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Abstract 
Sensing to recognize and locate objects is a critical 

need for robotic operations in unstructured environments. 
An accurate 3-D model of objects in the scene is necessary 
for efficient high level control of robots. Drawing upon 
concepts from supervisory control, we have developed an 
interactive system for creating object models from range 
data, based on simulated annealing. Site modeling is a 
task that is typically performed using purely manual or 
autonomous techniques, each of which has inherent 
strengths and weaknesses. However, an interactive 
modeling system combines the advantages of both manual 
and autonomous methods, to create a system that has high 
operator productivity as well as high flexibility anCi 
robustness. Our system is unique in that it can work with 
very sparse range data, tolerate occlusions, and tolerate 
cluttered scenes. We have performed an informal 
evaluation with four operators on 16 different scenes, and 
have shown that the interactive system is superior to 
either manual or automatic methods in terms of task time 
and accuracy. 

1. Introduction 

in hazardous applications such as remediation of 
buried waste and dismantlement of radioactive facilities. 
robots are an attractive solution. Such environments ;~IL’ 

t ~ ~ i c a i l y  unstructured, in  the sense that the types and 
locations of objects are not known in advance. 

Controi of robots and machinery for use in such 
operations ranges from full manual control (direct 
reieoperation by a human operator) to full automatic 
controt (no input from a human operator). Between these 
two extremes lies a paradigm called supervisory control 
’ which allows the -+vn to perform low level tasks 

automatically under the supervision of a human operator. 
Supervisory control is a promising technique for near term 
operations: ,it retains the flexibility of human intelligence 
to re.spond to unforeseen events and combines it with the 
s p e d  and accuracy of the computer for performing lnw- 
level tasks [2]. 

In order for the system to perform low level tasks 
under suprrvisoq control. t~ee -d lm~ns iona l  (3-D) 
graphical models are needed which accurately represent the 
location, type. shape. cfc.. of objects in  the scene [3]. 
For certain environments, blueprints and architectural 
drawings may exist, bur these cannot be relied upon to be 
accurate. In unstructured environments, the 3-D sire 
model must be created from sensor data. 

The usual practice in  creating. object models is to 
physically measure their locations and then manually 
create them in software or with an interactive user 
interface. However, this is a time consuming task, and 
one that should be avoided in  a hazardous environment. 
Some systems allow thc locations of objects to bc 
measured remotely, using a range finder or other Lensor. 
However, the human operator still must manually create 
the object model. using the location information as a 
guide. Also, i t  is not sufficient to specify just the 
location of the object - the model requires the object 
orientation, as well as any other parameters describing its 
size, shape. etc. 

Two dimensional (2-D) video images andor  three 
dimensional (3-D) range images can provide the necessary 
data to create object models. Past work on object 
modeling has been either primarily manual or primarily 
automatic. Manual techniques have the disadvantage of 
requiring a substantial amount of effort from the human 
operator. Automatic techniques have been limited in  
performance and reliability. Most automatic systems are 
limited to recognizing a small number of simple object 
models, in clean, uncluttered scenes. The generality and 
flexibility of current systems is very limited. especially 
for those that use image data {as opposed to ranpe data). 
Therefore. there is a need for techniques rvhich are more 
automated, but are robust and flexible in dealing lvith new 
environments, 

In t h s  paper, we describe supervisory techniques that 
we have developed for creating object models. that have 
been shown to be highly robust and flexible. These 
techniques are interactive; that is. they use the human to 
guide the. sensing system i n  creating and updating models 
of objects. The motivation for using interactive 
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techniques is that purely manual and purely automatic 
techniques both have disadvantages. Ho-wever. a hybrid 
system has the potential to combine the best attributes of 
each to create a system that has high operator productivity 
as we11 as high flexibility and robustness. The strategy is 
similar to the use of the human in supervisorJi control, in 
which human intelligence and machine inteili, oence m 
integrated to create a more powerful system that uses the 
best elements from each component. The human provides 
high level reasoning and overali guidance; the computer 
provides quantitative analysis and repeatabfe operation. 
Thus, we have extended the supervisory control paradi,gn 
to sensing. 

