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Abstract
This paper focuses on the generation of dynamic models for an
articulated forestry machine. Such models can be used for training
simulators, for sizing components, and for control. The most
complex model includes base compliance, and pendulum-like
motions of the processing head suspended from an end-point. A
Newton-Euler iterative method, implemented symbolically, is
used to include base degrees-of-freedom due to the machine’s
compliant tires. Techniques and experiments designed to extract
system parameters are described. Based on the obtained models, a
novel valve-sizing methodology is outlined. Finally, simulation
results of the machine’s response are provided.

1 Introduction
Forestry is Canada’s most important industry in terms of
net contribution to its economy [1]. However, competition
from overseas and new environmental laws require that
forestry resources are harvested more efficiently and more
carefully than previously. This requires more sophisticated
forestry equipment appropriate to available forests, and that
allows for increased harvesting capacity with less damage to
the soil and the trees, and for selective logging. Also, such
equipment should be easier to control and less tiring, so
that operators can focus in planning the operation better.

Many of these requirements can be met by the addition
of an on-board information system that can be used for as-
sisting in repetitive tasks, for diagnosing the state of the
machine, and for controlling it. The availability of cost-
effective industrial grade computers, and actuator-sensor
mechatronic packages that can withstand the harsh forestry
environment, make such “computerization” of forestry
machines possible. In fact, some North-American and
Scandinavian forestry machines already incorporate some of
these systems. For example there exist harvesters which
also cut logs to pre specified lengths using opto-electronic
or mechanical measurements of log length and diameter.

Many of the existing felling machines are modified con-
struction machines, usually large excavators. Typical modi-
fications include geometrical modifications for better
workspace utilization, and addition of specialized
processing heads, controlled from the cabin with separate
interfaces. Work on coordinated control of excavator-type of
machines has began in mid-eighties by P.D. Lawrence and

his team [2,3]. In this work, an excavator end-point is
controlled in cylindrical task space coordinates by an
operator rotating with the arm and using a single joystick.
However, an important trend in forestry equipment is
designing machines for the environment they work in. Such
machines should have the appropriate workspace size and
shape, be lightweight, be maneuverable, and agile. In
contrast to excavator machines, the operator of a machine
designed for forestry operations may be sitting in a non-
moving cabin, and commanding the manipulator in
Cartesian space. In addition, actuation systems for such
machines are being improved, and are increasingly based on
fast closed-center proportional valves, and constant pressure
supplies.

This paper reports work focusing on modeling an exper-
imental forestry machine and its applications. Detailed dy-
namical models at various degrees of complexity are devel-
oped to help in designing an effective coordinated controller
in Cartesian space, and in developing a training simulator
for novice operators. A Newton-Euler iterative method, im-
plemented symbolically, is used to include base degrees-of-
freedom (dof) due to the machine’s compliant tires. The
models also include pendulum-type motions of the sus-
pended processing head. These models differ from standard
dynamical models developed in robotics primarily because
some of the system degrees-of-freedom are either not actu-
ated, or are subject to uncontrolled forces due to base com-
pliance. Parameters for these models were obtained from
drawings, actual measurements, simple experiments, and
solid modeling techniques. A novel valve sizing methodol-
ogy is presented based on the dynamic models developed.
Finally, simulated response results are presented.

2 The FERIC Experimental Machine
The work described here is part of a recent Canadian initia-
tive in forestry robotics, called ‘ATREF’ (Application des
Technologies Robotiques aux Équipements Forestiers) [4].
The machine used was provided by the Forest Engineering
Research Institute of Canada (FERIC), and consists of an
articulated base that can adjust its pitch by means of a
cylinder, and of an articulated manipulator including a mo-
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tor-actuated swing joint, and cylinder-actuated boom and
stick joints. An end-point Hooke-type assembly permits
free swinging of the processing head in 2 dofs, see Fig. 1.
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Fig. 1. The FERIC Experimental Machine.

To improve operator visibility, machine stability, and
workspace, the original experimental machine, was modi-
fied by relocating the cabin and manipulator. Manipulator
structural modifications were also necessary to increase the
workspace area proximal to the ground. Kinematic model-
ing of the arm confirmed that lengthening of the stick had
the desired effect on its workspace, see Fig. 2.

