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Abstract 
This paper presents an approach t o  the specification 

of requirements, and verification of design, for a robot or 
other intelligent system. The approach is demonstrated 
on a typical robotic task - visual grasping. Formal math- 
ematical reasoning is used to show that a design con- 
forms t o  the system requirements. Typically the require- 
ments define safety and functionality constraints on the 
system and components. Formal analysis allows the sys- 
tem designer t o  evaluate the system behavior and verify 
the system parameters that guarantee safe and robust 
system performance. 

1 Introduction 

With a growing number of computer-controlled sys- 
tems we face a major challenge: development of reliable, 
robust, and safe real-time intelligent systems. Intelligent 
autonomous system development can be decomposed 
into three phases: system modeling, requirements speci- 
fication] and behavior verification [7,19,6]. Robotic sys- 
tems are usually complex, hierarchical, and physically 
distributed. They must deal with inconsistent, incom- 
plete, and delayed information from various sources. To 
address these problems, this paper demonstrates suit- 
able analytical tools which would allow a designer of a 
complicated robotic system to use a formal mathemat- 
ical reasoning when checking that a design conforms to 
the requirements. A methodology for analyzing such 
complex systems would enable a design engineer to re- 
fine the control structure for optimal performance given 
specific system dynamics and limitations. Formal verifi- 
cation tools have proven to be important in the develop- 
ment of real-time software [3]. We hope to develop and 
apply these techniques to robotics resulting in a more 
efficient, systematic, and reliable robotic system design 
process. 

Numerous mathematical models and formalisms have 
been proposed over the past years for computer con- 
trolled systems. Timed Petri nets[4], constraint nets[23], 
hybrid automata[2], and timed V-automata[l.l] have 
been developed for the specification and verification of 

concurrent programs and hybrid systems. Discrete event 
system theory[l8] has been applied to the synthesis of 
supervisory control. Logical models of continuous state 
systems have been described in [5, 12, 16, 221. These 
intelligent system models are currently in the develop- 
ment stage: no model has reached a level of universal 
acceptance. The adaptation of these theoretical tech- 
niques for real world applications is a subject for future 
investigation. 

In the following sections we present a formal veri- 
fication of a visual grasping task using the techniques 
of duration calculus [7, 19, 61. Duration calculus (DC) 
is an extended temporal or interval logic [l, 151, which 
can be used to specify and reason about real-time and 
logical constraints in dynamical systems without the ex- 
plicit mention of time instants. Duration calculus has 
already been used to design a gas-burner [7, 191, a rail- 
way crossing [all, and a digital controller of hydraulic 
arm manipulator [20]. We apply DC to a complex sys- 
tem, a robot performing visual grasping. DC is used to 
describe state durations, progress from state to state, 
and stability of the robotic system states. The task 
of visual grasping (or robotic catching) is of interest 
in both manufacturing] and in tele-operation applica- 
tions [8, 171. Although there are numerous papers that 
demonstrate success at this task [ lo ,  91, each working 
system involved fine tuning of parameters highly specific 
to the particular project. In this paper we are trying to 
analyze the task of visual grasping in the framework of 
system specification and verification. It is assumed that 
our system has bounded, but unknown, control param- 
eters and delays. In modeling an intelligent system the 
challenge is to be able to analyze each level of abstrac- 
tion in detail and the overall behavior of the robotic 
system in general. Formal methods are used to derive 
sufficient and necessary conditions on the control and 
delay parameters, such that the entire system satisfies 
the given duration calculus requirements. This explores 
the task at a meta-level, considering the effect of various 
communication and computation times, system dynam- 
ics, etc. on the ability to successfully complete a visually 
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Figure 1: Grasping the object. 

guided grasping task. The design trade-offs that others 
had to  make in designing a grasping system can be made 
explicit within our model. 

