
proceedings of the 1997 IEEE
lntemational Conference on Robotics and Automation

Albuquerque, New Mexico - April 1997

Specifying and Verifying Visual Grasping Tasks

Eugenia Shkel and Nicola J. Ferrier
Department of Mechanical Engineering

University of Wisconsin, Madison, WI, 53706
eugenia@cae.wisc.edu, ferrier@engr.wisc.edu

Abstract
This paper presents an approach t o the specification

of requirements, and verification of design, for a robot or
other intelligent system. The approach is demonstrated
on a typical robotic task - visual grasping. Formal math-
ematical reasoning is used to show that a design con-
forms t o the system requirements. Typically the require-
ments define safety and functionality constraints on the
system and components. Formal analysis allows the sys-
tem designer t o evaluate the system behavior and verify
the system parameters that guarantee safe and robust
system performance.

1 Introduction

With a growing number of computer-controlled sys-
tems we face a major challenge: development of reliable,
robust, and safe real-time intelligent systems. Intelligent
autonomous system development can be decomposed
into three phases: system modeling, requirements speci-
fication] and behavior verification [7,19,6]. Robotic sys-
tems are usually complex, hierarchical, and physically
distributed. They must deal with inconsistent, incom-
plete, and delayed information from various sources. To
address these problems, this paper demonstrates suit-
able analytical tools which would allow a designer of a
complicated robotic system to use a formal mathemat-
ical reasoning when checking that a design conforms to
the requirements. A methodology for analyzing such
complex systems would enable a design engineer to re-
fine the control structure for optimal performance given
specific system dynamics and limitations. Formal verifi-
cation tools have proven to be important in the develop-
ment of real-time software [3]. We hope to develop and
apply these techniques to robotics resulting in a more
efficient, systematic, and reliable robotic system design
process.

Numerous mathematical models and formalisms have
been proposed over the past years for computer con-
trolled systems. Timed Petri nets[4], constraint nets[23],
hybrid automata[2], and timed V-automata[l.l] have
been developed for the specification and verification of

concurrent programs and hybrid systems. Discrete event
system theory[l8] has been applied to the synthesis of
supervisory control. Logical models of continuous state
systems have been described in [5, 12, 16, 221. These
intelligent system models are currently in the develop-
ment stage: no model has reached a level of universal
acceptance. The adaptation of these theoretical tech-
niques for real world applications is a subject for future
investigation.

In the following sections we present a formal veri-
fication of a visual grasping task using the techniques
of duration calculus [7, 19, 61. Duration calculus (DC)
is an extended temporal or interval logic [l, 151, which
can be used to specify and reason about real-time and
logical constraints in dynamical systems without the ex-
plicit mention of time instants. Duration calculus has
already been used to design a gas-burner [7, 191, a rail-
way crossing [all, and a digital controller of hydraulic
arm manipulator [20]. We apply DC to a complex sys-
tem, a robot performing visual grasping. DC is used to
describe state durations, progress from state to state,
and stability of the robotic system states. The task
of visual grasping (or robotic catching) is of interest
in both manufacturing] and in tele-operation applica-
tions [8, 171. Although there are numerous papers that
demonstrate success at this task [lo , 91, each working
system involved fine tuning of parameters highly specific
to the particular project. In this paper we are trying to
analyze the task of visual grasping in the framework of
system specification and verification. It is assumed that
our system has bounded, but unknown, control param-
eters and delays. In modeling an intelligent system the
challenge is to be able to analyze each level of abstrac-
tion in detail and the overall behavior of the robotic
system in general. Formal methods are used to derive
sufficient and necessary conditions on the control and
delay parameters, such that the entire system satisfies
the given duration calculus requirements. This explores
the task at a meta-level, considering the effect of various
communication and computation times, system dynam-
ics, etc. on the ability to successfully complete a visually

0-7803-361 2-7-4/97 $5.00 0 1997 IEEE 688

mailto:eugenia@cae.wisc.edu
mailto:ferrier@engr.wisc.edu

0 1 0 2
X

0, X

Figure 1: Grasping the object.

guided grasping task. The design trade-offs that others
had to make in designing a grasping system can be made
explicit within our model.

