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In this paper, we present a method for high-level 
control of robots whose low-level software is based on 
dynamically reconfigurable, reusable real-time software 
modules. Our approach is to use an embedded interpreter 
for a general-purpose programming language to direct the 
operation of the low-level modules toward meeting the 
task-level goals of the robot. To this end, we present RSK, 
a virtual-machine kernel implementing a Scheme inter- 
preter capable of hard real-time operation, and employing 
a method of code execution we call “message-based eval- 
uation” (MBE). MBE is a novel combination of a tradi- 
tional code execution model and a message-passing archi- 
tecture, which simplifies the process of writing code for 
managing the robot’s reconfigurable subsystem. 

1 Dynamically reconfigurable real-time 
software 

A major goal of real-time operating systems like 
Chimera is to enable sensor-based control applications to 
be built from libraries of reusable software modules. For 
this purpose, they provide standard interface specifica- 
tions for implementing reusable real-time software mod- 
ules, and a library of functions for building and using con- 
figurations of. these modules [ 11. A well-written and de- 
bugged library of real-time modules thus facilitates rapid 
development of reliable sensor-based control systems. In 
Chimera, these modules or “port-based objects,” typically 
cycle at some fixed frequency and communicate their in- 
puts and outputs through a global state-variable table. A 
typical configuration of real-time modules for controlling 
a robot manipulator arm is shown in Figure 1. 

A real-time software module is reusable only if it is suf- 
ficiently independent of the specific details of the differ- 
ent applications for which it is used. Therefore, an essen- 
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Figure 1 : Example configuration of real-time modules 

tial focus of developing reconfigurable software is keeping 
task-level details out of the reusable modules. For exam- 
ple, a PID control module should not care whether it is 
controlling a joint-angle in a robot-arm, a Cartesian tool- 
coordinate, or a feature-coordinate in a visual-servoing 
process. As a result, reusable software modules are most 
useful for the lowest-level tasks within a robot software 
architecture-those which do not require explicit knowl- 
edge of the task-level details of the robot’s operation. 

In robotic applications, this specialization results in 
a need for a higher-level layer of the software architec- 
ture which can direct the use of the reusable modules for 
the purpose of satisfying the robot’s task-level require- 
ments. This layer typically initializes all the reusable 
modules when the robot is booted, sends messages to 
modules telling them to modify their working parameters 
(e.g. adjusting controller gains, or sending via-points to a 
trajectory-generator module), and receives messages from 
modules to learn of significant events in the operation of 
the robot (e.g. significant qualitative changes in the read- 
ings of robot sensors). Most importantly, when the quali- 
tative nature of the robot’s task changes significantly, the 
high-level layer of the architecture must change the con- 
figuration of reusable-modules to match the needs of the 
task. For instance, when a manipulator arm is moving 
in a Cartesian control mode and contact is sensed at the 
end-effector, the robot should switch to a force-control or 
impedance control configuration. Such a “dynamic recon- 
figuration” typically involves turning off some modules 
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and turning others on. This must be done on the fly, chang- 
ing the active control law without disturbing the timing or 
effectiveness of the overall system. In cases such as the 
switch from Cartesian to compliant control, this must be 
performed without delay to avoid unacceptable forces at 
the end-effector. It is thus essential for the safety of the 
robot and its surroundings that the high-level controller 
react to important task-level events in hard real-time. 

Several strategies have previously been used for man- 
aging such dynamically reconfigurable subsystems, in- 
cluding on-line state machines, and separate high-level 
programs running on host workstations. In several 
Chimera-based robot architectures 12, 31, the high-level 
process reconfigures the real-time subsystem based on an 
on-line state machine interpreter responding to messages 
sent from modules in the reconfigurable subsystem. Con- 
trolShell [4] for the VxWorks operating system also uses 
a state machine for managing dynamically reconfigurable 
real-time subsystems. Implementing interpreters for state 
machines is fairly straightforward, and state-machines are 
well understood and amenable to design through graphical 
user interfaces. Synchronous languages such as Esterel [5] 
which is used in the ORCCAD [6] robot application devel- 
opment system, may also be useful for this purpose. 