For the purposes of control and identification experi-
ments, the machine was equipped with magnetostrictive
sensors (measuring cylinder displacement), resolvers
(measuring angles), inclinometers (measuring vehicle orien-
tation), and flow and pressure sensors for the hydraulics re-
lated experiments. More details can be found in Ref. [4].
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Fig. 2. The reachable workspace of the manipu-
lator with (a) original stick, (b) extended stick.

3 Dynamic Modeling
In contrast to industrial manipulators which are mounted on
fixed bases, a forestry manipulator is mounted on a moving
and compliant base introducing additional non-actuated
dofs. These characteristics introduce additional complexity
to the dynamic modelling and control of such systems.

To derive dynamic models of the machine shown in Fig.
1, the iterative Newton-Euler dynamic formulation was
chosen because it is easy to implement in the form of com-
puter code, and requires a smaller number of computations
[5,6]. In this method, kinematic quantities are calculated

with outward computations starting from the manipulator
base and ending at its tip, while actuator forces and torques
are computed with inward computations. A limitation of
the numerical iterative Newton-Euler algorithm is that it
was developed for fixed-base systems in which all dofs are
actuated. In such a case, known desired trajectories for all
joints, or dofs, are used to calculate numerically the forces
and torques necessary to cause the desired motion. This is
not possible in the case of a manipulator mounted on a
compliant base, since the base is not actuated, and its posi-
tion, velocity and acceleration will depend on how fast the
arm moves, the load being manipulated, etc. To avoid this
problem, it was decided to apply the formulation symboli-
cally, so as to obtain a closed set of symbolic equations of
motion. This approach is explained in detail below.

The machine, excluding its manipulator and tires, is mo-
deled as a lumped mass, referred to as the ‘base’, see Fig. 3.
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ẑ0

x̂1

ŷ1
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Fig. 3. The 8 dof system and its frames.

A body fixed frame 0, defined by ( ˆ , ˆ , ˆ )x y z0 0 0 , is attached
to the center of mass (CM) of the base, and has the same
orientation with a world-fixed frame, ( ˆ , ˆ , ˆ )x y zw w w , when the
vehicle tires are not compressed. The x̂0  axis of frame 0 is
along the vehicle forward motion, while the ˆ z 0  axis is
normal to the base and pointing upwards. There are five
links in the manipulator namely (from base to tip) the
swing, boom, stick, pin and end-effector. The last two links
are not actuated but instead they are connected with free
joints, subject to frictional effects. A load attached to the
last link swings like a double pendulum (gimbals). On all
five links, frames are attached as shown in Fig. 3, according
to the modified Denavit-Hartenberg methodology, [7]. The
swing frame, i.e. frame 1, has the same orientation with the
base frame 0, when the angle of rotation is zero.

A force/moment set, (f, n), is applied to the base
through the tires and the ground. It is reasonable to assume
that the soil has been compacted, and that most of the base
compliance is due to the machine’s pneumatic tires. These
four tires are modeled as four springs and dampers in paral-
lel. The simultaneous vertical displacement of the springs
gives rise to a base bouncing effect. Due to the spring
structure, the base is also subject to pitch (rotation around
the ŷ0  axis) and roll (rotation around the x̂0  axis) motions.
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The yaw effects as well as displacements along the x̂w  and
ŷw  axes are usually negligible, and therefore are neglected.

To apply the Newton-Euler formulation, special care
must be placed in including base compliance. To obtain the
equations, it is assumed that the position, velocity, and
acceleration of the base is known. Assuming that the
motion of the links is also known, allows finding all link
accelerations, and from these all body forces and moments.
Once an expression for the forces and moments acting on
the base is found, it is equated to the spring and damper
forces due to the tires, which are a function of base position
and velocity. This closes the equations of motions, which
are then written in the standard matrix form and integrated.

In more detail, the base orientation is described by two
successive Euler transformations (yaw neglected)
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where cz  is the cosine of qz  and sz  is the sine of qz , etc.
The angles qx , and qy , are the roll, and pitch respectively.

