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Abstract

This paper presents a system aimed at mobile robot
operations in space: we discuss an interface which re-
ceives and analyzes images sent by a rover operating
in a distant environment. We are particularly inter-
ested in long-duration space missions, where rovers in-
teract with human operators on Earth. The position
estimates are presented to the operator so as to in-
crease situational awareness and prevent loss of ori-
entation. The system detects mountains in images
and automatically searches for mountain peaks in a
gien topographic map. We iniroduce our mountain
detector algorithm and present a large number of il-
lustrative results from images collected on Earth and
on the Moon (by the Apollo 17 mission). We present
an algorithm for position estimation which uses sta-
tistical descriptions of measurements to produce es-
timates, and discuss results for the Pittsburgh East
and Dromedary Peak areas. The implemented system
achieves better estimation performance than any com-
peting method due to our quantitative approach and
better time performance due to our pre-compilation of
relevant data.

1 Introduction

Only with great difficulty can human operators teleop-
erate rovers in an unfamiliar environment based solely
on imagery sent by the rover, even with maps of the
rover’s environment [1, 6, 9]. Teleoperating a rover
presents further challenges when the rover is on a lunar
mission {7}, because of the 5-second round-trip com-
munication delay [11], coupled with the unfamiliarity
of the environment, less gravity, and variable surface
properties. For example, astronauts in the Apollo mis-
sions had great difficulty determining distances from
mountains and craters [5].

This paper presents a system that assists operators
driving remote vehicles. The basic idea is to offload
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navigation functions, permitting the remote driver to
concentrate on pilot functions without getting disori-
ented or lost. Figure 1 summarizes the idea. The
operator observes images from the rover and looks at
a topographic map of the imaged area. Position of
the robot is unknown but constrained to lie in a re-
gion the size of the map. The images are analyzed;
structures found in the map are marked. In this pa-
per we report on an automatic detector of mountains
and a position estimator that operates from the de-
tected peaks. The ultimate goal is to overlay position
information on the maps and on rover-acquired im-
ages, just as “augmented reality” systems for training
and medical applications do [3].

The interface presents three windows to the opera-
tor. The first window carries video; we currently use
a standard video display in a Silicon Graphics work-
station to look at our footage. The second window
displays panoramas formed from selected images, and
indicates the results of the mountain detector. The
third window, depicted in Figure 2, carries the map
information. The map can be seen from above, as dis-
played, or rendered as seen from the ground. The map
in Figure 2 shows the topography of the Apollo 17 site
on the Moon, generated from the Apollo 17 Landing
Area topophotomap [10].

The next section discusses the basic requirements
of our system; we then present our vision-based moun-
tain detector and results collected on terrestrial and
lunar data. The position estimator is then described,
together with results obtained for data in the Pitts-
burgh East and Dromedary Peak USGS quadrangles.
We show the most complete set of test images to date
and we report improvements in speed and accuracy
relative to previous approaches. The implemented
system achieves better estimation performance than
any competing method due to our quantitative ap-
proach and better time performance due to our pre-
compilation of relevant data.
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Figure 1: An interface for teleoperation of mobile robots

Figure 2: The map window, with a top view of the
Apollo 17 topographic map (North and South Massifs
appear on top and bottom respectively)

2 Localization from OQOutdoor
Imagery

A variety of methods can be used to determine posi-
tion, some using internal measurements (dead reckon-
ing) or external measurements of motion. Since dead
reckoning degrades over time, external measurements
are necessary. A mobile robot performing a long tra-
verse on the Moon or other celestial bodies poses a
great challenge for position estimation technologies,
due to the absence of the GPS infrastructure. On
celestial bodies, attitude measurements can be gener-
ated accurately from a star sensor, since the visibility
of stars from bodies without atmosphere is excellent,
but position accuracy is low, on the order of kilometers
[19]. In short, relative position and absolute orienta-

tion are available, but absolute position is not.

Our system uses mountains to fix position, as
usually done by human sailors in marine naviga-
tion. Other researchers have studied the possibility
of vision-based localization in outdoor applications
[4, 8, 13, 16, 17], but real data analysis has been scarce
(the only available data sets have been produced by
Thompson and his group [17]), probably due to the
complexity of collecting outdoor imagery coupled with
reliable ground-truth data. In this paper we present
a rich collection of images obtained by a customized’
platform, which allows us to tag every image with six
dimensional ground-truth (position and orientation).