Another approach for managing reconfigurable subsys- 
tems of real-time control modules is represented by Onika, 
a visual programming environment for designing control 
systems as configurations of modules, and for controlling 
the reconfiguration of these control systems during exe- 
cution of Chimera applications [7]. Onika's visual pro- 
gramming language is limited in terms of the algorithms it 
can represent, however, and because it manages dynamic 
reconfiguration of the low-level Chimera modules from a 
non real-time workstation, it is inappropriate for managing 
reconfigurations which must occur in hard real-time. 

In this paper, we present the approach of using an 
embedded interpreter for a general-purpose programming 
language for high-level control of reconfigurable subsys- 
tems. This approach has a number of advantages: (a) suf- 
ficient expressive capability for most high-level task spec- 
ifications can be guaranteed by using a suitably pow- 
erful interpreted language, (b) a general-purpose pro- 
gramming language can specify robot-tasks using tradi- 
tional structured-programming or object-oriented meth- 
ods, (c) hard real-time response times to events can be 
achieved through careful implementation of the embed- 
ded interpreter, and (d) an interpreted language (in source- 
code form or compiled to virtual-machine code) is a con- 
venient way for remote operators to send general-purpose 
commands to a robot while it is running (e.g. for remote 
teleoperation). 

Development of a robot architecture for the Dual-use 

Figure 2: (DM)* 

Mobile Detachable Manipulator, (DM)2, motivated our 
adoption of this strategy. (DM)2. shown in Figure 2, is 
a mobile robot consisting of a mobile base and a detach- 
able manipulator ann [8]. The manipulator is a symmet- 
ric 5-DOF ann with a gripper at each end, and may ei- 
ther grasp the mobile base with one gripper to become a 
mobile manipulator system, or detach from the base and 
walk hand-over hand by grasping special handles with 
its grippers. The software for this robot is built upon 
the Chimera 3.2 operating system, It uses configura- 
tions of real-time modules for controlling the motion of 
the mobile base and manipulator arm, and requires the 
ability to dynamically change these configurations as the 
robot changes hardware configurations (i.e. from mobile 
manipulator to walking arm) or performs different tasks 
(e.g. switching from walking to grasping and then lifting 
an object). 

(DM)2 requires high-level software which can not only 
perform the necessary reconfigurations of its low-level 
software in hard real-time, but which is intelligent enough 
to manage the overall operation of a mobile robot. Some 
examples of what the high-level software for (DM)2 must 
do include: using an internal map of its environment to 
keep track of the angle of inclination of the surface the 
arm is walking on (to adjust the gravity vector for cal- 
culating gravity-compensation torques in the joints); al- 
lowing multiple attempts at grasping handles or the mo- 
bile base before admitting failure (possibly perturbing the 
set-point slightly each time); switching between different 
controllers during different subtasks (Le. using an adap- 
tive controller when picking-up an object of unknown 



mass); following procedural descriptions of arm motions 
for walking and mobile base movements from on-line or 
off-line path-planners: and accepting commands from a 
remote operator. In all these cases, we need to specify 
alternative actions to be taken if any individual operation 
fails. 

In developing a software architecture for (DM)2. we 
initially built an interpreter for a simple, custom-designed 
scripting language to manage the dynamic reconfigura- 
tions of the low-level real-time subsystem [9]. After 
some experience programming this system, however, we 
decided that a more powerful, general-purpose language 
would be better suited to our needs and chose Scheme. 
Scheme is a Lisp dialect with a concise specification for 
which small, efficient interpreters can be written. It is also 
a powerful language commonly used for writing artificial- 
intelligence algorithms and for programming in a func- 
tional style [lo]. It is simple to use for writing descrip- 
tions of the operations necessary for high-level control 
of our robot, and we felt it easier to write more com- 
plex approaches to such task-level needs with a general- 
purpose programming language than with a state-machine 
description. Scheme, in particular, has continuations as 
first-class objects, and these play an important role in our 
method of executing high-level robot code (as discussed 
in Section 2). We thus developed the Robot Scheme Ker- 
nel (RSK), which can respond to events in real-time, and 
which works cooperatively with real-time code written in 
a system programming language (such as C) within an 
existing multi-threaded, multiprocessor robot architecture. 
RSK satisfies these requirements through real-time mem- 
ory management strategies and a novel execution model 
which is designed specifically for controlling robots. 

