
Abstract

1998 IEEE International Conference on Robotics and Automation,
Vol. I , pp . 844-849, Leuven, Belgium, May 16-20, 1998

Message-based evaluation for high-level robot control

Christopher Lee*t Yangsheng XutS
tRobotics Institute, Carnegie Mellon University

Pittsburgh, PA, USA
!Department of Mechanical and Automation Engineering

The Chinese University of Hong Kong, Hong Kong

In this paper, we present a method for high-level
control of robots whose low-level software is based on
dynamically reconfigurable, reusable real-time software
modules. Our approach is to use an embedded interpreter
for a general-purpose programming language to direct the
operation of the low-level modules toward meeting the
task-level goals of the robot. To this end, we present RSK,
a virtual-machine kernel implementing a Scheme inter-
preter capable of hard real-time operation, and employing
a method of code execution we call “message-based eval-
uation” (MBE). MBE is a novel combination of a tradi-
tional code execution model and a message-passing archi-
tecture, which simplifies the process of writing code for
managing the robot’s reconfigurable subsystem.

1 Dynamically reconfigurable real-time
software

A major goal of real-time operating systems like
Chimera is to enable sensor-based control applications to
be built from libraries of reusable software modules. For
this purpose, they provide standard interface specifica-
tions for implementing reusable real-time software mod-
ules, and a library of functions for building and using con-
figurations of. these modules [11. A well-written and de-
bugged library of real-time modules thus facilitates rapid
development of reliable sensor-based control systems. In
Chimera, these modules or “port-based objects,” typically
cycle at some fixed frequency and communicate their in-
puts and outputs through a global state-variable table. A
typical configuration of real-time modules for controlling
a robot manipulator arm is shown in Figure 1.

A real-time software module is reusable only if it is suf-
ficiently independent of the specific details of the differ-
ent applications for which it is used. Therefore, an essen-

‘Supported by a DOE Fellowship in Integrated Manufacturing

YDynamif s

Figure 1 : Example configuration of real-time modules

tial focus of developing reconfigurable software is keeping
task-level details out of the reusable modules. For exam-
ple, a PID control module should not care whether it is
controlling a joint-angle in a robot-arm, a Cartesian tool-
coordinate, or a feature-coordinate in a visual-servoing
process. As a result, reusable software modules are most
useful for the lowest-level tasks within a robot software
architecture-those which do not require explicit knowl-
edge of the task-level details of the robot’s operation.

In robotic applications, this specialization results in
a need for a higher-level layer of the software architec-
ture which can direct the use of the reusable modules for
the purpose of satisfying the robot’s task-level require-
ments. This layer typically initializes all the reusable
modules when the robot is booted, sends messages to
modules telling them to modify their working parameters
(e.g. adjusting controller gains, or sending via-points to a
trajectory-generator module), and receives messages from
modules to learn of significant events in the operation of
the robot (e.g. significant qualitative changes in the read-
ings of robot sensors). Most importantly, when the quali-
tative nature of the robot’s task changes significantly, the
high-level layer of the architecture must change the con-
figuration of reusable-modules to match the needs of the
task. For instance, when a manipulator arm is moving
in a Cartesian control mode and contact is sensed at the
end-effector, the robot should switch to a force-control or
impedance control configuration. Such a “dynamic recon-
figuration” typically involves turning off some modules

4

I '

and turning others on. This must be done on the fly, chang-
ing the active control law without disturbing the timing or
effectiveness of the overall system. In cases such as the
switch from Cartesian to compliant control, this must be
performed without delay to avoid unacceptable forces at
the end-effector. It is thus essential for the safety of the
robot and its surroundings that the high-level controller
react to important task-level events in hard real-time.

Several strategies have previously been used for man-
aging such dynamically reconfigurable subsystems, in-
cluding on-line state machines, and separate high-level
programs running on host workstations. In several
Chimera-based robot architectures 12, 31, the high-level
process reconfigures the real-time subsystem based on an
on-line state machine interpreter responding to messages
sent from modules in the reconfigurable subsystem. Con-
trolShell [4] for the VxWorks operating system also uses
a state machine for managing dynamically reconfigurable
real-time subsystems. Implementing interpreters for state
machines is fairly straightforward, and state-machines are
well understood and amenable to design through graphical
user interfaces. Synchronous languages such as Esterel [5]
which is used in the ORCCAD [6] robot application devel-
opment system, may also be useful for this purpose.

Another approach for managing reconfigurable subsys-
tems of real-time control modules is represented by Onika,
a visual programming environment for designing control
systems as configurations of modules, and for controlling
the reconfiguration of these control systems during exe-
cution of Chimera applications [7]. Onika's visual pro-
gramming language is limited in terms of the algorithms it
can represent, however, and because it manages dynamic
reconfiguration of the low-level Chimera modules from a
non real-time workstation, it is inappropriate for managing
reconfigurations which must occur in hard real-time.

In this paper, we present the approach of using an
embedded interpreter for a general-purpose programming
language for high-level control of reconfigurable subsys-
tems. This approach has a number of advantages: (a) suf-
ficient expressive capability for most high-level task spec-
ifications can be guaranteed by using a suitably pow-
erful interpreted language, (b) a general-purpose pro-
gramming language can specify robot-tasks using tradi-
tional structured-programming or object-oriented meth-
ods, (c) hard real-time response times to events can be
achieved through careful implementation of the embed-
ded interpreter, and (d) an interpreted language (in source-
code form or compiled to virtual-machine code) is a con-
venient way for remote operators to send general-purpose
commands to a robot while it is running (e.g. for remote
teleoperation).