The task of grasping is often decomposed into phases, 
such as Idle, Approach, Pregrasp, Grasp (e.g. [SI). The 
transition between phases is triggered by a control com- 
mand or by sensor feedback. For a simple task such 
as grasping, analysis of the control flow through these 
phases leads one to believe that the task can be exe- 
cuted: if each phase is successful and the transitions 
between phases are successful, then the task should be 
successful. If one imposes constraints on the task, such 
as an upper bound on the time to  complete the task, or 
if particular hardware imposes constraints, then analy- 
sis of the individual phases is not sufficient to analyze 
the system as a whole. Often a robotic system is “fine 
tuned” to perform a specific task given particular con- 
straints, however a change in hardware may lead to con- 
troller re-design. Formal techniques make this tuning 
more systematic. 

With a visual grasping task, various questions may 
arise, such as: 1) how much chatter at contact is permit- 
ted? 2) if the object to  be grasped is moving at speled wo 
and the robot hand has a maximum speed, TI,, can the 
robot catch the object? 3) how fast can the robot grasp 
an item? and 4) will the robot do what it is designled to 
do? Answers to such questions will depend on the indi- 
vidual hardware and software parameters. We are inter- 
ested in the inieraction of the various control/hardware 
and software parameters on each level of control and 
finding a specification language, which would allow us 
to reason on the level of differential equations as well as 
at  the logical level. 

2 Visual grasping. 

To demonstrate the technique of duration calculus 
we consider the task of grasping a moving object with a 

planar two-fingered hand using visual information about 
the object and the assumptions: 

e each finger is equipped with tactile and force/torque 
sensors; 

e the size, shape, and speed of the object are not 
known but are computed from visual information. 
the moving object is constrained (e.g. by a con- 
veyor) and has translational speed Wobj.  

Under these assumptions our goal is to design a provably 
reliable autonomous control system which will grasp the 
object using only information about object geometry ob- 
tained from the camera and using the tactile sensors to  
detect a contact with the object. 

2.1 Task description. 
Coordinates of the boundaries of the object are ob- 

tained by processing an image of the object, which is 
assumed to take time S. Assume A is a point midway 
along the left boundary of the object and define the line 
y = = yo , where y1 (yn) is the coordinate of 
the upper (lower) bound of the object. The left finger- 
tip is required to  reach A as fast as possible and attain 
velocity w,i, a t  point A (fig. 1). Velocity w,in is the 
transition velocity to  the phase Contact. The Approach 
phase can be divided onto three sub-phases: 
1. Approach B. Optimally approach the line y = yo 
with the velocity V d  at point B. W d  is constrained by 
w,,, , and wmin , and depends on the distance from B to  
A,  and maximum deceleration capability of the system. 
2. Approach C. Move with constant speed wd along the 
line y = yo from B to C,  where C is a starting point of 
deceleration to a low transition velocity wmin. 
3. Approach A. Deceleration from velocity W d  to  veloc- 
ity w,in attained at location A. Because the object is 
moving along the line (y = yo), the coordinates of the 
point A can be calculated as ( X A ,  y ~ )  = (20 + vobjt, YO), 
where 20 and yo are x- and y-coordinates of the point 
A at the starting position. The position of the finger- 
tip (XF, y ~ )  can be calculated using inverse kinematics 
and shaft encoder angle information. The expected-end- 
event (reach A) is detected when the coordinate of the 
fingertip XF is equal to  the coordinate X A  of the point 
A. Thus, the event (ZF = XA) indicates switching to 
the next control phase Precontact. 

In phase Precontact (fingertip is moving with velocity 
wmin and location A has been achieved with sufficient 
accuracy), the fingertip force is monitored, and when 
the force exceeds a prescribed level, the expected-end- 
event Contact is declared. 

When the event Contact is recognized, the control 
system is switched into a different control phase which 
maintains contact with some desired force. The finger 
and object move with the same velocity wobj , until con- 
tact with another finger is sensed, Detecting contact 
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holds on point intervals [b,  b] 
holds on [b,e]  ( b  < e ) ,  if Q has value 
true almost everywhere in [b ,  e] 
holds on [b ,  e] if V holds on some 
subinterval of [b,  e] 
holds on [b,  e] if ’D holds on any 
subinterval of [b,  e] 
holds if V2 holds on some subinterval 
from the point (if any) where VI 
ceases to hold. 
holds on an interval with D1 holding 
on an initial subinterval if ’Do2 
starts holding within time t 

Table 1: Duration Calculus Notational Semantics. 

from both fingers will trigger a switch into phase Lift,  
followed by the phase Move and so on. 