The task of grasping is often decomposed into phases,
such as Idle, Approach, Pregrasp, Grasp (e.g. [SI). The
transition between phases is triggered by a control com-
mand or by sensor feedback. For a simple task such
as grasping, analysis of the control flow through these
phases leads one to believe that the task can be exe-
cuted: if each phase is successful and the transitions
between phases are successful, then the task should be
successful. If one imposes constraints on the task, such
as an upper bound on the time to complete the task, or
if particular hardware imposes constraints, then analy-
sis of the individual phases is not sufficient to analyze
the system as a whole. Often a robotic system is “fine
tuned” to perform a specific task given particular con-
straints, however a change in hardware may lead to con-
troller re-design. Formal techniques make this tuning
more systematic.

With a visual grasping task, various questions may
arise, such as: 1) how much chatter at contact is permit-
ted? 2) if the object to be grasped is moving at speled wo
and the robot hand has a maximum speed, TI,, can the
robot catch the object? 3) how fast can the robot grasp
an item? and 4) will the robot do what it is designled to
do? Answers to such questions will depend on the indi-
vidual hardware and software parameters. We are inter-
ested in the inieraction of the various control/hardware
and software parameters on each level of control and
finding a specification language, which would allow us
to reason on the level of differential equations as well as
at the logical level.

2 Visual grasping.

To demonstrate the technique of duration calculus
we consider the task of grasping a moving object with a

planar two-fingered hand using visual information about
the object and the assumptions:

e each finger is equipped with tactile and force/torque
sensors;

e the size, shape, and speed of the object are not
known but are computed from visual information.
the moving object is constrained (e.g. by a con-
veyor) and has translational speed Wobj.

Under these assumptions our goal is to design a provably
reliable autonomous control system which will grasp the
object using only information about object geometry ob-
tained from the camera and using the tactile sensors to
detect a contact with the object.

2.1 Task description.
Coordinates of the boundaries of the object are ob-

tained by processing an image of the object, which is
assumed to take time S. Assume A is a point midway
along the left boundary of the object and define the line
y = = yo , where y1 (yn) is the coordinate of
the upper (lower) bound of the object. The left finger-
tip is required to reach A as fast as possible and attain
velocity w,i, a t point A (fig. 1). Velocity w,in is the
transition velocity to the phase Contact. The Approach
phase can be divided onto three sub-phases:
1. Approach B. Optimally approach the line y = yo
with the velocity V d at point B. W d is constrained by
w,,, , and wmin , and depends on the distance from B to
A, and maximum deceleration capability of the system.
2. Approach C. Move with constant speed wd along the
line y = yo from B to C, where C is a starting point of
deceleration to a low transition velocity wmin.
3. Approach A. Deceleration from velocity W d to veloc-
ity w,in attained at location A. Because the object is
moving along the line (y = yo), the coordinates of the
point A can be calculated as (X A , y ~) = (20 + vobjt, YO),
where 20 and yo are x- and y-coordinates of the point
A at the starting position. The position of the finger-
tip (XF, y ~) can be calculated using inverse kinematics
and shaft encoder angle information. The expected-end-
event (reach A) is detected when the coordinate of the
fingertip XF is equal to the coordinate X A of the point
A. Thus, the event (ZF = XA) indicates switching to
the next control phase Precontact.

In phase Precontact (fingertip is moving with velocity
wmin and location A has been achieved with sufficient
accuracy), the fingertip force is monitored, and when
the force exceeds a prescribed level, the expected-end-
event Contact is declared.

When the event Contact is recognized, the control
system is switched into a different control phase which
maintains contact with some desired force. The finger
and object move with the same velocity wobj , until con-
tact with another finger is sensed, Detecting contact

689

holds on point intervals [b, b]
holds on [b,e] (b < e) , if Q has value
true almost everywhere in [b , e]
holds on [b , e] if V holds on some
subinterval of [b, e]
holds on [b, e] if ’D holds on any
subinterval of [b, e]
holds if V2 holds on some subinterval
from the point (if any) where VI
ceases to hold.
holds on an interval with D1 holding
on an initial subinterval if ’Do2
starts holding within time t

Table 1: Duration Calculus Notational Semantics.

from both fingers will trigger a switch into phase Lift,
followed by the phase Move and so on.

