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Abstract

Part manipulation is an important but also time-
consuming operation in industrial automation. Recent
work explores alternative solutions to the mechanical
parts feeders which have been traditionally used to sort
and orient parts for assembly. One of the proposed al-
ternatives is the use of programmable vector fields. The
fields are realized on a plane on which the part is placed.
The forces exerted on the part’s contact surface trans-
late and rotate the part to an equilibrium orientation. It
has already been demonstrated that certain vector fields
can be implemented in the microscale with MEMS ac-
tuators arrays and in the macroscale with transversely
vibrating plates. Although current technology is still
limited, the dexterity that programmable vector fields
offer has prompted researchers to further explore their
capabilities. This paper presents a vector field that can
simultaneously orient and pose most parts into two sta-
ble equilibrium configurations. The equilibrium config-
urations are easily computed a priori given the part to
be oriented. Our analysis makes no assumptions about
the shape of the part or its connectivity except that it
moves as a rigid body. The proposed vector field offers
the great advantage of stability of the equilibrium con-
figurations under small perturbations of the part which
is key for the orientation of toleranced parts.

1 Introduction

Part manipulation is an important but also time-
consuming operation in industrial automation. Parts
and, in particular, small parts arrive at manufacturing
sites 1n boxes and they need to be sorted and oriented
before assembly. Traditionally part orientation has been
performed with vibratory bowl feeders [19]. These de-
vices are customly designed for the orientation of a single
part or of a small number of parts and rely on mechanical
filters to reject parts in unwanted orientations. Despite
their widespead use, vibratory bowl feeders have several
disadvantages [3]: they have to be redesigned when the
geometry of the part changes, may damage parts, etc.

Recent work investigates alternative ways for feeding
parts in assembly workcells. Parts feeders that are pro-
grammed, rather than mechanically modified, offer an
attractive solution since they can be used for a wide va-
riety of parts [1, 5, 8, 11]. Practical considerations fa-
vor feeding methods that require little or no sensing,
employ simple devices, and are as robust as possible
[1,3,5,7,8,9, 11, 15, 20].

One of the proposed alternatives is the use of pro-
grammable vector fields [4, 5, 6, 14]. The basic idea is
the following: the field is realized on a planar surface on
which the part is placed. The forces exerted on the con-
tact surface of the part translate and rotate the part to
an equilibrium configuration. The manipulation requires
no sensing. Current technology permits the implementa-
tion of certain vector fields in the microscale with MEMS
actuator arrays [4, 5, 6] and in the macroscale with trans-
versely vibrating plates [3, 5].

The flexibility and dexterity that programmable vec-
tor fields offer has led researchers to investigate the ex-
tent to which these fields can be useful. The work in
[4, 5, 6] analyzes the properties of vector fields that are
suitable for sensorless manipulation and proposes novel
manipulation strategies. Independently, [14] explores the
idea of a programmable array of microactuators. A open
question in [5] is to design a vector field that can act as a
“Universal Parts Feeder”, that is a vector field in which
most parts have one stable equilibrium.

This paper presents a vector field that induces two
stable equilibria for most parts. Our result represents
a considerable improvement over previously considered
vector fields, which, in the best case, induced O(kn) equi-
libria for polygonal parts with n vertices and bisectors
which can cross at most k edges [5].

We show that “asymmetric” parts (see discussion in
section 3.4) have only two stable equilibria in vector
fields that arise from elliptic potentials. More impor-
tantly, these equilibria differ by «. The orientation 1s
sensorless and nonprehensile as i1s the case with all pro-
grammable vector fields. We make no assumptions about
the shape of the part to be manipulated nor its connec-
tivity. The only assumption made is that the part has



a surface in contact with the vector field and also that
the part is rigid: it may consist of multiple bodies as
long as the bodies move as if they were rigidly attached
to each other. With our method, the equilibrium con-
figurations of a part can be computed a priori with nu-
merical methods or, in some cases, analytic calculations.
Furthermore, we show that our vector field has the great
advantage of stability of the induced equilibrium config-
urations under small perturbations of the part. This is
important in practice since most parts are manufactured
within tolerances.

The rest of the paper is organized as follows. Section
2 puts our work in context by reviewing related research
on flexible parts feeding. Section 3 describes a vector
field arising from an elliptic potential that orients most
parts into two stable equilibria. Our proof demonstrates
how to calculate a priori the equilibrium configurations
of a part given its shape. In Section 4 we discuss the im-
plications of our results for part orientation and highlight
some properties of our vector field that may contribute to
its practical implementation. We finally analyze quan-
titatively the behavior of the proposed vector field for
toleranced parts and demonstrate its stability.

