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Abstract

Modeling dynamic human control strategy (HCS), or human
skill through learning is becoming an increasingly popular para-
digm in many different research areas, such as intelligent vehicle
systems, virtual reality, and space robotics. Validating the fidelity
of such models requires that we compare the dynamic trajectories
generated by the HCS model in the control feedback loop to the
original human control data. To this end, we have developed a
stochastic similarity measure — based on Hidden Markov Model
(HMM) analysis — capable of comparing dynamic, multi-dimen-
sional trajectories. In this paper, we first derive and demonstrate
properties of the proposed similarity measure for stochastic sys-
tems. We then apply the similarity measure to real-time human
driving data by comparing different control strategies for differ-
ent individuals. Finally, we show that the similarity measure out-
performs the more traditional Bayes classifier in correctly
grouping driving data from the same individual.

1. Introduction

The main strength of modeling by learning, is that no explicit
physical model is required; this also represents its biggest weak-
ness, however, especially when the unmodeled process is (1) dy-
namic and (2) stochastic in nature, as is the case for human control
strategy. For such processes, model errors can feed back on them-
selves to produce trajectories which are not characteristic of the
source process or are even potentially unstable [1]. Yet, most
learning approaches today, including feedforward neural net-
works, utilize some static error measure as a test of convergence
for the learning algorithm. While this measure is very useful dur-
ing training, it offers no guarantees, theoretical or otherwise,
about the dynamic behavior of the resulting learned model.

Thus, we have developed a similarity measure, based on Hid-
den Markov Model analysis, as a first step in validating learned
models of human control strategy. In this paper, we derive this
similarity measure; demonstrate its properties through mathemat-
ical proof and simulation of known stochastic systems; evaluate
the proposed measure on human control data; and show that it
outperforms the more traditional Bayes classifier.

2. Stochastic similarity

2.1 Hidden Markov Models

Rich in mathematical structure, HMMs are trainable statistical
models, with two appealing features: (1) noa priori assumptions
are made about the statistical distribution of the data to be ana-
lyzed, and (2) a high degree of sequential structure can be encod-
ed. A Hidden Markov Model consists of a set ofn states,

interconnected through probabilistic transitions. Although algo-
rithms exist for training HMMs with both discrete and continuous
output probability distributions, discrete HMMs are preferred to
continuous HMMs in practice, due to their relative computational
simplicity and lesser sensitivity to initial random parameter set-
tings. Using discrete HMMs for analysis of real-valued signals re-
quires that continuous-valued data be converted to discrete
symbols through pre-processing and vector quantization (see Sec-
tion 2.4 below). Thus, a discrete HMM is completely defined by
the following triplet  [2], where  is the probabi-
listic  state transition matrix,  is the  output proba-
bility matrix with  discrete output symbols ,
and  is then-length initial state probability distribution vector.

For an observation sequenceO of discrete symbols, we can lo-
cally maximize  (i.e.probability of model  given obser-
vation sequenceO) using the Baum-Welch Expectation-
Maximization (EM) algorithm. We can also evaluate .

Two HMMs  and  are defined to beequivalent,

, iff. , (Eq. 1)

Note that  and  need not be identical to be equivalent. The
following two HMMs are, for example, equivalent:

,

(Eq. 2)

2.2 Similarity measure

Let , , denote a distinct observation se-
quence of discrete symbols with length . Also let

, , denote a discrete HMM lo-
cally optimized (using the Baum-Welch algorithm) to maximize

. Similarly let  denote the probability of the
observation sequence  given the model , and let,

(Eq. 3)

denote the probability of the observation sequence  given the
model , normalized with respect to . In practice, we calcu-
late  as,

(Eq. 4)

to avoid problems of numerical underflow for long observation
sequences.

Using the definition in (Eq. 3), Figure 1 illustrates our overall
approach to evaluating similarity between two observation se-
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quences,  and . Each observation sequence first trains a
corresponding HMM; this allows us to evaluate  and .
Furthermore, we cross-evaluate each observation sequence on the
other HMM (i.e. , ) to arrive at  and

. Given, these four normalized probability values, we now de-
fine the following similarity measure between  and :

(Eq. 5)

This measure takes the ratio of the cross probabilities over the
training probabilities, and normalizes for the multiplication of the
two probability values in the numerator and denominator by tak-
ing the square root. We note that in practice, we calculate the
not on  itself, but rather , which is a smoothed version of ,
where zero elements in the matrices  are replaced by

 and renormalized to fit probabilistic constraints. Through-
out this paper, we use  as our smoothing value.