2.2 System requirements 

For reliable performance of the autonomous system, 
it is required that system should be self-controlled: if an 
error in the system occurs, the controller design should 
guarantee that the error will be detected within a certain 
time interval and the system will safely recover from the 
critical state. Specifically, for the task of grasping the 
moving object, the informal requirements are as follows: 
1. When an undesirable event occurs the fingers need 
to be returned to their initial positions; 2. To guar- 
antee safety of tactile sensors and object impedance we 
require that the contact force not exceed a certain upper 
bound Fmax. 3. Total time for task execution should 
not exceed a certain time T m a x .  

3 Notation 

We use basic notations and semantics used in dura- 
tion calculus for requirements specification and verifica- 
tion. Standard operators V, A, 1, +=, e , V ,  3, ; (((chop”) 
are used. Common abbreviations from duration calculus 
[19, 61 for state assertion Q ,  duration formulas D, D1, V2 
and a positive time constant t are used (table l), with 
rules of precedence: 

first: l , O , O  
second: V, A, ; 
third: 

The logical operators are used for state assertions as well 
as duration formulas. 

=J, -+, N t -+ 

4 Control model 

We use a hierarchical control structure where the top- 
level control system consists of the Master controller 
which supervises the overall task execution. Two Fin- 
ger controllers supervise the task execution for each 

(4 (b) 
Figure 2: (a) Master controller automaton with states corresponding 
to the phases of the task. (b) The structure of the (left or right) 
finger controller. 

finger (figure 2). Our system’s task is to detect, reach, 
and grasp a moving object, then lift and move it to 
some specific location autonomously, while relying only 
on sensor information. The task will be completed when 
the object is dropped in a certain location and fingers 
are returned to their initial positions. All these phases 
correspond to the Master controller states and from 
each state the Finger controllers are called. 

4.1 Master controller 
We define possible phase transitions by means of 

a finite state automaton with the set of states Q: 
{ i d l e ,  grasp, l i f t  , move, drop). The correspond- 
ing phases, ( I d l e ,  Grasp, L i f t ,  Move, Drop), are 
defined when 9 takes on the appropriate value, e.g. 
I d l e  (Q = id le ) .  The phase transition automaton 
shown graphically in figure 2 formally can be restricted 
to progress from phase to phase by progress constraints: 

Phases-Init A Trans 

where Init expresses that the automaton starts from an 
initial point in the I d l e  phase, Init- n ----f [Idle1 , and 
Trans defines the phase transitions 

Trans A 0 ( ([Idle] + [Graspl) 

A ([Grasp1 -+ ( [ L i f t 1  V [Idlel))  

A ( [ L i f t 1  --i ([Move1 V [Idle])) 

A ([Move] -+ ([Drop1 V [Idlel))  
A ([Drop1 --i [Idle]) ). 

Predicate PhaseReq monitors each phase requirements . 
PhaseReq A 0 ( IdleReq A GraspReq A LaftReq 

AMoveReq A DropReq ) 
Due to space limitations we specify only IdleReq and 
GraspReq. In each of the following formulas E denotes an 
upper bound on the duration of the phase and 6 denotes 
an upper bound on the duration of the transition from 
one phase to another. 

It is required that a transition from the I d l e  phase 
occurs within SI, after object information is obtained. 