2 Related Work

The design of flexible parts feeders has been an active
area of research during the last decade. A programmable
parts feeder for planar parts whose convex hull is a
polygon is presented in [11]. The feeder is essentially
a parallel-jaw gripper. The underlying algorithm com-
putes the shortest sequence of actions to orient a part in
O(n?) time, n being the vertices of the convex hull of the
part. The produced plan has O(n) gripping operations
and the orientation i1s done up to symmetries of the con-
vex hull of the part. The algorithm has been generalized
to parts that have piecewise algebraic convex hulls [17].

Nonprehensile manipulation techniques are frequently
used for the design of parts feeders. Nonprehensile ma-
nipulation exploits task mechanics to orient parts with-
out grasping. Examples of parts feeders that rely on this
principle include the one joint robot that manipulates
parts on a conveyor [1], and the two palm manipula-
tion techniques in [8]. For references to related work see
[8, 15]. Parts feeders that have simple constraint sur-
faces above a conveyor have also been investigated [20],
while detailed simulations have been recently performed
for the design of parts feeders [2, 16].

Programmable vector fields demonstrate another ex-
ample of nonprehensile manipulation. Certain vector
fields have been implemented in the microscale with
MEMS actuator arrays [4, 5, 6], and in the macroscale
with transversely vibrating plates [3]. For pointers to the

different options offered by current technology for imple-
menting microarrays see [5, 13]; limitations are briefly
discussed in [5]. Dynamic simulation of specific microar-
rays is peformed in [18].

Our work is based on [4, 5, 6]. These papers in-
vestigate in great extent the concept of programmable
vector fields and and give a thorough analysis of sev-
eral manipulation strategies. In particular, the authors
describe (a) an equilibrium analysis for programmable
“squeeze” fields showing that these fields induce O(kn?)
stable equilibria for polygonal parts (n denotes the poly-
gon vertices and k is the maximum number of edges that
a bisector can cross), (b) lower bounds displaying what
programmable vector fields cannot do, (c) a classification
of fields that are well-behaved for manipulation, and (d)
an equilibrium analysis for a combination of “squeeze”
and “radial” fields where 1t is shown that the number of
equilibria they induce is O(kn) with n and k as defined
above. The introduction of radial fields i1s a novel con-
cept and it allows, as described in [4, 5], to orient and
pose a part in O(kn) steps by extending the techniques
in [11]. Last but not least, the same papers define design
criteria for implementing well-behaved vector fields and
develop manipulation grammars which reveal the trade-
offs between the complexity of the implemented vector
fields and resulting manipulation strategies.

The dexterity and flexibility that programmable vec-
tor fields seem to offer has prompted a number of inter-
esting questions regarding the capabilities of these fields
for parts manipulation [5]. These questions are valid in
conjunction with the underlying technology but are also
independent of 1t, in the sense that the capabilities of
vector fields need to be investigated thoroughly as they
can influence design decisions for their implementation.

In this paper we partially address one of the ques-
tions in [5], namely does there exist a vector field that
can orient parts to one stable equilibrium. The vector
field we propose arises from an elliptic potential and ori-
ents “asymmetric” parts into two stable equilibria which
differ by m. This result was initially sketched in [12].
Borrowing our terminology from physics, we refer below
to parts as “mass” distributions over R2. We also use the
word “vector field” and “force field” interchangeably.

3 Equilibrium Configurations in
Elliptic Potential Fields

Let w : R?2 — R be a “mass” distribution function. For
our analysis we require that w(z,y) > 0, for z,y € R,
and W = [i,w(z,y)dzdy < co. Let us also define

)T = o

= RQ(I,y)Tw(r,y)drdy (1)

c = (cq, ¢y



the “center of mass” of the distribution w, and consider
the following quantities of w:

Smn = Smn (W) = / ™y w(z,y) dz dy. (2)
R2

Only s11, s90 and sgs will be relevant in our discussion
and we assume that they are finite.

We investigate the conditions for equilibrium for the
mass distribution w in the presence of a force field F :
R? 5 R2 It is assumed that the force field F is realized
in a plane in such a way that the force exerted on a
domain Q C R? is Jo Fz,y)w(z,y) dx dy.!