2.3 Properties

For now, we assume that  is a global (rather than just a lo-
cal) maximum. Then,

, and (Eq. 6)

, . (Eq. 7)

The lower bound for  in (Eq. 6) is realized for single-state dis-
crete HMMs, and a uniform distribution of symbols in . From
(Eq. 5) to (Eq. 7), we can establish the following properties for

:

Property #1:  (by definition) (Eq. 8)

Property #2: (Eq. 9)

Property #3:  iff. (Eq. 10)

When,  is only a local maximum (as guaranteed by Baum-
Welch), properties #2 and #3 are only approximately correct. This
is not of significant concern, however, as the Baum-Welch algo-
rithm converges to near-optimal solutions in practice.

For the class of single-state, discrete HMMs,

, (Eq. 11)

which encode only the distribution of symbols without capturing
any of the sequential properties of observation sequence ,

properties #2 and #3 are easy to show. For these HMM’s, the sim-
ilarity measure reduces to,

(Eq. 12)

which reaches a maximum when , or simply,
, and that maximum is equal to one. As an example,

consider the case where,

(Eq. 13)

which is graphed in Figure 2 as a contour plot for .
Finally, we show how the proposed similarity measure chang-

es, as a function of varying HMM structure. Consider the follow-
ing Hidden Markov Model,

, (Eq. 14)

and corresponding observation sequences, , stochastically
generated from model . For all ,  will
have an equivalent aggregate distribution of symbols 0 and 1 —
namely 1/2 and 1/2. As  increases, however,  will be-
come increasingly structured. For example,

(Eq. 15)

(Eq. 16)

(Eq. 17)

Figure 3 graphs  as a contour plot for
, where each observation sequence  of

length  is generated stochastically from the corre-
sponding HMM . Greatest similarity occurs for ,
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Fig. 1: Four normalized probability values make up the
similarity measure.
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Fig. 2: Similarity measure for two binomial distributions.
Lighter colors indicate higher similarity.
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and the origin, , while greatest dissimilarity oc-
curs for , and ( , ).

2.4 Signal-to-symbol conversion

Since we choose to work with discrete-output HMMs, multi-
dimensional, real-valued human control data must be converted to
a sequence of discrete symbols. Such conversion involves two
steps: (1) spectral preprocessing and (2) vector quantization. The
primary purpose of the spectral preprocessing is to extract mean-
ingful feature vectors for the vector quantizer. In this work, we
rely on the fast Fourier transform (FFT) and the fast Walsh trans-
form (FWT), the  algorithmic counterparts of the dis-
crete Fourier transform (DFT) and the discrete Walsh transform
(DWT), respectively. Instead of sinusoidal basis functions, the
Walsh transform decomposes a signal based on the orthonormal
Walsh functions[3]. Certain types of sharply discontinuous hu-
man control data are characterized more concisely through the
Walsh PSD than the Fourier PSD [4].

For each dimension of the human control data, we partition the
data into overlapping window frames, and perform either a short-
time FFT or FWT on each frame. Generally, we select the FFT for
state trajectories, and the FWT forcommand trajectories, since
these trajectories tend to have sharp discontinuities for the exper-
imental data in this article. In the case of the FFT, the data in each
frame is filtered through a Hamming window before applying the
FFT, so as to compensate for the windowing effect. The spectral
coefficients are then converted to power spectral density (PSD)
vectors. In preparation for the vector quantization, the PSD vec-
tors along each dimension of the system trajectory are normalized
and concatenated into one long feature vector per frame. We
quantize the resulting sequence of long feature vectors using the
iterative LBG VQ algorithm. This vector quantizer generates
codebooks of size , , and can be stopped at
an appropriate level of discretization given the amount of avail-
able data and complexity of the system trajectories. Assuming
that we segment the data into window frames of lengthk with
50% overlap, the original multi-dimensional, real-valued signal
of lengtht is thus converted to a sequence of discrete symbols of
length .