2.2 System requirements

For reliable performance of the autonomous system,
it is required that system should be self-controlled: if an
error in the system occurs, the controller design should
guarantee that the error will be detected within a certain
time interval and the system will safely recover from the
critical state. Specifically, for the task of grasping the
moving object, the informal requirements are as follows:
1. When an undesirable event occurs the fingers need
to be returned to their initial positions; 2. To guar-
antee safety of tactile sensors and object impedance we
require that the contact force not exceed a certain upper
bound Fmax. 3. Total time for task execution should
not exceed a certain time T m a x .

3 Notation

We use basic notations and semantics used in dura-
tion calculus for requirements specification and verifica-
tion. Standard operators V, A, 1, +=, e , V , 3, ; (((chop”)
are used. Common abbreviations from duration calculus
[19, 61 for state assertion Q , duration formulas D, D1, V2
and a positive time constant t are used (table l), with
rules of precedence:

first: l , O , O
second: V, A, ;
third:

The logical operators are used for state assertions as well
as duration formulas.

=J, -+, N t -+

4 Control model

We use a hierarchical control structure where the top-
level control system consists of the Master controller
which supervises the overall task execution. Two Fin-
ger controllers supervise the task execution for each

(4 (b)
Figure 2: (a) Master controller automaton with states corresponding
to the phases of the task. (b) The structure of the (left or right)
finger controller.

finger (figure 2). Our system’s task is to detect, reach,
and grasp a moving object, then lift and move it to
some specific location autonomously, while relying only
on sensor information. The task will be completed when
the object is dropped in a certain location and fingers
are returned to their initial positions. All these phases
correspond to the Master controller states and from
each state the Finger controllers are called.

4.1 Master controller
We define possible phase transitions by means of

a finite state automaton with the set of states Q:
{ i d l e , grasp, l i f t , move, drop). The correspond-
ing phases, (I d l e , Grasp, L i f t , Move, Drop), are
defined when 9 takes on the appropriate value, e.g.
I d l e (Q = id le) . The phase transition automaton
shown graphically in figure 2 formally can be restricted
to progress from phase to phase by progress constraints:

Phases-Init A Trans

where Init expresses that the automaton starts from an
initial point in the I d l e phase, Init- n ----f [Idle1 , and
Trans defines the phase transitions

Trans A 0 (([Idle] + [Graspl)

A ([Grasp1 -+ ([L i f t 1 V [Idlel))

A ([L i f t 1 --i ([Move1 V [Idle]))

A ([Move] -+ ([Drop1 V [Idlel))
A ([Drop1 --i [Idle])).

Predicate PhaseReq monitors each phase requirements .
PhaseReq A 0 (IdleReq A GraspReq A LaftReq

AMoveReq A DropReq)
Due to space limitations we specify only IdleReq and
GraspReq. In each of the following formulas E denotes an
upper bound on the duration of the phase and 6 denotes
an upper bound on the duration of the transition from
one phase to another.

It is required that a transition from the I d l e phase
occurs within SI, after object information is obtained.

IdleReq 2 ([Idle] A [ObjInfl 3 e 5 61)

690

The goal of the phase Grasp is to achieve a stable contact
with the object. The phase Grasp enters phase L i f t
within SG, only if both fingers achieve stable contact.

bothContact P 1eftCont A rzghtCont

If either left or right finger fails to accomplish a subtask
in any of the sub-phases of Grasp , then Finger controller
switches to the l e f tRet or r ightRet respective1,y and
the transition function, Fazl,

Fad = o([lef tRet] V [rightRet])

switches control of the Master controller to the phase
Id le . Phase Grasp is stable for at least SG and lasts a t
most EG beyond Fazl (6 ~ 5 EG).

Grasp Reqs
0

A
A ([Fazl] A 5 6~ j TO([Grasp] ; [TGrasp]))
A

((leftReq A ZeftTrans A rzghtReq A rzghtTrans)l
([Grasp] A [bothContact] j n - 6~ - [Lift])

([Fazl] =+ fl - EG - [Idle]))

The predicate GraspReq, a conjunction of four predicate
formulas, evaluates to the true value only if each of the
formulas has value true.

4.2 Finger controller
This subsec tion describes the lower level of control.

The Finger controllers are responsible for supervision
of task execution for both fingers. While in the]phase
Grasp and object geometry information is received, the
Master controller commands the Finger controllers
to execute their tasks - contact the object. While ap-
proaching the object each finger goes through the same
phases, we limit our presentation to the left finger The
problem of synchronization of two fingers operatiing si-
multaneously will be discussed next.