We are interested in knowing which configurations of
a given mass distribution in a fixed force field (of a very
specific type) give rise to equilibrium. For convenience
we assume that the distribution is given at an initial
position where ¢ = 0 and, from now on, we use the
notation r = (z,y)". By “a configuration of w(r)” we
mean a mass distribution of the type w(Apr + t), where
the matrix Ay is rotation by € [0,27) and t € R? is a
translation vector. The force field F under consideration
will be chosen so that the number of equilibria of w in
F, i.e. the number of the parameters (,t) that specify
the equilibrium configurations, is as small as possible.

3.1 Equilibrium Conditions

For a mass distribution to be in equilibrium we require
that (a) the total force exerted on the distribution is zero
and (b) the total moment about, say, the origin is zero.
That is, we require that the following two equations hold:

/F(r)w(r) dzdy =0, (3)

/F(l) xrw(r) dedy =0, (4)

where from now on all integrals extend over R2.

3.2 Elliptic Potential Fields
With hindsight we consider a force field of the type

F(l‘,y) = (_ami_ﬁy)ﬁ (5)

where a and 3 are two distinct positive constants. Figure
1 displays one such force field with & = 1 and 8 = 2.
Note that this vector field is the negative gradient of the
elliptic potential f(z,y) = Sa* + %yQ. This potential
is plotted in Figure 2, for « = 1 and g = 2. For a
detailed discussion on the usefulness of potential fields
for manipulation tasks see [5].

LIf w is the support function for the part, then our assumption
is that the dynamics of a part moving in a force field is governed by
first order dynamics. This hypothesis is widely made when force
fields are used for part orientation [3, 5].
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Figure 2: Elliptic potential for « = 1 and § = 2.

3.3 Force Equilibrium
If

Cy =

1

W/xw(:v,y) dz dy,
1

& = yw(z,y) dz dy

are the coordinates of the center of mass of w (see (1)
above), the total force exerted on w, given by the left
hand side of (3), is equal to

(—aWeg, —Wey).

Condition (3) is thus equivalent to the center of mass of
the distribution w being equal to 0. But the center of
mass of the general distribution w(Agr+t) in our class is
clearly t, therefore, in looking for equilibrium configura-
tions of w, one only needs to consider the configurations
of the type w(Agr).

3.4 Force and Moment Equilibrium

Having established that all distributions of the type
w(Agr) satisfy condition (3) we now proceed to the in-
vestigation of condition (4). Tt will turn out that, for



“most” mass distributions w and for whatever distinct
positive values of a and 3, there are exactly 4 values of

6 for which (4) holds.
. . —sinf
The matrix Ay is equal to ( snf  cosf ) .
Making the change of variable (u,v)T = A_g(z,y)" and
renaming the variables u, v again as z,y, the total mo-
ment of the mass distribution w(Agr) becomes

cos 8

M = /F(l) x rw(Agr) do dy
= /F(A_gl‘) x (A_gr)w(r) dedy.

The cross product of two vectors vi = (z1,y1) and vy =

i j k
(z2,y2) is defined as vi x vo = | 1y 0 | and the
T2 Y2 0

above equation gives after calculations:

SII;ZH /(y2 — e w(e,y) de dy) Tk

(8 — a) cos?H/a:yw(a:,y) de dy) k. (6)

M = (3 a)

Thus, since o # 3, we have M = 0 if and only if

Qsin%—}-su cos 26 = 0. (7)

Equivalently, we want the vectors

1
(cos 26,sin20) and (s11, 5(502 — $20))

to be orthogonal. We now have to distinguish two cases.

“SYMMETRY”: s11 = 0 and sgy = s9g.

Clearly in this case (7) is satisfied for all § € [0, 27) and
we have equilibrium regardless of orientation. When a
part is in equilibrium for all #, we say that orientation
fails for the part.

“ASYMMETRY”: s11 # 0 or sgz # Sa20-

When 6 goes from 0 to 2w the vector (cos26,sin26)
traverses the unit circle twice.  The two vectors,
(cos 20,sin20) and (s11, %(502 — 830)) will be orthogo-
nal for exactly 4 values of #, say 6, = 0y, 65 = 6y + ,
03 =00+ 5, and 0, = 0o + 37” In addition, either the
first pair of them is stable and the second unstable, or
vice versa. The reason is that the sign of M in (6) de-
termines the direction in which moment M rotates the
mass distribution. If this sign is positive, M rotates the
mass distribution counter-clockwise, else the rotation is
done clockwise (see also [5]). While (cos 26, sin 26) is ro-
tated around the vector (s11, %(302 — $30)), the sign of
the left hand side of (7) changes after the two vectors at-
tain an orthogonal orientation. Hence, we observe sign