Each image feature can be converted to an angle
in the robot’s coordinate system; the angle is called a
bearing [2]. The image contains a set R of m image
bearings. The map contains a number n of landmarks
l; = [X;,Y;]. The pose of the robot in the global
coordinate system is I' = [z,y, 9] (¢ is orientation).
An interpretation I of the image is a set of correspon-
dences between image features and map features.

To be able to construct an interpretation, the sys-
tem must have information about the position of
mountains in a topographic map of the rover’s environ-
ment. To test our system with Earth images, we use
7.5 minute Digital Elevation Maps (DEMs) provided
by the United States Geographical Survey (USGS),
covering approximately 140km?. Topographic maps
are pre-processed and mountains in such maps are
marked in an off-line stage, which automatically de-
tects local maxima in the 7.5 minute DEM [18]. For
example, the map in Figure 3 covers approximately 37
km? over the city of Pittsburgh, Pennsylvania. The
black dots indicate the points where the system found
mountains. The user has the ability to change or cor-
rect mountains detected at this stage, but we have
never had to do that to obtain our results.
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Figure 3: Topographic map of the Pittsburgh area
with detected mountains

As the images are received by the system, moun-
tains must be detected and position estimates have to
be generated. Currently we do not operate directly on
a stream of video; individual images are selected from
the video window and manually pasted into a mosaic
[15]. The mountain detector works on the mosaics.
The mosaic is first segmented in two regions, one cor-
responding to the sky, another to the ground, and then
the boundary between the two regions is searched for
mountains. The theory and implementation of this
mountain detector was described in a previous pub-
lication [2], together with preliminary results. Here
we concentrate on a description of results obtained
with a more comprehensive set of tests. The moun-
tain detection system takes at most 2 seconds per full
panorama in the current implementation on a Silicon
Graphics workstation, depending on the complexity of
the scenes.

Figure 4 shows a gallery of panoramas processed by
our system. Images come from Pennsylvania, Utah,
California and the Apollo 17 site on the Moon. De-
tected mountains are enclosed in rectangles; the de-
tected position of a mountain peak is marked through
a vertical line inside the rectangle.

The panorama (1) composes a sequence of images
taken by the Apollo 17 Lander Module. The lunar
cart can be seen at the extreme right of the panorama.
The first large structure is the South Massif, followed
by two smaller mountains and then the North Mas-
sif. The system detects all of those mountains plus a
smaller formation which follows the North Massif. For
lunar images, we have found that a very simple thresh-
olding operation is enough to segment the sky from the
ground reliably; that was used in panorama (1).

Panoramas (2) and (3) bring images from Califor-
nia; the first is by the Don Pedro Resort and the
second is by the East entrance of the Niles Canyon.
Mountains are very distinct in the Don Pedro area,
but not so in the Niles Canyon. The large structures
in this latter panorama are captured, but the peak
in the extreme right has a skewed position because
of trees on the top of the mountain. These images
were acquired under bright sunlight, and the resulting
panoramas suffer some effects of the camera’s auto-iris
operation: the sky shows “waves” of high brightness.
This would make it impossible to use a simple thresh-
olding operation as in the lunar images, but our sky
segmentation algorithm [2] works without problems.

Panoramas (4) and (5) were acquired by Prof.
William Thompson and his group and are publicly
available. The detector has no problems, except in
the detection of very small sequences of mountains
that are quite distant.

Panoramas (6), (7) and (8) were obtained in
Pittsburgh, by the Allegheny river. All distinct
mountains are detected, except the big mountain in
panorama (6), where the system gets confused by the
pole in the extreme left. The system has proven to be
quite reliable and flexible to adjustments, but some
occasional misses or false detections occur as a result
of unforeseen events like the pole in panorama (6). We
plan to give some latitude to the operator, so that the
system’s conclusions can be modified when mistakes
occur.

3 The Estimation Algorithm

Given the bearings, we must generate estimates of po-
sition. Two decisions must be made. First, what is the
space in which we conduct the search. Second, how to
establish a convenient figure of merit to evaluate the
possible estimates of position.

The search for best estimates can be conducted in
the space of interpretations [17], but only when using
few peaks and image features; otherwise too many in-
terpretations have to be visited. Use of few features
compromises accuracy, which requires the use of large
and small peaks in the horizon. Another search strat-
egy is to look at the space of possible renderings of the
map [13]. In order to conduct such a search, speed-
up techniques like quantization must be used, again
causing a loss of accuracy.