2 Message-based evaluation 

Task-based management for supervision and dynamic 
reconfiguration of the low-level subsystem requires a very 
different style of coding than that for which traditional 
system programming languages are designed. Two of 
the main challenges in writing such high-level robot code 
are that (a) there may be a high degree of functional 
parallelism in the normal operation of the robot’s hard- 
ware, and (b) its operations involve physical processes 
that occur much more slowly than the elementary soft- 
ware operations which are used to manage them. General- 
purpose programming languages (especially system pro- 
gramming languages such as C), excel at data manipula- 
tion and logic-based control of execution flow. However, 
they are less appropriate for specifying temporal relation- 
ships between subexpressions such as those demonstrated 

; Move arm in direction dir with speed speed until 
; contact is detected at the end-effect06 but stop 
; ifthe motion lasts longer than 5 seconds. 
(define (move-to-contact dir speed) 
(race 
(lambda 0 

(lambda 0 

(lambda 0 

(move-arm dir speed)) 

(detect-contact) ‘contact) 

(pause 5.0) ’no-contact))) 

; If moving the arm achieves contact, switch to 
; a configuration for  compliant control 
(case (move-to-contact <down> <slow>) 
((contact) (start-compliant-control)) 
(else (GU1:error 

”Contact was not detected”) ) ) 

Figure 3: Robot code for a guarded move 
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Figure 4: Evaluation by graph reduction 

by the code in Figure 3 (the details of which will be dis- 
cussed later in this section). RSK executes code like this 
by employing a method we call message-based evaluation 
(MBE), which is designed to allow the structure of high- 
level robot control code to reflect the structure of the tasks 
whose execution it supervises. 

In functional programming languages, the evaluation 
of an expression is often modeled as a process of “graph- 
reduction.” An expression is an acyclic graph, and 
evaluation is a process whereby the graph is simplified 
in a step-by-step fashion to a single node representing 
the value of the expression. For instance, the evalua- 
tion of the expression d m ,  coded in Scheme as 
(sqrt ( +  ( *  a a) ( *  b b)) 1, could be repre- 
sented (for a = 3 , b  = 4) as the graph simplification 
shown in Figure 4. 

This evaluation could be accomplished by a conven- 
tional stack-based computation such as (PUSH a, PUSH 
a, APPLY ‘*’, PUSH b, PUSH b, APPLY ‘*’, APPLY ‘+’, 
APPLY ‘sqrt’). Such a method is efficient for conven- 



tional computers and does not require a literal graph-based 
representation of the expression to work. A very differ- 
ent evaluation method could also be used-one based on 
message-passing between nodes of an explicit graph rep- 
resentation of the expression. In such a method, each node 
of the graph is represented by an object which may receive 
messages from and send messages to its parent and child 
nodes, and which knows how to compute its own value 
when given the value of each of its child nodes. The eval- 
uation process is triggered by sending a message to the 
root node commanding it to evaluate the graph. The eval- 
uation occurs through each node implementing the follow- 
ing procedure: 

1. 

2. 

For each child node (if you have any), send a message 
to that child telling it to evaluate itself and to reply 
with a message containing the result of this evalua- 
tion. 

Once all child nodes have replied, evaluate yourself 
and return the result. 

In the case of the expression graphed in Figure 4, the 
“variable nodes” a and b immediately look-up their val- 
ues and send them to the “multiplication nodes” which in 
turn calculate their products and send these to the “addi- 
tion node”, which sends the sum of these products to the 
“square-root node”, which returns the final result (5) .  

Although this method is obviously inefficient for the 
example computation, it has some interesting characteris- 
tics: 

0 For each node in the graph which has more than one 
child node, the order of evaluation of the child nodes 
is unspecified, and the child nodes could even com- 
pute their results in parallel. 

0 If the underlying messaging system were to support 
the necessary communication (see Section 3), each 
node could be on any CPU of a multiprocessor sys- 
tem or even on a separate computer. The evaluation 
process would be exactly the same in these cases. 

If we extend the evaluation process so that each node 
controls when and if each of its child nodes is evalu- 
ated, we can build expressions which explicitly repre- 
sent temporal (as well as logical) relationships between 
the execution of their subexpressions. We can, for in- 
stance, implement “async nodes’’ which evaluate their 
child nodes sequentially (equivalent to the stack-based 
evaluation strategy); “conditional nodes” which evaluate 
some child nodes depending on the results returned by 
others (e.g. a node implementing an “if-then” operation); 
“sync nodes” which evaluate all their child nodes in paral- 
lel: and even “race nodes” which tell all their child nodes 

to evaluate themselves and return the result of the first 
child node to finish (aborting the evaluation of the other 
child nodes). Figure 3 shows an example of the use of 
a race node. Writing an equivalent expression in a system 
programming language would be much more difficult. typ- 
ically requiring the use of explicit polling mechanisms, or 
a combination of a state-machine description and a state- 
machine implementation. 