IdleReq 2 ([Idle] A [ObjInfl 3 e 5 61 ) 
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The goal of the phase Grasp is to achieve a stable contact 
with the object. The phase Grasp enters phase L i f t  
within SG, only if both fingers achieve stable contact. 

bothContact P 1eftCont A rzghtCont 

If either left or right finger fails to accomplish a subtask 
in any of the sub-phases of Grasp , then Finger controller 
switches to the l e f  tRet  or r ightRet  respective1,y and 
the transition function, Fazl, 

Fad = o( [ lef tRet]  V [rightRet] ) 

switches control of the Master controller to the phase 
Id le .  Phase Grasp is stable for at least SG and lasts a t  
most EG beyond Fazl ( 6 ~  5 EG).  

Grasp Reqs 
0 

A 
A ([Fazl]  A 5 6~ j TO( [Grasp] ; [TGrasp])) 
A 

((leftReq A ZeftTrans A rzghtReq A rzghtTrans)l 
([Grasp] A [bothContact] j n - 6~ - [Lift]) 

([Fazl]  =+ fl - EG - [Idle])) 

The predicate GraspReq, a conjunction of four predicate 
formulas, evaluates to the true value only if each of the 
formulas has value true. 

4.2 Finger controller 
This subsec tion describes the lower level of control. 

The Finger controllers are responsible for supervision 
of task execution for both fingers. While in the ]phase 
Grasp and object geometry information is received, the 
Master controller commands the Finger controllers 
to execute their tasks - contact the object. While ap- 
proaching the object each finger goes through the same 
phases, we limit our presentation to the left finger The 
problem of synchronization of two fingers operatiing si- 
multaneously will be discussed next. 

Boolean functions will be used to formalize the task: 
Fdist, leftCont, INsade. 

Fdzst tells us whether there exist a sufficient distance 
between two fingertips: 

1, if ( X r i g h t  - x ie f t )  > 
0, otherwise Fdist = 

where 2, ight  and xief t  are x-coordinates of the right 
and left fingertips, respectively. Because of the coor- 
dinate system used (see figure 1) only 2-components 
are needed to insure that fingertips are not overlapped. 
Each finger goes through the phases: 

Id le :  Entered from top-level phase Grasp when (ObjInf 
= 1); transition before 06jInfhas lasted Si. 

Approach: Reach the boundary of uncertainty region 
of object position as fast as possible, monitoring 
fingertip coordinates and velocity; enters PreCont 
phase if (INside = 1). 

PreContact: Monitors force, velocity, and distance be- 
tween left and right fingers; enters the Cont phase 
if contact is sensed and (Fdist = 1). 

Contact: Maintains contact, adjusting force level, Fe. 
Return: Returns finger to the initial position and then 

For phases Appr, PreCont , Cont there is an error re- 
covery procedure of returning to I d l e  through the phase 
Ret, so that, whenever a failure of any of the phases has 
occurred, both fingers go to the initial position and the 
system to Id le .  

Phase transitions are defined by the automaton 
shown in Figure 2 and predicate 

left%" 0 (( 1 -+ [Idle]) A ([Idle] -+ [Appr]) 

enters Id le .  

A ([Appr] -+ ([PreCont] V [Ret])) 

A ([PreCont] --$ ([Contl V [Ret])) 

A ([Cont] -+ [Ret])) 
The requirements for the left finger are 

leftReq=O(leftIdleReq A ZeftApprReq A 1eftPrecontReqA 

and we can specify each phase requirements. The I d l e  
phase for the left finger (1ef t Id le )  is left within time 
interval Si if the information about the object has ar- 
rived (ObjInf = 1). 

1eftIdZeReq i& ( [ le f t Id le ]  A [ObjInf] e 5 Si ) 
The leftAppr phase lasts at most E,. This phase 
switches to the 1eftPreCont phase within 6, if the fin- 
ger enters the object domain (INside = 1). The formal 
requirements for the lef tAppr phase are 
1eftApprReq = ([lef tAppr] a e 5 Ea ) 

leftContReq A 1eftRetReq) 

A(fleftAppr1 A [INside] 3 fl - 6, - [leftPreContl) 

A( [Fail] j n - 6, cvf [ le f tRet l )  
The duration of the phase 1eftPreCont is at most E,. 