A more promising approach is to search the space of
positions. To handle a USGS topographic quadrangle,
we need to go through 4 x 10% positions and establish
a figure of merit for each. This seemingly daunting
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Figure 4: Peak detection results from a wide variety of scenes
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task has been pursued by Talluri and Aggarwal {16];
to speed up the search, they have used a single point
in the image as a measure of “goodness of fit” between
image and map. In real images such a simplified fig-
ure of merit is unrealistic, since it does not take into
account the noise and artifacts of real images.

We search in the position space, but we construct a
figure of merit that reflects the various disturbances in
the image and can also include prior knowledge about
position. The key idea to speed-up our algorithm is to
simplify the search procedure by pre-computing virtu-
ally all the calculations that must be performed during
search. We automatically create (off-line) a table con-
taining all the peaks that can be found in the map. We
also create (off-line) a table containing all the peaks
that are visible from every possible position. During
search, we need only access the latter table for retriev-
ing the index of visible peaks, access the former table
for retrieving characteristics of the peaks, and com-
pute the posterior probability for position.

Our estimation objective is to maximize the pos-
terior probability of position given the bearings,
p(z,y|R). Position is discretized in intervals of 30 me-
ters, agreeing with the discretization of Digital Eleva-
tion Maps. At first, we must specify a prior density
for position, p(z,y). Currently we use a uniform dis-
tribution to signify absence of prior knowledge. Sec-
ondly, we must specify likelihood of bearings (the mea-
surements) given position, p(R|z,y). This distribution
is constructed by assuming independence of bearings
given a particular interpretation, and Gaussian dis-
tributions for the distribution of bearings [2]. Error
that exceed 18 degrees are discarded as mistakes and
assumed distributed uniformly on the interval [0, 360]
degrees. We construct the posterior distribution by us-
ing Bayes rule on these models. Since bearings do not
need to be associated to all possible mountains, the
posterior distribution can be quickly calculated. As
an example, computation of the posterior probability
for the more than 3 x 10* positions in the Pittsburgh
map of Figure 2 takes 3 seconds running in an Impact
SGI workstation.

4 Experiments

In the current version of the system, images are ob-
tained from a customized platform featuring a camera,
an electronic compass, and a differential GPS system,
all mounted on a tripod. The compass provides abso-
lute orientation measurements; once calibrated, accu-
racy is 0.5 degree. A differential GPS device obtains
ground-truth measurements of position, with accuracy

of 3 meters. The camera is calibrated [12], and errors
of 2 degrees are introduced by calibration inaccura-
cies. The images are stored on tape and played back
when testing the system; every image is tagged with
six dimensional ground-truth.

We have run the estimation procedure with data
obtained in Pittsburgh using sequences of images
as in the last two panoramas of Figure 4. Two
mountain peaks are detected in the first panorama,
three in the second. The bearings, in degrees,
are {177.6,131.1,92.4,102.3,65.3}. The system esti-
mates position with an error of 87 meters. We have
also run the system on data from Dromedary Peak,
Utah; the panoramas are shown in Figure 4. The
five bearings detected automatically are (in degrees):
{224.5,198.8,163.7,107.2,100.8,96.3}. A square area
of 6km by 6km was used the Dromedary Peak quad-
rangle, to make the test similar to the Pittsburgh tests.
The system estimated position with accuracy of 95
meters, which can be compared to the 71,700m? ob-
tained by Thompson [17]. We benefit greatly from
our reliance on all available features, large and small,
present in the image.

5 Conclusion

We have presented a quantitative, feature-based ap-
proach for pose estimation from outdoor visual infor-
mation. QOur objective is the construction of an in-
terface for rover teleoperation that can intelligently
process rover imagery and help human operators. We
presented results with real data which demonstrate an
improvement over the state of the art on outdoor po-
sition estimation.

The superiority of our implementation, as com-
pared to others, stems from two factors. First, we al-
low several mountain features, large and small, nearby
and far away, to be used by the estimator. To man-
age the complexity created by this rich set of measure-
ments, we have to impose some quantitative structure;
our posterior distributions give this structure. Sec-
ond, we have a fast, efficient implementation of the
pre-compilation stage, where all possible visibility re-
lationships are calculated and stored. Both factors are
responsible for the accuracy and time performance of
our method.

There are several aspects of the work call for further
development. A stream of images must be presented
to the user and processed by the system, and results
of position estimation must be overlayed on the im-
ages so they can be assimilated by the operator. Such
achievements will make it easier to remotely drive a
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rover in a wide variety of environments, with a partic-
ular impact on lunar missions.
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