We have. developed a system which uses sparse, noisy 
range data (about 50 - 100 points per object) obtained 
from a stereo vision sensor. The operator can interact 
with the system through a combination of tr&d and 
shared control, to create models of objects in the scene. 
We have evaluated our system with a combination of 
synthetic and real scenes. In informal tests with four 
operators, we have shown that the supervisory system is 
superior ( in  terms of task time and accmcyj  over purely 
manual and purely automatic modeling. Our effon is 
unique by virtue of the use of the interactive. techniques, 
sparse range data collected from stereo vision and other 
sources, and an optimization technique called simulated 
annealing for fitting primitive 3-D object models to the 
range data. 

The rest of our paper is organized as follows: Section 
I1  covers background information related to object 
modeling; Section III gives an overview of our system; 
Section IV describes implementation details and 
experimental results; and Section V provides conclusions. 

11. Background 

Past work on creating object models has generally 
fallen into the categories of primarily manual or primarily 
automatic. With primarily manual systems, the operator 
creates, sizes, and places a graphical object model to 
correspond to a physical object that he or she observes in  
the scene. In Sandia’s Graphical Programming System 
[3], the operator can control the robot to touch an object 
with a probe in order to determine its position. Other 
systems use the operator to examine imagery obtained 
from sensors and create object models to fit the observed 
objects [4, 51. Other related work includes 
photogrammetric reconstruction from still photographs, 
developed by TRU’ and Vexcel Corp. In all these 
systems. the operator rather than the computer, performs 
the bulk of the work in creating and specifying the 
attributes of the model. 
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In the category of primarily automatic systems, much 
work has been done in the computer vision field on 
automaticaity recognizing and creating models from range 
dam Here, we *,$,ish to draw a distinction between 
techniques which just cilnstruct a surface map [6] or 
occupancy map 171 of the scene, and those (like ours) 
which tit ge.ometric models to discrete objects in the 
scene. In the latter class: of techniques, researchers have 
developed systems to fit superquadric volumetric 
primitives [8], generalized cylinders 191, and parametric 
geons [ IO] ,  to range data. use the 
operator to select an initial region of interest in the image, 
then automatically fits a cylinder to the surface data. 

Other work matches a specific object model to range 
data. For example, Grimson. et ai matches a model 
derived from MRI data to laser range data [ 121. Besl ad 
McKay 1131 regis:er two 3-D shapes using the iterative 
closest point algorithm. Most techniques use an iterative 
algorithm to find a solution, either based o n  least squarus 
or Kalman filtering [ 141. 

Most previous work does not address the 
segmentation of the data - i.e.? how to automatically 
distinguish points on the object from points in  the 
background. Also, rhe objects must be relatively 
unoccluded for the model fitting to converge correctly. In 
typical unsmctured environments, such as a drum half 
buried in a landfill, these techniques could not correctly 
create the object model. Finally, most algorithms re4uire 
fairty dense range data with many points on the object of 
interest. 

Recently, researchers have argued that fully automated 
systems for object recognition and modeling are currently 
incapable of matching the human’s ability to employ 
background knowledge, common sense. and reasoning. 
One way to increase the flexibility of a computer vision 
system is IO allow an outside entity,  such as a human, t o  
provide context a id  constraints to the vision system. 
This approach has been used successfully in the domain of 
overhead image interpretation. Recently, under DARPA’s 
R4DIUS project, much work has gone toward automating 
portions of the interpretation process. using image 
understanding techniques [ 151. Much success has been 
achieved by developing interactive techniques to extract 
building and road models 1161. For example. an irnaze 
analyst can provide an initial approximation for a building 
outline and let the vision system perform local 
optimization of the variables to fit the data , [17j. 
Although these techniques are promising, they have been 
applied onfy to the overhead image interpretation dornain 
(primarily 2-D). They must be modified to apply them to 
the robotic domain (pnmarily 3-D), and in which 
viewpoints are much more unconstrained. 

Hebert, et a1 [ I  I ]  
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111. Detailed Description 

4. Stereo  \'ision Sensor 

Figure I Top ,  [eft .  and right images from s t e r e o  
v i s  i rt s j  s l e  I n .  