changes of the left hand side of (7) for the 4 values of
6 given above. Let #; and f3 be the roots of (7) for
which the sign of its left hand side changes from a posi-
tive value to a negative value while moving in a counter-
clockwise direction. If @ < b then 6; and 85 indicate sta-
ble equilibrium configurations of the mass distribution,
since M will force the mass at the same equilibrium after
a small rotational perturbation. In this case, f3 and 6,
are unstable configurations since after a small perturba-
tion around them, M will rotate the mass away from 63
or 64, to one of 8y or #5. Similarly, if @ > b then 63 and
4 are stable configurations while §; and 5 are unstable.

In summary we have proved the following. (The “cen-
ter of mass” is defined in (1).)

Theorem 1 Let w : R? = R be a nonnegative “mass”
distribution with finite s;; with 143 < 2 and whose “cen-
ter of mass” is at 0, and let F(z,y) = (—az,—Py), with
aZ B, a>0,0>0, be the underlying force field.
“SYMMETRY” : If s11 = 20 — So2 = 0 the “mass” distri-
bution w(Agr + t) is at (force and moment) equilibrium
whenever t = 0.

“ASYMMETRY” : Otherwise, the distribution w(Asr + t)
1s wn equilibrium only when t = 0 and for exactly 4 dis-
tinct values of 6 € [0,2m). These 4 values of § are T
apart and only 2 of them, say 6y and 6y + 7, represent
stable equilibria, the others, 0o + 5 and 6y + 37” being
unstable.

4 Part Orientation

4.1 Prediction of Equilibria

In practice, we seek to orient a part of finite shape with
the use of the force field described in the previous section.
If w(z, y) is the support function of the part, then all the
requirements of Theorem 1 are satisfied. It is also very
easy to compute with numerical techniques the values of
$11, S20, and sgz and predict, for a given part, whether it
will have 2 stable equilibria in the force field considered.
The equilibrium orientations can be calculated using (7).
Note that the equilibrium configurations of a part are
independent of & and 3, as long as a # 3.

In many cases it is clear that a part will have many
equilibrium orientations. For example, consider a planar
part that is a regular n-gon. This part will be at equilib-
rium when its “center of mass”, as defined in (1), is at 0
no matter what its orientation is. The “center of mass”
in this case is the center of its n-gon surface. Suppose
now that the part had only two equilibria #y and 6y + 7
and that the part is at equilibrium 6y. If we rotate the
part by 27” then we should have an equilibrium again,
due to the geometrical symmetry of the part. Hence,
since this part can not have only two equilibrium ori-



entations it must be in equilibrium for any value of @,
according to Theorem 1. Indeed, for this part, it can be
shown that s11 = s99 — 592 = 0.

Importantly, our analysis provides a way to take into
account properties of the part. In this work we treat w as
the support function of the part. But if, for example, the
friction coefficient varies over the contact surface of the
part and a friction model was realistic for this problem,
then w can be used to encode friction coefficients. Or,
if there was a simple relation between the weight of the
part above (z,y) and the force exerted at (z,y), then
again w can be used to represent this relation. We used
w in our calculations to emphasize the generality of our
results.

4.2 Stability and Toleranced Parts

It is evident that performing part orientation using the
force field (5) offers the great advantage of stability under
small perturbations of the part. This is crucial for prac-
tical applications since parts are manufactured within
tolerances (see Figure 3). Manipulating and assembling
toleranced parts is a difficult task and it is only recently
that it has been addressed formally [13].

We define a “symmetry coefficient” that measures how
close a part is to be “symmetric” in the sense that “sym-
metry” 1s defined in Theorem 1. We then consider tol-
eranced parts (or distributions w and w') and derive
bounds on how far apart their stable equilibria can be
when the parts are oriented with our fields. To our
knowledge, this is the first time that such analysis is
attempted.

As our results in Section 3 show, the stable equilib-
ria, say g, #g + 7, depend continuously on the quantities
$11, So2, S20 of the distribution w, namely

By = % + %arctan 502 7 520
We now analyze this dependence quantitatively. Let the
“symmetry coefficient” of w be defined by

2811

p = |s02 — sa0]” + [2811]%

This measures how close the distribution w is to being
“symmetric” with the definition of “symmetry” given in
Theorem 1. The case of “symmetry” (when orientation
fails) is attained at p = 0. The larger the coefficient p
is the more stable the orientation will be under small
perturbations of w.