The position of the base frame with respect to the world
frame is defined as

w w T
p x y z0 = [ ] , (2)

where the symbol a
c
bp  should be read as the position vector

of point c with respect to point b expressed in frame a. To
start the kinematic propagation equations, we set
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Note that to model a sloped terrain, it suffices to modify
the components of w

wv̇ . Applying propagation equations,
we obtain for the base
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Only the vertical displacement is considered, therefore,
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where 0 0

0
0pc = , and c

0
 indicate the CM of the base. The

total force and moment acting on the base are given by
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where the subscript ´ converts a vector to a skew-symmetric
cross-product matrix, m0  and 0

0
v̇c  are the mass of the base

and acceleration of the center of mass of the base expressed
in base frame 0, i

i
cI  is the inertia tensor of the ith link, and

i
iF  and i

iN  denote the force and moment acting at the
center of mass of the ith link expressed in the ith frame.

Once the base velocities and accelerations are found, then
the procedure continues by forward iterations from link 1 to
5, till the end-point is reached. During the backward
iteration, constraint forces and torques, and joint actuator
torques are computed recursively from link 5 to link 1. A
more detailed description of this procedure can be found in
[7]. The forces and torques transmitted to the base by the
tires can then be found from the last inward iteration using
the following equations
0

0
0

1
1

1
0

0f R f F= + , 0
0

0
0

0
1

1
1

0 0 0
0

0
1
0 0

1
1

10
n N R n p F p R fc= + + +´ ´

(9)

where the symbols i
if  and i

in  denote the force and torque
exerted on link i by link i-1, expressed in frame i. These
can be expressed in world frame as

w wf R f0 0
0

0= ,   w wn R n0 0
0

0= (10)

where w R0  is given by Eq. (1). Since the tires are modeled
as springs and dampers, then

F f n f n KX BXw w T T= [ ] = [ ] = - -0 0
˙ (11)

where X and Ẋ  are the linear and angular displacement and
velocity vectors of the base with respect to world frame. K
and B are the stiffness and damping matrices and capture
the effect of tire behavior. For simplicity, and for small
motions, these matrices are assumed to be diagonal

K diag k k k k k kx y z= ( ), , , , ,1 2 3 B diag b b b b b bx y z= ( ), , , , ,1 2 3 (12)

The symbols k kx y,  and kz  represent the total linear
stiffnesses along the corresponding directions, as denoted
by subscript with respect to the world frame. The term
‘total’ stiffness is used to represent the combined stiffness
of the four tires. The k k1 2,  and k3 represent the total
angular stiffness for roll, pitch and yaw. The same notation
is applied in the case of damping. Since only three base
motions are significant, i.e., bounce, roll and pitch, the
remaining base equations are dropped. Then, the other two
displacements are constant and the yaw angle is zero.

Finally, the equations of motion are written as

Mq V q q G q Q˙̇ , ˙ ( )+ ( ) + = (13)

where M is an 8́ 8 symmetric and positive definite mass
matrix, V contains the Coriolis and centrifugal terms, G the
gravity terms, and Q is the force/torque vector. A reduced
five dof order model is formed by neglecting base
compliance in the eight dof model. This model will be used
as the dynamics engine of a real-time training simulator
also undergoing development as part of the ATREF project
[8]. A further reduced model of three dofs, formed by
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neglecting the Hooke-type gimbals, has been used for the
valve sizing studies, described in Section 5.

4 Parameter Estimation
Model parameters are needed to run the simulations,
validate the developed code, and design controllers.
Geometrical parameters such as lengths were found from
blueprints, and verified by direct measurements. Some
masses were computed using drawings, or by direct
weighing. For the rest of the parameters, a combination of
pendulum experiments and solid modeling techniques was
used. The stiffness and damping ratio of the tires were
found by static load-deflection tests and drop tests,
respectively.

4a. Pendulum Experiments
During a pendulum experiment, a rigid body is suspended
from a point, is angularly displaced, and then is set free to
swing. The period of the resulting oscillation is recorded,
and is subsequently used to calculate the moment of inertia
around the axis of rotation according to

I
mglT

zz
0

2

24
=

p
(14)

where Izz
0  is the moment of inertia of the body with respect

to the axis of swinging (a z-axis), m is its mass, T is the
period of oscillation, and l is the length from the point of
suspension to body CM. The moments of inertia with re-
spect to body CM, are then computed using the parallel
axis theorem. As revealed by Eq. (14), the inertia is propor-
tional to the square of the time period, and this may result
in substantial estimation errors. Moreover, swinging a body
with respect to a single axis is a difficult task. For these
reasons, pendulum experiments were used in parallel to
solid modeling techniques.