Thc sicrt'o \ ision system detects "interest" poini3 i n  

the left and rig!it images. and matchel; thcm using a cross- 
correlation technique. Each candidarc match determines a 
point i n  3-f). These points are checked by verifying their 

B .  f lodel Fitting .Algorithm 



A n  important issue is tht: definition of the error 
function. One possibility is to define the error as the 
sum-of-squared distances between the range data points and 
the nearest point on the surface of the model. With this 
approach. points with large distances dominate the total 
error score. This has the problem that outliers (points 
which do not belong to the model) greatly affect the 
resulting fit. A error function is needed in which outliers 
do not affect the fit. This error function is defined as 

where r, = distance from the i’ point to the model and G is 
a constant. As r2 approaches infinity, the contribution of 
the point to the error score goes to zero. As r approaches 
zero, the contribution of the point to the error score would 
approach negative infinity; however, we limit the 
minimum score to -G/D,,, where D,,, is the estimated 
uncertainty in position of our data points f i em). 

This error function has the same form as the potential 
energy resulting from a gravitational or electrostatic force. 
In fact, each point may be considered IO exert a force 
proportional to I/? on the model, where r is the distance 
to the model surface. Very close points eXeK a large 
force; and very distant points exert a negligible force. 
Thus, outliers have a negligible effect on the overall f i t .  

In  experimentation to date, we have found that the 
model fitting algorithm converges to a minimum in  
several thousand iterations, which takes about 10- 15 
seconds on a Silicon Graphics Indigo2 workstation (this 
also includes thz time required to dmw 3-D graphics). In 
some cases, this is the true solution (global minimumi. 
but in  other cases i t  is an incorrect solution {local 
minimum). In the latter cases; the user must intenene 
(,see next section) in order to reach the correct solution. 

C. User Interaction Techniques 

We have developed software to allow the user to 
visualize and interactively f i t  3-D graphical modeis ’on the 
Silicon Graphics workstation. The software dispiays 
range data points and geometric primitives (spheres. 
cones, cylinders, and parallelepipeds) as overlays on top i l i  

background images from the stereo cameras. These 
objects can be displayed in normal 2-D mode or in  3-D 
mode, using stereo viewing giasses. For an input device. 
the operator can use the usuaI 2-D mouse. or a 6 degree- 
of-freedom (DOF) mouse. 

The user first selects a geometric primitive (,model) to 
fit to the data .points. The user can manipulate the size 
and shape of the model with a wire-frame “handle-box“ 
surrounding the model, or by entering data into a text box. 

At this point, the user can manipulate the niodct i n  
manual mode using [he. 2-D or 6 DOF mouse. 

When the simu!ared annealing algorithm is running. 
the model is continuously drawn in the latest estimated 
position. the effect of which is that the model is drawn s 
an animated figure u-hich initially jitiers around and then 
jockeys into final position. This animation allows the 
user to immediately see whether the fitting algorithm is 
converging to thc correct solution, and if not. to uke 
action to correct the problem. In the meantime, the 
simulated annealing algorithm automatically reduces the 
temperature to a fixed percentage of the previous value. 
The temperature is defined to be a number between zero 
and 100. After the temperature has fallen to a sufficiently 
low level, the model stabilizes around its final position. 

There are two techniques with which the user can 
interact with the system 10 provide guidance arid 
constraints. These techniques. called rradeii control and 
shared control. draw again upon the parad& of 
supervisory control [ 1 1 .  in fruded control, the user and the 
system each take turns controlling the pose of the mode!. 
tt’e have found this t o  be particularly useful when the 
model fitting algorithm gets stuck in a local minimum 
The user can immediately see that the model (shown as a 
graphical overlay on the image of the scenej has settled 
into an incorrect pose. By moving the mouse, the 
operator takes control of the model from the system. r a d  
can move i t  towards the correct pose. Releasing thc 
mouse allows the system resume the model fitting 
algorithm. A small movement toward the correct pose is 
often enough to push the model out of the local minimum 
and allow it  to automatically find the correct pose. 

i n  s!zur.d control. the user controls some of the 
degrees of freedom, i*vhilc simultaneously the systcni 
controls the other degrees of freedom. The operator can 
choose any of three different modes of shared control, :& 

shown in Table i .  

Table 1 Tecfrniques in shared control. 