Boolean functions will be used to formalize the task:
Fdist, leftCont, INsade.

Fdzst tells us whether there exist a sufficient distance
between two fingertips:

1, if (X r i g h t - x ie f t) >
0, otherwise Fdist =

where 2, ight and xief t are x-coordinates of the right
and left fingertips, respectively. Because of the coor-
dinate system used (see figure 1) only 2-components
are needed to insure that fingertips are not overlapped.
Each finger goes through the phases:

Id le : Entered from top-level phase Grasp when (ObjInf
= 1); transition before 06jInfhas lasted Si.

Approach: Reach the boundary of uncertainty region
of object position as fast as possible, monitoring
fingertip coordinates and velocity; enters PreCont
phase if (INside = 1).

PreContact: Monitors force, velocity, and distance be-
tween left and right fingers; enters the Cont phase
if contact is sensed and (Fdist = 1).

Contact: Maintains contact, adjusting force level, Fe.
Return: Returns finger to the initial position and then

For phases Appr, PreCont , Cont there is an error re-
covery procedure of returning to I d l e through the phase
Ret, so that, whenever a failure of any of the phases has
occurred, both fingers go to the initial position and the
system to Id le .

Phase transitions are defined by the automaton
shown in Figure 2 and predicate

left%" 0 ((1 -+ [Idle]) A ([Idle] -+ [Appr])

enters Id le .

A ([Appr] -+ ([PreCont] V [Ret]))

A ([PreCont] --$ ([Contl V [Ret]))

A ([Cont] -+ [Ret]))
The requirements for the left finger are

leftReq=O(leftIdleReq A ZeftApprReq A 1eftPrecontReqA

and we can specify each phase requirements. The I d l e
phase for the left finger (1ef t Id le) is left within time
interval Si if the information about the object has ar-
rived (ObjInf = 1).

1eftIdZeReq i& ([le f t Id le] A [ObjInf] e 5 Si)
The leftAppr phase lasts at most E,. This phase
switches to the 1eftPreCont phase within 6, if the fin-
ger enters the object domain (INside = 1). The formal
requirements for the lef tAppr phase are
1eftApprReq = ([lef tAppr] a e 5 Ea)

leftContReq A 1eftRetReq)

A(fleftAppr1 A [INside] 3 fl - 6, - [leftPreContl)

A([Fail] j n - 6, cvf [le f tRet l)
The duration of the phase 1eftPreCont is at most E,.

The phase 1eftCont is entered within S,, if event left-
Cont is detected and a certain distance U between the
fingertips exists. The phase enters l e f t R e t within 6,
on TFdzst or Fail.
deftPrecontReq =([leftPreCont] + e 5 E,)

A([leftcont] A [Fdist] j n - 6, - [lef tcont])

A([leftPreCont A TFdist] j n - 6, cv) [lef tRet l)

A([Fail] =+ n - 6, cvf [leftRet])
The phase 1eftCont lasts a t most E,, maintains the
force level and is allowed to lose Contact for not longer
than Scant. The phase l e f t c o n t enters the l e f t L i f t
within time 6, if function bothcontact evaluates to 1
and enters l e f tRe t if Fail = 1.

2eftContReq A (rleftCont.1 =+- E,)
A ([YZeftCont] +- e _ < Scant)
A ([bothContact] n 6,- [l e f t l i f t])
A ([Fai l] j fl - 6, - [lef tRet])

69 1

Table 2: Cases for the grasp requirement predicate.

The l e f t R e t phase is required to enter l e f t I d l e after
time 6, and to return fingertip to the initial position
within the same interval of time.

EeftRetReq ([leftRet] + e 5 6,)
A ([lef tRet] +- n - 6, cvf ZeftInztPos)

exp(-s hi)

Controller
h , controller time-delay

h, measuring time-delay

exp{-s hz) T measuring period

Figure 3: Close-loop control system with two time-delays.

5 Verification of the task requirements

Verification of the task requirements is a formal way
to guarantee that a certain task will be solved, or
equally, that the task requirements will be satisfied un-
der given assumptions. This statement can be expressed
by the predicate formula

(Reql AReq2AReq3).
The total system requirements consist of three different
requirements which are defined and verified below.