3. Comparing human control strategies

3.1 Experimental set-up

Figure 4 shows the real-time graphic driving simulator which
we have developed to collect human control data. The human op-
erator has full control over the steering of the car, the brake and
the accelerator. The state of the car is described by [4,5],

, (Eq. 18)

where  is the angular velocity of the car,  is the lateral veloc-
ity of the car and  is the longitudinal velocity of the car; the
controls are given by,

, (Eq. 19)

, (Eq. 20)

where  is the user-applied longitudinal force on the front tires
and  is the user-applied steering angle. Note that the separate
brake and gas commands for the human are, in fact, the single
variable, where the sign indicates whether the brake or the gas is
active. The entire simulator is run at 50 Hz.

3.2 Similarity results

For the first set of experiments, we ask five people — (1) Lar-
ry, (2) Curly, (3) Moe, (4) Groucho, and (5) Harpo — to drive on
three different, randomly generated 20km roads (similar to the
map in Figure 4) for a total of 15 runs. Let,

, , , (Eq. 21)

denote the run from person (i) on road #j. Table 1 reports some ag-
gregate statistics for each of the 15 runs.

Our goal here is to see (1) how well the proposed similarity
measure classifies each individual’s runs across different roads,
and (2) how the classification performance of the proposed simi-
larity measure compares with a more conventional statistical tech-
nique, namely the Bayes optimal classifier.
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Fig. 3: The similarity measure changes predictably as a
function of HMM structure.
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The system trajectory for the driving task is defined by the
three state variables  and the two control variables

. We choose the following spectral preprocessing,

 = (Eq. 22)

where , , denotes thek-point FFT, and , , de-
notes thek-point Walsh transform. We choose the Walsh trans-
form for , since these variables are typically step-like in
profile.

From the preprocessed data, we build three vector codebooks
, , each with 128 levels, and corresponding to

data from , . Now define,

, , (Eq. 23)

as the observation sequence of discrete symbols vector quantized
from the preprocessed feature vectors of run , using the code-
book . The observation sequences  can be thought of as
observation sequences which characterize the control strategy of
known individuals, while the observation sequences , ,
can be thought of as observation sequences which need to be clas-
sified. We consider , , classified correctly if and only if,

, (Eq. 24)

In other words, we expect that two runs from the same individual
(but on different roads) will yield a higher similarity measure than
two runs from two different individuals. Table 2, for example,
classifies , , based on  fork=1 and eight-state
HMMs. Note that the maximum value in each row is highlighted,
and that the proposed similarity measure correctly classifies all 10
comparisons. Correct classifications are also obtained fork=2 and
k=3 [4], but are omitted here due to limited space.

Now we compare these classification results with the Bayes
optimal classifier. Define class  as,

, (Eq. 25)

where  is the mean vector for , and  is the covariance
matrix for run . For each roadk, we have five classes, one cor-
responding to each individual. Each data point

 in , , is now classified into class
 according to the Bayes decision rule [6],

, (Eq. 26)

where,

(Eq. 27)

Table 3 reports the percentage of data points in , , which
are classified in class  fork=1. We consider  to be classi-
fied correctly when a plurality of the data from  falls into .

Table 1: Aggregate statistics for human driving data

Run  (mph)  (rad/s)  (rad)
(1000N)

