 
range of searcher visibility, only a single searcher, only 
a single target, and an enclosed polygonal area which 
does not allow any targets to  enter or exit the area. 

In our future work, we intend to develop an au- 
tomated process that allows the robots to generate 
the appropriate search schedule for a given area based 
upon this earlier work of Suzuki and Yamashita. Our 
current approach, however, simplifies the task by sup- 
plying the robot team members with a human-derived 

search path through the area S. In practice, the deriva- 
tion of the m-search schedule by hand through the 
polygonal areas that define the interiors of most build- 
ings appears to  be fairly straiglitforward under the as- 
sumptions of [16]. More challenging is dealing with 
multiple targets, multiple robots, and entrances/exits 
in the polygonal area. We leave this task to  future 
work. 

Thus, when no targets are detected by a given 
robot, that robot moves along the searcli path look- 
ing for targets, paying special attention to  entrances 
for the appearance of new targets. To prevent the 
robot’s path from being predictable to  a knowledge- 
able target, the robot randomly selects a direction to  
traverse at each intersection in the search path. If two 
robots encounter each other moving in the opposite di- 
rection along the search path, they reverse directions. 
As soon as targets are detected along the search route, 
the highest level motivational behaviors mill switch the 
robot from seek mode to  observe mode. 

6 Experiments 
Our approach to  the cooperative multi-robot mon- 

itoring problem has been implemented both in sim- 
ulation and on a team of four physical robots. The 
multi-robot simulator in our laboratory allows us to  
test and debug our algorithms in simulation prior t o  
executing them on the actual robots. The code gener- 
ated during the simulation can then be ported directly 
to  the robots for experimentation in the “real world” 
with relatively minor changes. 

In the initial phase of research in this problem, 
which concentrates on the cooperative control issues 
of distributed tracking, we utilize an indoor global po- 
sitioning system as a substitute for vision- or range- 
sensor-based tracking. Under this approach, each tar- 
get t o  be tracked is equipped with an indoor global 
position sensor, and broadcasts its current x,y  po- 
sition via radio to  the robots within communication 
range. Each robot team member is also equipped with 
a positioning sensor, and can use the targets’ broad- 
cast information to  determine the relative location of 
nearby targets. 

Figures 6 and 7 illustrate two examples of the im- 
plementation of portions of our approach - namely, 
the local force-field control - on the simulated robots. 
In these figures, the black points represent targets, and 
the gray points represent robots. 

Figure 6 shows a case where two targets are being 
tracked by two robots. The first frame begins with the 
two targets heading towards each other, and each of 
the robots ”following” one of the targets. In the second 
frame, the objects have passed each other, changing di- 
rections in order to avoid each other, and the robots 
meet in the middle. .4t this point the repulsive force 
between tlie two robots takes precedence and pushes 
them away from each other, causing them to swap tar- 
gets. In the final two frames, the robots continue to  
follow the new targets. 

Figure ’7 shows a case where the targets stay rel- 
atively distributed throughout the simulation. The 
robots tend to  hover around the center of the mass 
of targets; they keep their distance from one another 
throughout the simulation, due to  the repulsive forces. 



Figure 6: Two targets tracked by two robots perform- 
ing a swap. 

The local control subsystems have been ported to, 
and successfully demonstrated on, our team of 4 mo- 
bile robots. Figure 8 shows an example of the robot 
implementation. In these experiments, we typically 
designated certain robots to  be targets, and other 
robots as observers. Since we are not dealing with the 
issues of visual tracking of objects in our current work, 
using some robots as targets allowed us to  take advan- 
tage of the global positioning system on the robots to  
pcrform “virtual” tracking. Thus, the rgbots acting 
as targets were programmed to broadcast their cur- 
rent location to the robot team; this information could 
then be used by the observers to  calculate their de- 
sired movements. TVe programmed the robots acting 
as targets to  move in one of two ways: movements 
based on human joystick commands, or simple wan- 
dering through the area of interest. In figure 8, the 
robot targets are indicated by the triangular flags. 

The first frame in figure 8 shows the arrangement 
of the observers and targets at the very beginning of 
the experiment. The second frame shows how the two 
observers move away from each other once the experi- 
ment is begun, due to  the repulsive forces between the 
observers. In the third frame, a human joysticks one of 
the robot targets away from the other target and the 
obscrvers. As the target is moved, the two observers 
also move in the same direction, due to the attractive 
forces of the target that is moving away. However, if 
the target exits the area of interest, S, as illustrated in 
the fourth frame, then the observers are no longer in- 
fluenced by the moved target, and again draw nearer 
to the stationary target, due to  its attractive forces. 
Notc that throughout the example, the observers keep 
away from each other, due to  the repulsive forces. 

In continuing work, we are implementing the entire 

Figure 7: When targets stay relatively distributed, the 
robots hover around the centroid. 

Figure 8: Results of robot team performing task us- 
ing summation of force vectors. The robots with the 
triangular flags are acting as targets, while the robots 
without the flags are performing the distributed obser- 
vation. 



control scliematic for CMOMMT on both simulated 
and physical robot teams. 

7 Conclusions and Future Work 
Many real-world applications in security, surveil- 

lance, and reconnaissance tasks require multiple tar- 
gets to  be monitored using mobile sensors. We have 
shown that the general version of this problem is 
NP-complete, and thus intractable. We then pre- 
sented a distributed approach that is based upon high- 
level control provided through the ALLIANCE formal- 
ism, combined with lower-level attractive and repulsive 
force fields, and a target seeking system. Empirical in- 
vestigations of the local force-field portion of our pro- 
posed cooperative control approach on both simulated 
and physical robot teams have been presented. 

Continuing and future work includes completing the 
implementation on both the simulated and physical 
robot teams and the development of an automatic gen- 
eration of co-search schedules. We also desire to  prove 
the effectiveness of our approach, as compared to  the 
optimal solution. Additional related research includes 
extending the work to  apply to  polygons with holes, to 
robots that differ in their sensing and movement capa- 
bilities, and addressing the subproblems of the physi- 
cal tracking of targets (e.g. using vision, sonar, IR, or 
laserrange) and the prediction of target movements. 
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