MBE combines a standard expression evaluation tech- 
nique, similar to the stack-based method, with an imple- 
mentation of the message-passing method. This results 
in an interpreter with both the efficiency of the standard 
method and the ability of the message-passing method 
for executing code representing explicit temporal relation- 
ships between subexpressions. MBE extends the model 
of the message-passing evaluation architecture by speci- 
fying that a node must either return its result to its parent 
node “immediately” or tell its parent node that it is “not 
done yet.” The interpreter can thus use the standard eval- 
uation method to evaluate an expression until a call to a 
function within the expression raises a “not-done’’ excep- 
tion. When this exception is raised, the interpreter creates 
a child-node object representing the incomplete function 
call, and a parent-node object representing the remainder 
of the (as yet unfinished) computation. At the appropriate 
time, the child-node can cause the interpreter to resume 
the evaluation by sending its value in a message to its par- 
ent node. Such an event is typically triggered by a message 
sent from another branch of the evaluation tree or from a 
low-level module indicating that a gripper has been closed, 
a manipulator motion completed, or an obstacle detected. 

When MBE switches from its standard evaluation strat- 
egy to its message-passing strategy, it need only create 
a single object to represent the remainder of the incom- 
pletely reduced graph rather than an explicit graph rep- 
resentation of the entire unfinished computation. This is 
because the object representing the graph above the child 
node contains a conrinuarion. A continuation is a repre- 
sentation of the entire default course of a given compu- 
tation, and as such is a full representation of the incom- 
pletely reduced graph of an expression. Continuations are 
typically used to implement co-routines, threading, and 
throw-catch style exception handling. In Scheme, contin- 
uations are first class objects. If a Scheme implementation 
is based on a “continuation chain,” or a chain of “incom- 
plete continuation” objects, rather than on a C-style stack, 
then creating such a continuation object is roughly equiv- 
alent in speed and memory cost to a function call. This al- 
lows the switching between the two styles of evaluation to 
be very efficient. Thus, MBE works quickly and cheaply 
for interpreting the Scheme language. 

Note that while this model of evaluation allows par- 
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allel operations to be represented by multiple “not-done’’ 
child-nodes below a parent node, this does not mean that 
MBE itself is performing any kind of multi-threaded op- 
eration. The “not-done” nodes represent processes occur- 
ring outside the main thread of the interpreter, typically in 
the reconfigurable modules. These processes may include 
things such as grippers opening and closing. and manip- 
ulator arms executing motion commands. A “not-done’’ 
node may also be waiting for command-messages from the 
teleoperation console, or for a panic-message from any- 
where in the robot architecture indicating that the robot 
needs an immediate shutdown for safety reasons. Thus, 
RSK is usually waiting for messages rather than running 
Scheme code, and its job is to react to these messages 
without delay. The state of the current evaluation tree indi- 
cates what actions the high-level system should take when 
it receives messages from the reusable modules or the host 
workstation. 

3 Messaging infrastructure 

In discussing the process of code evaluation by 
message-passing, we noted that if the underlying messag- 
ing system were to support the necessary communication, 
each node in the graph of the expression could be evalu- 
ated on a different CPU or computer. This motivated us 
to design a system for message-passing that is optimized 
for speed in the local delivery of messages, but which is 
also able to use whatever operating-system communica- 
tion mechanisms are available for passing messages to and 
from remote domains. 