L
a

rr
y

R(1,1) 63.1± 12.2 0.00± 0.17 0.00± 0.06 1.4± 2.4

R(1,2) 62.7± 9.5 0.00± 0.17 0.00± 0.06 1.3± 1.9

R(1,3) 64.0± 8.6 0.00± 0.18 0.00± 0.06 1.3± 1.4

C
u

rl
y

R(2,1) 70.8± 8.3 0.00± 0.20 0.00± 0.07 1.9± 3.3

R(2,2) 69.1± 7.7 0.00± 0.19 0.00± 0.07 1.8± 3.3

R(2,3) 71.5± 7.7 0.00± 0.20 0.00± 0.08 2.0± 3.1

M
o

e

R(3,1) 73.1± 9.5 0.00± 0.24 0.00± 0.09 2.2± 2.8

R(3,2) 71.9± 9.0 0.00± 0.25 0.00± 0.09 2.2± 2.6

R(3,3) 74.5± 9.4 0.00± 0.29 0.00± 0.11 2.6± 2.6

G
ro

u
ch

o R(4,1) 66.8± 12.4 0.00± 0.18 0.00± 0.08 1.9± 3.8

R(4,2) 65.1± 13.2 0.00± 0.21 0.00± 0.09 1.9± 4.0

R(4,3) 69.8± 12.3 0.00± 0.23 0.00± 0.11 2.3± 3.8

H
a

rp
o

R(5,1) 52.3± 12.2 0.00± 0.17 0.00± 0.05 0.9± 1.5

R(5,2) 51.7± 4.2 0.00± 0.16 0.00± 0.04 0.7± 0.3

R(5,3) 56.1± 5.7 0.00± 0.20 0.00± 0.06 1.0± 0.3

v θ̇ δ
Pf

vξ vη θ̇, ,{ }
δ Pf,{ }

vξ vη θ̇ δ Pf, , , ,{ } F16 F16 F16 W16 W16, , , ,{ }

Fk k 1≥ Wk k 1≥

δ Pf,{ }

Table 2: Similarity measure classification for road #1 data

O(1, 3, 3) O(2, 3, 3) O(3, 3, 3) O(4, 3, 3) O(5, 3, 3)

O(1, 1, 3) 0.773 0.144 0.131 0.106 0.376

O(1, 2, 3) 0.597 0.108 0.096 0.053 0.352

O(2, 1, 3) 0.249 0.869 0.340 0.333 0.015

O(2, 2, 3) 0.190 0.803 0.394 0.285 0.009

O(3, 1, 3) 0.280 0.442 0.806 0.397 0.025

O(3, 2, 3) 0.143 0.218 0.680 0.307 0.014

O(4, 1, 3) 0.095 0.210 0.297 0.676 0.010

O(4, 2, 3) 0.065 0.163 0.317 0.679 0.009

O(5, 1, 3) 0.047 0.003 0.005 0.011 0.503

O(5, 2, 3) 0.091 0.009 0.011 0.011 0.614

σ

Table 3: Bayes optimal classification for road #1 data

% ω(1, 3) ω(2, 3) ω(3, 3) ω(4, 3) ω(5, 3)

R(1, 1) 0.458 0.264 0.032 0.096 0.150

R(1, 2) 0.513 0.172 0.014 0.057 0.245

R(2, 1) 0.185 0.575 0.078 0.132 0.030

R(2, 2) 0.208 0.588 0.037 0.129 0.037

R(3, 1) 0.086 0.451 0.270 0.181 0.012

R(3, 2) 0.108 0.424 0.255 0.196 0.018

R(4, 1) 0.201 0.456 0.046 0.292 0.004

R(4, 2) 0.114 0.440 0.083 0.361 0.001

R(5, 1) 0.173 0.010 0.015 0.109 0.693

R(5, 2) 0.059 0.000 0.001 0.000 0.940
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In Table 3, for example, 4 out of 10 runs are misclassified. For all
the data, the Bayes optimal classifier misclassifies 7 out of 30
(23%) of the runs.

Next, we present results for task-based classification. We se-
lect from each run  all the left-turn maneuvers, and all the
right-turn maneuvers. We get two resulting sets of maneuvers for
each person,

, (Eq. 28)

where  corresponds to all the left-turn maneuvers for personi,
and  corresponds to all the right-turn maneuvers for personi.
We then split each of these sets into two — one to train a VQ
codebook (or calculate the Bayesian statistics), the other to deter-
mine a similarity value (or the Bayesian classification). Tables 4
and 5 report classification results for the right-turn data. We omit
the left-turn tables due to limited space. Once again, the similarity
measure classifies all data correctly (both left-turn and right-turn
data), while the Bayes classifier misclassifies 30% of the data sets
(3 out of 10).

Finally, we present classification results for data which is
more difficult to classify. Moe is asked to drive over thesame
road on two different days, two times each day, generating four
runs (#1, #2, #3, #4). Because the runs are recorded on the same
road, Moe is able to improve his skill relatively quickly. As re-
corded in Table 6, his average speed improves from 65.9 mph to
71.9 mph from run #1 to run #4. We take two additional data sets,
one from Larry and one from Curly, over the same road. These
data sets have similar aggregate statistics compared to at least
some of Moe’s runs. We now wish to classify each of Moe’s first
three runs as either similar to Larry or Moe #4, or as either similar
to Curly or Moe #4.

Tables 7 and 8 show the classification results based on the pro-
posed similarity measure and Bayesian statistics, respectively.
We observe that the similarity measure misclassifies one out of
six (17%), while the Bayes classifier misclassifies five out of six
(83%), some quite badly.