The phase 1eftCont is entered within S,, if event left- 
Cont is detected and a certain distance U between the 
fingertips exists. The phase enters l e f t R e t  within 6, 
on TFdzst or Fail. 
deftPrecontReq =( [leftPreCont] + e 5 E, ) 

A( [leftcont] A [Fdist] j n - 6, - [ lef tcont])  

A( [leftPreCont A TFdist] j n - 6, cv) [ lef tRet l )  

A( [Fail] =+ n - 6, cvf [leftRet]) 
The phase 1eftCont lasts a t  most E,, maintains the 
force level and is allowed to lose Contact for not longer 
than Scant. The phase l e f t c o n t  enters the l e f t L i f t  
within time 6, if function bothcontact evaluates to 1 
and enters l e f tRe t  if Fail = 1. 

2eftContReq A (rleftCont.1 =+- E, ) 
A ([YZeftCont] +- e _ <  Scant ) 
A ([bothContact] n 6,- [ l e f t l i f t ] )  
A ( [Fai l ]  j fl - 6, - [ lef tRet])  
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Table 2: Cases for the grasp requirement predicate. 

The l e f t R e t  phase is required to enter l e f t I d l e  after 
time 6, and to return fingertip to the initial position 
within the same interval of time. 

EeftRetReq ( [leftRet] + e 5 6, ) 
A ( [ lef tRet]  +- n - 6, cvf ZeftInztPos ) 

exp(-s hi) 

Controller 
h , controller time-delay 

h, measuring time-delay 

exp{-s hz) T measuring period 

Figure 3: Close-loop control system with two time-delays. 

5 Verification of the task requirements 

Verification of the task requirements is a formal way 
to guarantee that a certain task will be solved, or 
equally, that the task requirements will be satisfied un- 
der given assumptions. This statement can be expressed 
by the predicate formula 

( Reql AReq2AReq3 ). 
The total system requirements consist of three different 
requirements which are defined and verified below. 

1)Phases A PhaseReq + Reql 
2 )  Phases A PhaseReq 3 Rep2 
3)Phases A PhaseReq Req3 (time - constraint) 

Verification of Reql (initialization): The first require- 
ment may seem rather trivial, it states that whenever 
our “Master” is in the I d l e  state , each “Finger” has 
to be in the I d l e  state as well. Satisfying this require- 
ment is analogous to sequentially operating systems in 
that each control cycle has to start from the same state. 
Formally this requirement can be written as 
Reqj 4 [Idle] 3 [ l e f t I d l e  A r igh t Id le1  
One should consider different cases depending on which 
state preceded the Id le .  

Phases APhaseReq + 

(initialization) 
(f orce - constraint) 

[TIdlel ;  [Idle1 5 1; [Idle] V [Grasp]; [Idle]V 
[Lif t ] ;  [Idle] V [Movel; [Idle] V [Drop]; [Idle] 

The first case is trivial. Since there are no states pre- 
ceding the I d l e  state, initial positions of the fingertips 
should be the same. The second case, from GraspReq, 
says that the phase I d l e  can be entered from phase 
Grasp only if the function Fail is satisfied. 

GraspReq A ([Grasp] ; [ Idlel)  
+ true; [Grasp A Fail A 6~ 5 1 5 E G ~  ; [Idle] 
=+- true; [Grasp A ( le f tRet  V r ightRet)  

A 6~ 5 1 5 EG] ; [Idle] 

Without loss of generality we suppose that the right 
finger is in the phase r igh tRet .  Depending on the left 

finger phase the cases are given in table 2. Because 
there are no lower bounds on transitions from phase to 
phase, the case 1)  is possible, and then it takes at most 

+ 6, + 6, time to reach 1 e f t I d l e .  A case by case 
analysis shows that Reql will be satisfied as long as 6~ 2 
max(6i + Sa, 6,, 6,) + 6, . 

Verification of Reqn (force constraint): In verifying 
Rep2 we guarantee that the force level of the finger- 
object contact force during the phase Grasp will never 
exceed some upper bound (Fmaz). This requirement is 
supposed to provide safe and robust operation for the 
force and/or tactile sensors. 