4b. Solid Modeling
Solid modeling techniques can be used in obtaining all
mass properties and center-of-mass positions, assuming that
the material and the geometry of a body or link are precisely
known. However, this is not always the case. To match
solid modeling estimates to measurements, static suspen-
sion, weighing, and pendulum experiments were used to re-
fine solid models to the point that both the estimated and
measured total mass and moment of inertia were in agree-
ment. The solid models generated for the swing and the
boom are shown in Fig. 4. Following the techniques de-
scribed above, the inertia parameters of the main links were
obtained and are given in Table I.

4c. Load-deflection Experiment
To obtain the tire stiffness, k, load-deflection experiments
were conducted. In these, a load is applied on a tire and its
vertical deflection is measured. Fig. 5a shows a typical plot
obtained from such experiment. As shown by this figure,
the tire behaves like a linear spring in the region of loads of
interest. From the average slope of the plot in Fig. 5a, the

tire stiffness was computed as equal to k = 49.23 kg/mm.
This stiffness was used to calculate the translational and
angular stiffness for bounce, roll and pitch.

Fig. 4. Solid models generated in AutoCad.

Table I. Link Inertia Properties.

in kgm2 Ixx Iyy Izz Ixy Iyz Izx

Swing 52 53 56 .01 .02 5
Boom 17 926 929 .36 -.09 -.70
Stick 16 816 826 32 .14 .51
Pin 0 3.3 3.3 0 0 0

End-eff. 0 1265 1265 0 0 0

4d. Drop Experiment
One of the simplest methods to estimate the damping ratio
of a non-rolling tire is the so-called drop test [9]. In the case
of a light tire, a load is added to the hub of the tire, which
is just in contact with a steel slab, without deforming it
(the load is supported externally). The load is then set free,
and the loaded tire is allowed to deform freely from its ini-
tial position. Throughout the experiment, the tire must be
in contact with the slab, otherwise obtained results will not
be valid due to impacts. An accelerometer mounted on its
hub records the tire transient response, which corresponds to
an underdamped oscillation. Fig. 5b displays a typical ac-
celerometer reading during a drop experiment.
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Fig. 5. (a) Tire stiffness estimation, (b) Tire
damping estimation.
Double integration of the acceleration data such as the one
displayed in Fig. 5b, yields the hub displacement response.
Then, using the amplitude of two successive periods of the
response, x1  and x2  and the logarithmic decrement equa-
tion, the damping ratio coefficient, z, is found according to
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Using this equation, the value of the damping ratio was
computed as 0.035. Based on this estimate, and on the
mass of the tire, the tire damping coefficient is calculated.
The damping coefficient for the pitch, roll, and bounce can
then be computed easily [6].

5 Valve Sizing Based on Inverse Dynamics
An important application of dynamic modeling is sizing of
actuators. In the case of the experimental electrohydraulic
machine, it has been decided not to replace the existing hy-
draulic cylinders or the swing motor. However, the need to
replace the old load-sensing valves by new proportional
ones for the constant-pressure supply, provided an impor-
tant application for the derived dynamic models. According
to typical industrial practice, proportional valves are
selected based on a nominal load and duty cycle. However,
no such nominal quantities exist for a manipulator arm
whose configuration changes continuously, and may carry
no load, or be loaded with a heavy tree. Therefore, a
systematic methodology for valve sizing was needed.

A valve is properly sized when it can supply the de-
manded flow at the required pressure drop across it.
Therefore to size a valve, flow and pressure requirements
must be obtained as a function of time for a given task.
Obviously, the task becomes more demanding when the
manipulator is moving a heavy payload, or when it operates
on a slope. To this end, typical average as well as worst-
case trajectories of the manipulator end-point were specified
by observation of actual forestry machines. Using inverse
kinematics relationships, these end-point trajectories were
resolved at the actuator level, to result in trajectories for the
swing angle, and the boom and stick displacements. Then,
these were used to obtain the flow requirements for all three
actuated dofs.