1)Phases A PhaseReq + Reql
2) Phases A PhaseReq 3 Rep2
3)Phases A PhaseReq Req3 (time - constraint)

Verification of Reql (initialization): The first require-
ment may seem rather trivial, it states that whenever
our “Master” is in the I d l e state , each “Finger” has
to be in the I d l e state as well. Satisfying this require-
ment is analogous to sequentially operating systems in
that each control cycle has to start from the same state.
Formally this requirement can be written as
Reqj 4 [Idle] 3 [l e f t I d l e A r igh t Id le1
One should consider different cases depending on which
state preceded the Id le .

Phases APhaseReq +

(initialization)
(f orce - constraint)

[TIdlel ; [Idle1 5 1; [Idle] V [Grasp]; [Idle]V
[Lif t] ; [Idle] V [Movel; [Idle] V [Drop]; [Idle]

The first case is trivial. Since there are no states pre-
ceding the I d l e state, initial positions of the fingertips
should be the same. The second case, from GraspReq,
says that the phase I d l e can be entered from phase
Grasp only if the function Fail is satisfied.

GraspReq A ([Grasp] ; [Idlel)
+ true; [Grasp A Fail A 6~ 5 1 5 E G ~ ; [Idle]
=+- true; [Grasp A (le f tRet V r ightRet)

A 6~ 5 1 5 EG] ; [Idle]

Without loss of generality we suppose that the right
finger is in the phase r igh tRet . Depending on the left

finger phase the cases are given in table 2. Because
there are no lower bounds on transitions from phase to
phase, the case 1) is possible, and then it takes at most

+ 6, + 6, time to reach 1 e f t I d l e . A case by case
analysis shows that Reql will be satisfied as long as 6~ 2
max(6i + Sa, 6,, 6,) + 6, .

Verification of Reqn (force constraint): In verifying
Rep2 we guarantee that the force level of the finger-
object contact force during the phase Grasp will never
exceed some upper bound (Fmaz). This requirement is
supposed to provide safe and robust operation for the
force and/or tactile sensors.

To verify Reqz, the sub-phases PreCont and Cont are
considered. These two sub-phases are safety critical;
the force level could possibly exceed the allowed upper
bound in one of these phases.

We make two assumptions about the hardware in-
volved in the experiment: 1) The production line moves
with a velocity VObj which can fluctuate within an in-
terval VObj E [”&. , .&] and 2) The algorithm used for
image processing guarantees the accuracy of the image
within some known margin. Both of this assumptions
can be embedded to describe the growing boundary of
object position uncertainty as a function of time.

When the fingertip enters the object uncertainty re-
gion the boolean function INside switches control mode
from phase Approach to phase PreCont. In phase
PreCont we start monitoring force level. To guaran-
tee that the contact force level never exceeds its upper
bound we consider the worst-case situation, and find pa-
rameters to satisfy:

Reg2 V t (F (t) 5 Fmas).
To do this, we model the (‘worst case” contact. Let
the period of the control cycle “measurement - control
- plant” be equal to T . We consider two types of de-
lays - controller time-delay hl and delays in measure-
ments h2 (see figure 3) . A priori, by testing the finger

692

(4 (b)
Figure 4: Worst case impact model and contact force approximation.

on its resistance to the contact, data of the contacting
force as a function of displacement F (x) can be obtained
[8]. This function can be upper- and lower- bound ap-
proximated by the linear functions F (x) = l i m a z x and
- F (x) = Kminx, respectively (see figure 4).

The next step in the verification is to model the dy-
namical system. In order to make a reliable prediction
about the system behavior a good model of the dynamic
system is needed. The model used has to be at least an
“upper bound model” which guarantees that the real
physical system will have contact force less than that
predicted by the system.

In our worsl, case analysis we model the interaction
between soft finger tip and environment as a mass-spring
system with no energy dissipation (no damper in the
model). The elastic force modeled as a spring is the
upper bound of the contact force. The last assumption
follows from the estimations on the contact force (see

By the controller design, the fingers approach the ob-
ject with constant velocity W O (relative to the object).
In the phase Precont the control law does not change
(the system is aktempting to keep the same velocity W O).
However, in this phase the force sensors are turned on -
the system is prepared to switch to the phase Contact.
The force is measured every T seconds. The event con-
tact is detected if the force measurement we receive is
greater or equal to some threshold F,.