To verify Reqz, the sub-phases PreCont and Cont are 
considered. These two sub-phases are safety critical; 
the force level could possibly exceed the allowed upper 
bound in one of these phases. 

We make two assumptions about the hardware in- 
volved in the experiment: 1)  The production line moves 
with a velocity VObj  which can fluctuate within an in- 
terval VObj E [”&. , .&] and 2) The algorithm used for 
image processing guarantees the accuracy of the image 
within some known margin. Both of this assumptions 
can be embedded to describe the growing boundary of 
object position uncertainty as a function of time. 

When the fingertip enters the object uncertainty re- 
gion the boolean function INside switches control mode 
from phase Approach to phase PreCont. In phase 
PreCont we start monitoring force level. To guaran- 
tee that the contact force level never exceeds its upper 
bound we consider the worst-case situation, and find pa- 
rameters to satisfy: 

Reg2 V t ( F ( t )  5 Fmas). 
To do this, we model the (‘worst case” contact. Let 
the period of the control cycle “measurement - control 
- plant” be equal to T .  We consider two types of de- 
lays - controller time-delay hl and delays in measure- 
ments h2 (see figure 3) .  A priori, by testing the finger 
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(4 (b) 
Figure 4: Worst case impact model and contact force approximation. 

on its resistance to the contact, data of the contacting 
force as a function of displacement F ( x )  can be obtained 
[8]. This function can be upper- and lower- bound ap- 
proximated by the linear functions F ( x )  = l i m a z x  and 
- F ( x )  = Kminx, respectively (see figure 4). 

The next step in the verification is to  model the dy- 
namical system. In order to  make a reliable prediction 
about the system behavior a good model of the dynamic 
system is needed. The model used has to  be at  least an 
“upper bound model” which guarantees that the real 
physical system will have contact force less than that 
predicted by the system. 

In our worsl, case analysis we model the interaction 
between soft finger tip and environment as a mass-spring 
system with no energy dissipation (no damper in the 
model). The elastic force modeled as a spring is the 
upper bound of the contact force. The last assumption 
follows from the estimations on the contact force (see 

By the controller design, the fingers approach the ob- 
ject with constant velocity W O  (relative to  the object). 
In the phase Precont the control law does not change 
(the system is aktempting to  keep the same velocity W O  ). 
However, in this phase the force sensors are turned on - 
the system is prepared to switch to  the phase Contact. 
The force is measured every T seconds. The event con- 
tact is detected if the force measurement we receive is 
greater or equal to  some threshold F,. 

The worst-case scenario is illustrated in figure 5. As- 
sume that the force was measured at time to- just, be- 
fore the sensed force reaches the value F,. Since F .< F, 
we do not switch our control to  the next mode, but con- 
tinue motion with a control law U1 designed for constant 
velocity tracking. 

The next sampling occurs after period T .  Force has 
now exceeded 17,. During the time (hl + h2) the event 
contact is recognized and a new control function l J 2  is 
calculated and applied. Starting from x( t1)  the system 
is trying to  stabilize the contact force to the value F,, 
that is, to maintain to  the position x = Fc/Kmaz (fig- 
ure 5). Due to inertia the system displaces the finger to  
the position x(pL2). The maximum force occurs at lime 
t~(figure 5) and in worst case will be equal to 

where Ax1 = x(t1) -  to) and Ax2 = x( t2)  - z(t1). 

figure 4 (b)) ICminAx 5 F ( z )  5 ICmazAX. 

F = F, + ICmazAxl + KmarAx2 (1) 

F 
to  -last measurement before contact 

detecung 
t t a+ A I, - switching from control 

Fm.It - - - - _ _ _ _ _ _ _  _ _ _ _  ~ _ _ _ _ _ _ _ _ _ _ _  ~ ______._____ 

U1 to U, 

t,= t 1+ A t -velocity IS zero, 

force is maximal 

Figure 5 :  Maximum force estimation accounting delays, sampling 
period, and inertia of the control dynamic system. 