Assuming average piston areas, the flow through the
stick and boom valve and cylinder is

Q A x Q A xs s s b b b= =˙ , ˙ (16)

where A  is piston area, and ẋ  is piston velocity. Since the
swing is driven by a gearbox motor, the flow through the
swing motor valve is

Q Dn qswm = ˙1 (17)

where D is the motor displacement, n is the gear ratio from
the swing link to swing motor, and ˙ q 1  is the angular
velocity of the manipulator swing link.
To obtain the pressure drops across the three valves, a
reduced three dof dynamic model that includes the actuated
dofs (swing, boom, stick) was used. From this model and
the desired trajectories, the necessary forces at the two
cylinders, and the torque necessary to rotate the manipulator
were computed using inverse dynamics equations in the
form of Eq. (13). These forces and torques are related to the

pressure drops Dp at the cylinders and the swing motor ac-
cording to the following equations

Dp
f

As
s

s

= , Dp
f

Ab
b

b

= (18a)

Dp
D nDswm
swm sw= =t t

(18b)

where fs is the force applied by the stick cylinder, fb is the
force applied by the boom cylinder, and tswm is the torque
applied by the hydraulic motor. Neglecting line pressure
drops, the drop at the valves, Dpv , are given by

D Dp p pv s op s, = - , D Dp p pv b op b, = - (19a)

D Dp p pv swm op swm, = - (19b)

where pop  is the constant operating pressure of the ma-
chine’s pumps. If necessary, these estimates can be de-
creased by a factor of 10% to allow for pressure drops in the
transmission lines. Equations (16-17) and (19) can be used
to plot valve flow versus valve drop for the desired end-
point trajectories. The resulting Q-Dp curve should lie
below the valve pressure-flow characteristic, Qv-Dpv, typi-
cally a curve described by a relationship of the form,

Q c pv v= D (20)

If this is not the case, a valve of larger capacity must be
specified. Fig. 6 shows typical plots of such curves for the
boom, stick, and swing, when the macine is operating on a
20o sloped terrain. Since all plots lie under the valve
characteristic, this valve can be used for driving all manipu-
lator actuators along the desired trajectory.
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6 Dynamic Response
In this section the dynamic behavior of the eight dof system
is studied based on torque/force inputs generated by a set-
point feedforward controller [6]. The focus here is to study
system transient and steady state response for various joint
torques. Figs. 7a,b,c show typical actuator applied torques,
while Figs. 7d,e,f depict base pitch, roll and bounce.
Although these are relatively small, their effect at the end-
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point is not negligible. Finally, the response of the Hooke
assembly joint angles is shown in Fig. 7g, h.

-5000

0

5000

1 104

1.5 104

2 104

0 5 10 15 20

Swing

T
or

qu
e 

(N
 m

)

Time (s)

8 dof

5 104

1 105

1.5 105

2 105

0 5 10 15 20

Boom

T
or

qu
e 

(N
 m

)

Time (s)

8 dof

(a) (b)

2 104

3 104

4 104

5 104

6 104

7 104

8 104

0 5 10 15 20

St i ck

T
or

qu
e 

(N
 m

)

Time (s)

8 dof

2.5

3

3.5

4

4.5

5

0 5 10 15 20

Pitch

P
os

iti
on

 (
de

g)

Time (s)

8 dof

(c) (d)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 5 10 15 20

Roll

P
os

iti
on

 (
de

g)

Time (s)

8 dof

-0.106

-0.105

-0.104

-0.103

-0.102

-0.101

-0.1

-0.099

0 5 10 15 20

Bounce

P
os

iti
on

 (
m

)

Time (s)

8 dof

(e) (f)

-90

-85

-80

-75

-70

-65

-60

0 5 10 15 20

P i n

P
os

iti
on

 (
de

g)

Time (s)

8 dof

-10

-5

0

5

0 5 10 15 20

End-effector

P
os

iti
on

 (
de

g)

Time (s)

8 dof

(g) (h)
Fig. 7. Transient response results.
Since these links are not actuated, their response is os-
cillatory. However, eventually this oscillation dies out due
to the presence of joint friction.

7 Conclusions
This paper studied the generation of dynamic models for an
electrohydraulic forestry machine. Such models can be used
for training simulators, for sizing components, and for
system design. The most complex model, includes base

compliance, and swing, boom, stick, and non-actuated dofs
of the processing head, suspended from the end-point. A
symbolic version of the Newton-Euler iterative method was
used to include the base dofs due to the compliant tires.
Techniques and experiments designed to extract system
parameters were described. Based on the obtained models, a
novel valve-sizing methodology was outlined. Simulation
results of the system’s response were provided.
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