Consider now a second distribution w’ and measure
its “distance” from w by

d(w,w') = |s11 — 1| 4 [s02 — 52| + [520 — 55
Let , ,
So2 ~ Sa0

o, =" 4 L t
= — — arctan
074 " 2 2sh,

(a) (b) (c)

Figure 3: (a) Initial part, (b) Toleranced part, (c) Parts
overlapped.

be the stable orientation of w'. We assume that
d(w,w') < ¢ and determine an upper bound for the dif-
ference |fg — 6)|. Let us define f(z,y) = arctan o For

|h1],hs| < €, the Taylor expansion of f gives

e+ he) = s < (| 5] + | 3| ) exoren

aF _ _y or =z _
dr T m24y? and oy T ity

520,y = 2511, & + h1 = 8y — 8hg, Y + ha = 2s7; we get

and Letting z = sgp2 —

1
|00 — 65 < €%('2|811| + |s02 — s20]) + O(?)
1
2vp

Thus we have proved the following theorem.

< 4 0(), (8)

Theorem 2 Let w,w' : R? — R be two nonnegative
“mass” distributions with finite s;; with i + j < 2 and
whose “center of mass” is at 0. The stable equilibrium
configurations of w are 0y and 0y + 7. If d(w,w') < ¢,
for small ¢ > 0, and 6},0, + m denote the equilibrium
configurations of w' we have

1
2\/p

The previous theorem determines the variation of the

6o — 5] <

€+O(€2).

orientation as a function of the symmetry coefficient p
only. Clearly, as p becomes large the coefficient of e
becomes smaller. The above analysis provides a measure
for the stability of the orientation of a part in our vector
field and gives us the means to estimate a priori the
behavior of toleranced parts. The usefulness of our result
is demonstrated with an illustrative example.

Stability of toleranced parts of uniform weight
and of given diameter.

Let Q, Q' C R?, be two parts of uniform weight, say equal
to 1. Let p be the symmetry coefficient of Q, d be the
diameter of 2, and A = |A| be the area of the symmetric
difference A of the two parts. Then

[so2 — 52| = / y* dedy < d’A,
A



and similarly |sqq — sho| < d?A, |s11 —si;| < d%A.
Therefore in (8) one can take ¢ = 3d>A and obtain

1

If, for example, Q is a part with boundary length L
and the boundary of Q' is assumed to be within distance
d from the boundary of Q (see Figure 3), then A < L§
and (9) becomes

1
6y — 0] < 3——d%L$ d*L?%6%).
|60 0|_32\/ﬁ + O( )

Hence, we show precisely how the equilibrium orienta-
tions of a part will be affected when the part 1s man-
ufactured with a toleranced geometry. Notice that for
small changes in the shape of the “asymmetric” part, 6
and 6} are very close.

4.3 Practical Considerations

The realization of the proposed vector fields is challeng-
ing. Current MEMS technology has several limitations
but is rapidly evolving [5]. Vibratory plates may offer
a solution and this is currently being investigated [3].
Possibly other technologies may be able to approximate
our fields to a good resolution. For example, one could
implement our fields with a n x n array of motors, each
of which has the orientation of the force it should exert.
The magnitude of the force will need to be controlled
individually in each motor.

Let us simply note that the control of a dense n x n ar-
ray of actuators that implements our fields is very simple.
If the force exerted by every actuator can be controlled,
then every actuator needs to be instructed to exert a
force with F coordinate equal to —a multiplied by the
x coordinate of the actuator exerting the force, and F,
coordinate equal to —@ multiplied by the y coordinate
of the pixel. Individual control of the actuators is not
however necessary; control by rows and columns only is
sufficient. Furthermore, the proposed vector field could
be implemented with a technology that allows the spec-
ification of a force only in one of the x or y directions
at each pixel/actuator. Then two arrays, one controlled
only in the z direction and the other controlled only in
the y direction can be “interleaved”. If the arrays are
dense, the resulting force will be a force with the desired
magnitude and direction.

Finally let us note that once a single array has been
constructed using any technology, the same array can
be used for orienting different parts. In fact, since the
equilibrium orientation of a part can be predicted be-
forehand, the orientation of the array can be changed so
that the part will end up in the desired orientation for
the assembly task.
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