Each RSK message contains a ‘To” address for direct- 
ing message delivery and a “From” address so that it may 
be easily replied to. Each address has a local component 
and a domain name. Two nodes are in the same “domain” 
if they are able to use valid memory pointers to one an- 
other for their local addresses. Message passing within 
a domain is thus an inexpensive operation, consisting of 
adding a message to the priority queue “in-box” of its re- 
cipient, and adding the recipient node to a prioritized list 
of nodes in the domain which have pending messages. A 
function written in C may also register a local address with 
the messaging system, allowing it to receive messages via 
a call-back mechanism. Among other things, this allows 
high-level Scheme code to send parameters such as gains 
and via-points to low-level control modules in a recon- 
figurable subsystem. If a message is sent to a node in a 
different domain, the message is converted from its local 
representation (a Scheme object) to a binary representa- 
tion which may be sent via operating-system communica- 
tion mechanisms to a process in the appropriate destina- 
tion. This remote process converts the message back to 

its original form and performs the local delivery. Since 
Chimera is a multiprocessor operating system, and be- 
cause it is hosted by a UNIX workstation, RSK’s messag- 
ing mechanism enables it to deliver commands and infor- 
mation between CPUs of the real-time computer, and to 
any computer on the host-workstation’s network (e.g. the 
Internet). 

The messaging infrastructure thus allows RSK inter- 
preters running in each CPU of the real-time computer to 
cooperate with one another, and provides a mechanism for 
cooperation between the high-level control process of the 
real-time computer and off-line resources such as remote 
teleoperation consoles and planners. An additional bene- 
fit is that this communication mechanism allows RSK to 
offload some of the work of Scheme interpretation to the 
host workstation. The host workstation can parse Scheme 
code and compile it to a virtual machine-code representa- 
tion (the compiler is actually a Scheme program running 
on a UNIX implementation of RSK), and then send a mes- 
sage containing the resulting virtual-machine code to the 
real-time computer for execution. This allows the high- 
level process on the real-time computer to focus its re- 
sources on managing the operation of the robot rather than 
on parsing and compiling Scheme code. 

4 Memory management 

In Lisp-like languages, explicit management of dynam- 
ically allocated memory is infeasible. These languages 
rely on “garbage collection”, which is a mechanism for 
automatically determining what memory a program is no 
longer using and recycling it for other use. Because 
this determination involves a global analysis of the inter- 
preter’s memory pool, most commonly used garbage col- 
lection algorithms require that the interpreter be stopped 
during the collection in ways which are incompatible with 
real-time operation. Rees and Donald [ I  1 J use an embed- 
ded Scheme interpreter for control of small mobile robots. 
This interpreter is appropriate for their work, but garbage 
collection pauses make it inappropriate for use in real-time 
applications. If a robot were unable to react quickly to 
end-effector contact during a guarded move because the 
high-level was paused for garbage collection, damage to 
the robot and its environment could result. 

In the initial version of RSK, we addressed this prob- 
lem by simply using reference-counting for garbage col- 
lection. This is a local strategy rather than a global strategy 
for analysis of memory usage, and can be done in small in- 
crements which preserve the overall responsiveness of the 
interpreter. Although this strategy can be made to work for 
managing the interpreter’s own use of data structures [ 121, 



and though this strategy has been successful for control- 
ling our robot without memory leaks, reference-counting 
cannot reclaim data-structures which point to themselves 
even when they are not referenced by any data structures 
in use by the interpreter. Fortunately, there are now meth- 
ods which allow garbage collectors to run efficiently on 
stock hardware in hard real-time [ 131, in addition to those 
which run on specialized hardware [14]. To allow pro- 
grammers to use RSK for code which may use cyclic data 
structures, and to simplify the interpreter, we are imple- 
menting a real-time garbage collector based on the “write- 
barrier’’ strategy used in Wilson and Johnstone’s real-time 
collector [ 151. 

5 Conclusion 

We have described dynamically reconfigurable subsys- 
tems for sensor-based control of robot systems, and pre- 
sented the Robot Scheme Kernel (RSK), an embedded 
Scheme interpreter designed for high-level management 
of these subsystems. To allow RSK to evaluate Scheme 
expressions which represent temporal relationships be- 
tween their subexpressions, we have developed “message- 
based evaluation” (MBE). MBE allows the structure of 
high-level robot control code to reflect the structure of the 
robot’s intended task performance. The messaging infras- 
tructure underlying MBE helps to simplify operation in 
multiprocessor environments, providing a mechanism for 
the robot to interact cooperatively with remote processes 
such as teleoperation consoles and off-line planners. Real- 
time garbage collection strategies allow RSK to respond 
in hard real-time to important events during the course of 
robot operation. Future work will focus on a more for- 
mal characterization of this method and its use in robot 
systems, and a more complete comparison between it and 
other currently available methods for high-level robot con- 
trol. 
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