The worst-case scenario is illustrated in figure 5. As-
sume that the force was measured at time to- just, be-
fore the sensed force reaches the value F,. Since F .< F,
we do not switch our control to the next mode, but con-
tinue motion with a control law U1 designed for constant
velocity tracking.

The next sampling occurs after period T . Force has
now exceeded 17,. During the time (hl + h2) the event
contact is recognized and a new control function l J 2 is
calculated and applied. Starting from x(t1) the system
is trying to stabilize the contact force to the value F,,
that is, to maintain to the position x = Fc/Kmaz (fig-
ure 5). Due to inertia the system displaces the finger to
the position x(pL2). The maximum force occurs at lime
t~(figure 5) and in worst case will be equal to

where Ax1 = x(t1) - to) and Ax2 = x(t2) - z(t1).

figure 4 (b)) ICminAx 5 F (z) 5 ICmazAX.

F = F, + ICmazAxl + KmarAx2 (1)

F
to -last measurement before contact

detecung
t t a+ A I, - switching from control

Fm.It - - - - _ _ _ _ _ _ _ _ _ _ _ ~ _ _ _ _ _ _ _ _ _ _ _ ~ ______._____

U1 to U,

t,= t 1+ A t -velocity IS zero,

force is maximal

Figure 5 : Maximum force estimation accounting delays, sampling
period, and inertia of the control dynamic system.

Depending on the control function Ui (i = 1,2) , our
control dynamic system can be described by the system
of differential equations

M 2 = U1 - Kmazx,
M 2 = U2 - 1 C m a o ~ , f o r t E (tl,tz] (2)

for t E [O,tl]

where the system can be stabilized by a PD-controller

Gains I$ and K; are chosen to stabilize to the desired
displacement and velocity, xi and ki. Using Ui in (2)
obtains the general form of the governing equations

X + 2Cwnk + W ~ X = At + B

ui = K;(x; - x) + IC;(& - k) (i = 1,2).

(3)
where

The complete solution of (3) is (see e.g. [ll])

A t + B 2AC

W n W n
(C cos wdt + D sin wdt) + - (5) = e-cwnt

where wd = wnd-. Coefficients c and D can be
found from the initial conditions for each interval

Ax1 can be found by substituting At, = T + hl + hz
as the final time for the first stage in the general solu-
tion (5). Ax2 can be found in two steps: first, find the
time to obtain the zero velocity in x(t2) (by differenti-
ating (5) and substituting for zero velocity) and second,
substitute the obtained time Atz into (5) with the con-
stants and initial condition corresponding to the second
case. Using Axl and Ax2 in (1)1 we can determine the
maximum possible contact force which may occur due to
time delays h l , hz, sampling period T , and the system
inertia. We will get the expression of F as a function of
system parameters:

M , 0 0 , Fc, ICmam, IC;, IC:, IC:, K;, T , h l , h2

Now our verification consists of answering on the ques-
tion of whether the parameters of the system can be

693

chosen such that the inequality F 5 Fmax holds. We
are not concentrating here on the problem of stability:
it is assumed the the gains K j , I<:, I<:, and I<: can be
determined, taking into account the effect of the time-
delays and sampling period [13].

Verification of Reqs: To verify Req3 we must prove
that the execution time of each phase is bounded and
that the sum of the time bounds is less then T,,,, i.e.
T,,, 2 TG + TL + TM + To. Here we prove only
that the Grasp phase is bounded. Grasp is bounded,
[Grasp1 + ! 5 TG follows because each of the sub-
phases are bounded:

Phases A GraspReq A ([Graspl ; [TGrasp])
[Grasp]; [Idle] V [Graspl; [Lift1

true; [Grasp A Fa24 ; [Idle1 V

true; [Grasp A bothcontactl; [Lift]

(e 5 t + E G) ; [Idle] V (! 5 t + SG) ; [Lif t]
We find t as a maximum possible interval between
the beginning of Grasp and the occurrence of Fail or
bothcontact. The Grasp phase is entered on ObjInf
(ObjInf = 1). From the 1eftIdleReq and rightIdleReq fol-
lows that Si is the maximum time spend in the l e f t I d l e
or r i g h t I d l e sub-phases. All other sub-phases are also
time bounded and 6~ 5 EG thus we can deduce

+
j

+

(t 5 si + Ea + E p + E,)

([Graspl + 5 Si + cp + cc + E G)

The verification proofs for the remaining phases are
analogous to the one presented here.