Mcde Consfraints 
Operator designates a Object center must lie along ray 
2-D point in the image emanating from the current viewpoint out 

in the direction of me selected image point 
Operator designates a Object center must be located at the 
3-D point designated point 
Operator controls a set Object orientation must match the 
of orthmnal axes sDecified axes 

IV. Implementation 

This section describes the implementation of the 
model fitting system and informal evaluations performed 
with volunteer operators. The system was developed 
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using the Silicon Graphics . ~ f t w a r e  package caiied "Open 
Inventor". which pro\ ides high letel C++ class Iibrxies 
lo cr2ate. display. a n i  rnanipuiaie 3-D models. 

The application displays the 3-D data points as smali 
red boxes overlaid on the background image (the "lei:" 
iniapc of the stercii set;!. l'he user selects a geometric 
primitive ro fit t i) thc dau points. which is showm as a 
translucent niodcl (Figure 3 i .  

Figure 3 Cser in ter face  f o r  model j i t I i r r g  
app l i ca t io r r .  . showit tg  cylinder model i II 
i n i f i a l  p o s e .  

The usei can riunipulate the model in iiiariuill : n d c  
using the 2-11 or li DOF rnouse. or start the automiitic 
inodcl firting isitnulatcd annealing) algorithm. I n  either 
mode, the pose i)f  the model is continuously displayed in  
the text tields on the right side of the window. Also 
displayed i.; the iurrcnt "error" score. which represents the 
total distance of the 3-D points to the model. The calix 
o f  the inodcl changes truni bhades i)t' red to green as the 
error decreases. 

%'hen the siinuiatcd annealing :ilgorithm 15 running. 
i t  gradually reduces i h e  !emperaturc at each iteration. The 
temperature is graphically shown as a y e r t i a i  har 
immediatcl~ !;I ~!ie right of the image. The user can set 
the temperature manu:illy by simpI)- moving the bar up or 
down  We hair  !ound this to be useful when thc iriodcl 
has app:tred tt.1 reach thc cc~rrect  pi^^. I n  t1ii.i casc~ ue 
reduce the temperature to Lero immediately t o  avoid any 
chance o i  the niodel escaping :he correct solution. Figure 
1 shows the model in its final posc. 

An important part of this project was to quantify [he 
benefits of the interacrive object modeling techniques in 
ternis of task completion time and model accuracy. We 
performed an infonnal evaluation. using four subjects that 
were not involved with the development of 'the system. 
Each subject was trained in  the use of the 6 DOF mouse 
prior to evaluation, and allowed to practice fitting models 
on several sample sccnes. Subjects were instructed that 
the first priority uas  to achieve the lowest error score. and 
the second priority was to minimize the time taken. 

We also zt)iiipared the interaciilc ::c~::ig :i-i& !<-) 

purely uutoniatiz mode. Four full!' :iuitiiixitcd i i .  c.. n o  
user interactinnj runs from the dcfau!! xi;ir!ing pixition 
were done for each of the 8 synthetic sicncs. Ti?< 
prixiucsd a ci:)rrect result (almost idriiricai ti; I C L ~  

runs for the s;ime sceneci on o n l y  16 o u t  : i l '  3 3  ,:?! riiesc 
runs. or only 50% of the time. I n  ot!icr \ \ < ~ r & .  ii 
time i t  w;is unabic to escape local t n i n i n i . t  

V. Conclusions 

We have Jcvelo~xd an interactive s>\tciii i'cr fitting 
models to range data and have dcrwinsmmj its 
effectiveness (in terms of task time mJ iiccuracyj i n  



preliminary evaluations with human operators. Unlike 
purely manual or purely autonomous systems, our 
interactive system combines the best attributes of each tc 

create a system that has high operator productivity as well 
as high flexibility and robustness. Similar to supervisory 
control, we integrate human intelligence and machine 
intelligence to create a more powerfut system that uses the 
best elements from each component. The human provides 
high level reasoning and overall guidance; the computer 
provides quantitative analysis and repeatable operation. 

Our system can use extremely sparse range data 
(about 50 - 100 points per object), can tolerate occlusions, 
and work in cluttered scenes. Through a combination of 
t r d d  and shared control, the operator supervises the 
creation of models of objects in the scene. The system 
uses an optimization technique called simulated annealing 
for fitting primitive 3-D object models to the range data. 
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