Depending on the control function Ui (i = 1,2) ,  our 
control dynamic system can be described by the system 
of differential equations 

M 2  = U1 - Kmazx, 
M 2  = U2 - 1 C m a o ~ ,  f o r t  E (tl,tz] (2) 

for t E [O,tl] 

where the system can be stabilized by a PD-controller 

Gains I$ and K; are chosen to stabilize to  the desired 
displacement and velocity, xi and ki. Using Ui in (2) 
obtains the general form of the governing equations 

X + 2Cwnk + W ~ X  = At + B 

ui = K;(x; - x) + IC;(& - k) (i = 1,2).  

(3) 
where 

The complete solution of (3) is (see e.g. [ll]) 

A t + B  2AC 

W n  W n  
(C cos wdt  + D sin wdt) + - (5) = e-cwnt  

where wd = wnd-. Coefficients c and D can be 
found from the initial conditions for each interval 

Ax1 can be found by substituting At, = T + hl + hz 
as the final time for the first stage in the general solu- 
tion (5). Ax2 can be found in two steps: first, find the 
time to  obtain the zero velocity in x(t2) (by differenti- 
ating (5) and substituting for zero velocity) and second, 
substitute the obtained time Atz into (5) with the con- 
stants and initial condition corresponding to  the second 
case. Using Axl and Ax2 in (1)1 we can determine the 
maximum possible contact force which may occur due to 
time delays h l ,  hz, sampling period T ,  and the system 
inertia. We will get the expression of F as a function of 
system parameters: 

M ,  0 0 ,  Fc, ICmam, IC;, IC:, IC:, K;, T ,  h l ,  h2 

Now our verification consists of answering on the ques- 
tion of whether the parameters of the system can be 
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chosen such that the inequality F 5 Fmax holds. We 
are not concentrating here on the problem of stability: 
it is assumed the the gains K j ,  I<:, I<:, and I<: can be 
determined, taking into account the effect of the time- 
delays and sampling period [13]. 

Verification of Reqs: To verify Req3 we must prove 
that the execution time of each phase is bounded and 
that the sum of the time bounds is less then T,,,, i.e. 
T,,, 2 TG + TL + TM + To. Here we prove only 
that the Grasp phase is bounded. Grasp is bounded, 
[Grasp1 + ! 5 TG follows because each of the sub- 
phases are bounded: 

Phases A GraspReq A ([Graspl ; [TGrasp]) 
[Grasp]; [Idle] V [Graspl; [Lift1 

true; [Grasp A Fa24 ; [Idle1 V 

true; [Grasp A bothcontactl; [Lift]  

( e  5 t + E G ) ;  [Idle] V (! 5 t + SG) ;  [Lif t ]  
We find t as a maximum possible interval between 
the beginning of Grasp and the occurrence of Fail or 
bothcontact. The Grasp phase is entered on ObjInf 
( ObjInf = 1). From the 1eftIdleReq and rightIdleReq fol- 
lows that Si is the maximum time spend in the l e f  t I d l e  
or r i g h t I d l e  sub-phases. All other sub-phases are also 
time bounded and 6~ 5 EG thus we can deduce 

+ 
j 

+ 

(t 5 si + Ea + E p  + E,) 

([Graspl + 5 Si + cp  + cc + E G )  

The verification proofs for the remaining phases are 
analogous to  the one presented here. 

6 Discussion. 
We have presented a methodology for a system de- 

signer to specify and verify overall system behavior. Al- 
though the evaluation of logical formulas may seem un- 
usual to a control systems engineer, this level of anal- 
ysis enables the designer to specify and reason about 
real-time and logical constraints in dynamical systems 
without the explicit mention of time instants. We hope 
in the future to be able to automate this verification pro- 
cess, a necessary step as the verification process becomes 
tedious as the complexity of the system increases. Even- 
tually, the developed techniques will result in a more 
efficient, systematic, and reliable design process. 
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