6 Discussion.
We have presented a methodology for a system de-

signer to specify and verify overall system behavior. Al-
though the evaluation of logical formulas may seem un-
usual to a control systems engineer, this level of anal-
ysis enables the designer to specify and reason about
real-time and logical constraints in dynamical systems
without the explicit mention of time instants. We hope
in the future to be able to automate this verification pro-
cess, a necessary step as the verification process becomes
tedious as the complexity of the system increases. Even-
tually, the developed techniques will result in a more
efficient, systematic, and reliable design process.

References
H. Allen. Towards a general theory of action and
time. Artificial Intell., 23:123-154, 1984.
R. Alur, et. al. Hybrid automata: An algorithmic
approach to the specification and verification of hy-
brid systems. Hybrid Systems, 209-229, 1993.
D. Auslander, et al. A Design and Implementation
Methodology for Real-Time Control of Mechanical
Systems, Mechatronics, 5(7), 1995.

B. Berthomieu & M. Diaz. Modeling and verifica-
tion of time dependent systems using time petri
nets. IEEE Trans. on Software Eng., 259-273,
1991.
R. Brockett. Hybrid models for motion control sys-
tems. Essays zn Control, 29-53, 1993.
Z. Chaochen, C. Hoare, & A. Ravn. A calculus of
durations. Info. Proc. Lett., 40(5):269-276, 1991.
Z.Chaochen, et al. Extended duration calculus for
hybrid real-time systems. Hybrzd Systems, 1993.
M. Cutkosky. Manipulation control with dynamic
tactile sensing. In 6th ISRR, Hidden Valley PA,
1993.
C. Fagerer, D. Dickmanns, & E. Dickmanns. Vi-
sual grasping with long delay time of a free floating
object in orbit. J. of Oceanac Eng., 1:53-68, 1994.
B. Hove & J-J. Slotine. Experiments in robotic
catching. Proc. Amer. Control Conf., 1, 1991.
M. James, et al. Vzbratzon of Mechanzcal and Struc-
tural Systems. Harper & Row, 1989.
M. Lemmon & P. Antsaklis. Inductively inferring
valid logical models of continuous-state dynamical
systems. Theor. Comp. Sc., 138:201-210, 1995.
M. Malek-Zavarei & M. Jamshidi. Tame-Delay Sys-
tems: analyszs, optzmaxatzon, and applacatzons. El-
sevier Science Pub. Co., 1987.
Z. Manna & A. Pnueli. Specification and verifica-
tion of concurrent programs by V-automata. Proc.
ACM Symp. on Prznc. Prog. Lung., pp 1-12, 1987.
B. Moszkowski. A temporal logic for multilevel
reasoning about hardware. IEEE Trans. Comput.,
C 18 (2) : 10- 19, 19 85.
A. Nerode & W. Kohn. Models for hybrid systems:
Automata, topologies, controllability, observability.
Hybrad Systems, 317-356, 1993.
G. Niemeyer & J-J. Slotine. Stable adaptive tele-
operation. J . Oceanzc Eng., 16(1):152-162, 1991.
P. Ramadge & W. Wonham. The control of discrete
event systems. In Proc. IEEE, Jan. 1993.
A. Ravn, et al. Specifying and verifying require-
ments of real-time systems. IEEE Trans. on Soft.
Eng., 19(1), 1993.
A. Ravn, et. al. Hybrid control of a robot - a case
study. Hybrzd Systems, 999:391-404, 1995.
J Skakkebaek, et al Specification of embedded
real-time systems. Proc. 4th Euromacro Workshop
on Real-Tame Systems, pages 116-121, June 1992.
L. Tavernini. Differential automata and their
discrete simulators. Nonlanear Analysts, Theory,
Methods, and Applacataons, 11:665-683, 1987.
Y. Zhang & A. Mackworth. Constraint nets. a se-
mantic model for hybrid dynamic systems. Theo-
retzcal Computer Sczence, 138:211-239, 1995.

694