3.3 Discussion

Figure 5 illustrates why the Bayes classifier fails where the
similarity measure succeeds. Figures 5(d), (e), and (f) plot the
Gaussian approximation of the distributions (over  and ) for
Curly’s data (Figure 5(a)), Moe’s second run (Figure 5(b)), and
Moe’s fourth run (Figure 5(c)), respectively. It is apparent that the
Bayes classifier is doomed to fail, since the human data is distrib-
uted in a decidedly non-Gaussian manner. The similarity mea-
sure, on the other hand, succeeds because the HMMs are trained
on the underlying distributions of the data sets, and make noa pri-
ori assumptions about each individual’s distribution.

In addition, the HMMs are able to encode the sequential prop-
erties of the human control data. Figure 6(a) plots the discrimina-
tion measure ,

, ,

, (Eq. 29)

(i.e. the ratio of self-similarities over averaged cross-similarities
between individuals for observation sequences vector quantized
on codebook ) as the number of HMM states is varied from 1
to 8. Figure 6(b) plots a similar ratio for the left-turn/right-turn
classifications. From Figure 6, we make two observations: (1) the
discrimination of the proposed similarity measure is affected pos-

Table 4: Similarity measure classification for right turns

β(1) β(2) β(3) β(4) β(5)

β(1) 0.713 0.118 0.109 0.036 0.223

β(2) 0.119 0.801 0.276 0.199 0.008

β(3) 0.109 0.390 0.742 0.324 0.009

β(4) 0.032 0.173 0.275 0.773 0.003

β(5) 0.244 0.006 0.014 0.005 0.875

Table 5: Bayes optimal classification for right turns

% β(1) β(2) β(3) β(4) β(5)

β(1) 0.253 0.188 0.015 0.052 0.492

β(2) 0.147 0.616 0.075 0.108 0.054

β(3) 0.105 0.330 0.412 0.137 0.015

β(4) 0.163 0.364 0.174 0.292 0.008

β(5) 0.105 0.014 0.024 0.028 0.830

σ

Rij

αi βi, i 1 2 3 4 5, , , ,{ }∈

αi
βi

Table 6: Aggregate statistics for additional human data

Name  (mph)  (rad/s)  (rad)
(1000N)

Larry 61.9± 8.1 0.00± 0.18 0.00± 0.06 1.3± 1.5

Curly 65.6± 8.3 0.00± 0.20 0.00± 0.08 1.8± 3.5

Moe #1 66.1± 8.2 0.00± 0.23 0.00± 0.07 1.7± 1.8

Moe #2 65.9± 8.1 0.00± 0.21 0.00± 0.07 1.8± 2.4

Moe #3 67.4± 9.5 0.00± 0.23 0.00± 0.08 1.9± 2.6

Moe #4 71.9± 7.4 0.00± 0.24 0.00± 0.09 2.2± 2.1

v θ̇ δ
Pf

Table 7: Similarity measure classifications

Larry Moe #4 Curly Moe #4

Moe #1 0.572 0.528 Moe #1 0.315 0.616

Moe #2 0.435 0.540 Moe #2 0.495 0.603

Moe #3 0.258 0.728 Moe #3 0.550 0.760

Table 8: Bayes optimal classifications

% Larry Moe #4 % Curly Moe #4

Moe #1 0.609 0.391 Moe #1 0.569 0.431

Moe #2 0.589 0.411 Moe #2 0.663 0.337

Moe #3 0.416 0.583 Moe #3 0.567 0.433

σ σ
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itively by imparting structure onto the statistical model in the
form of an increased number of HMM states, and (2) the discrim-
ination of the similarity measure improves significantly (two-fold
in this example), when we train on specific maneuvers (i.e. left
turns and right turns) rather than arbitrary roads. Despite various
attempts at improving the Bayes classifier’s performance, we
have yet to identify an example where the Bayes classifier suc-
ceeds and the similarity measure fails.

4. Conclusion

In this paper, we have derived a stochastic similarity measure,
based on HMM analysis, with which we can compare multi-di-
mensional stochastic trajectories. We have shown that this meth-
od performs significantly better than traditional statistical
techniques in classifying human control strategy data. As such,
the proposed similarity measure is a key step towards validation
of HCS models operating in the control feedback loop.
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Fig. 5: Distribution over v and P f for (a) Curly’s run, (b) Moe’s second run and (c) Moe’s fourth run; and Gaussian approximation
of distribution for (d) Curly’s run, (e) Moe’s second run and (f) Moe’s fourth run.
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Fig. 6: The discrimination between individuals improves as a
function of the number of states in the HMM.
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