Development of a robot architecture for the Dual-use

Figure 2: (DM)*

Mobile Detachable Manipulator, (DM)2, motivated our
adoption of this strategy. (DM)2. shown in Figure 2, is
a mobile robot consisting of a mobile base and a detach-
able manipulator ann [8]. The manipulator is a symmet-
ric 5-DOF ann with a gripper at each end, and may ei-
ther grasp the mobile base with one gripper to become a
mobile manipulator system, or detach from the base and
walk hand-over hand by grasping special handles with
its grippers. The software for this robot is built upon
the Chimera 3.2 operating system, It uses configura-
tions of real-time modules for controlling the motion of
the mobile base and manipulator arm, and requires the
ability to dynamically change these configurations as the
robot changes hardware configurations (i.e. from mobile
manipulator to walking arm) or performs different tasks
(e.g. switching from walking to grasping and then lifting
an object).

(DM)2 requires high-level software which can not only
perform the necessary reconfigurations of its low-level
software in hard real-time, but which is intelligent enough
to manage the overall operation of a mobile robot. Some
examples of what the high-level software for (DM)2 must
do include: using an internal map of its environment to
keep track of the angle of inclination of the surface the
arm is walking on (to adjust the gravity vector for cal-
culating gravity-compensation torques in the joints); al-
lowing multiple attempts at grasping handles or the mo-
bile base before admitting failure (possibly perturbing the
set-point slightly each time); switching between different
controllers during different subtasks (Le. using an adap-
tive controller when picking-up an object of unknown

mass); following procedural descriptions of arm motions
for walking and mobile base movements from on-line or
off-line path-planners: and accepting commands from a
remote operator. In all these cases, we need to specify
alternative actions to be taken if any individual operation
fails.

In developing a software architecture for (DM)2. we
initially built an interpreter for a simple, custom-designed
scripting language to manage the dynamic reconfigura-
tions of the low-level real-time subsystem [9]. After
some experience programming this system, however, we
decided that a more powerful, general-purpose language
would be better suited to our needs and chose Scheme.
Scheme is a Lisp dialect with a concise specification for
which small, efficient interpreters can be written. It is also
a powerful language commonly used for writing artificial-
intelligence algorithms and for programming in a func-
tional style [lo]. It is simple to use for writing descrip-
tions of the operations necessary for high-level control
of our robot, and we felt it easier to write more com-
plex approaches to such task-level needs with a general-
purpose programming language than with a state-machine
description. Scheme, in particular, has continuations as
first-class objects, and these play an important role in our
method of executing high-level robot code (as discussed
in Section 2). We thus developed the Robot Scheme Ker-
nel (RSK), which can respond to events in real-time, and
which works cooperatively with real-time code written in
a system programming language (such as C) within an
existing multi-threaded, multiprocessor robot architecture.
RSK satisfies these requirements through real-time mem-
ory management strategies and a novel execution model
which is designed specifically for controlling robots.

2 Message-based evaluation

Task-based management for supervision and dynamic
reconfiguration of the low-level subsystem requires a very
different style of coding than that for which traditional
system programming languages are designed. Two of
the main challenges in writing such high-level robot code
are that (a) there may be a high degree of functional
parallelism in the normal operation of the robot’s hard-
ware, and (b) its operations involve physical processes
that occur much more slowly than the elementary soft-
ware operations which are used to manage them. General-
purpose programming languages (especially system pro-
gramming languages such as C), excel at data manipula-
tion and logic-based control of execution flow. However,
they are less appropriate for specifying temporal relation-
ships between subexpressions such as those demonstrated

; Move arm in direction dir with speed speed until
; contact is detected at the end-effect06 but stop
; ifthe motion lasts longer than 5 seconds.
(define (move-to-contact dir speed)
(race
(lambda 0

(lambda 0

(lambda 0

(move-arm dir speed))

(detect-contact) ‘contact)

(pause 5.0) ’no-contact)))

; If moving the arm achieves contact, switch to
; a configuration for compliant control
(case (move-to-contact <down> <slow>)
((contact) (start-compliant-control))
(else (GU1:error

”Contact was not detected”)))

Figure 3: Robot code for a guarded move

25

d\ d\
* * * 9 16
d a

Figure 4: Evaluation by graph reduction

by the code in Figure 3 (the details of which will be dis-
cussed later in this section). RSK executes code like this
by employing a method we call message-based evaluation
(MBE), which is designed to allow the structure of high-
level robot control code to reflect the structure of the tasks
whose execution it supervises.

In functional programming languages, the evaluation
of an expression is often modeled as a process of “graph-
reduction.” An expression is an acyclic graph, and
evaluation is a process whereby the graph is simplified
in a step-by-step fashion to a single node representing
the value of the expression. For instance, the evalua-
tion of the expression d m , coded in Scheme as
(sqrt (+ (* a a) (* b b)) 1, could be repre-
sented (for a = 3 , b = 4) as the graph simplification
shown in Figure 4.

This evaluation could be accomplished by a conven-
tional stack-based computation such as (PUSH a, PUSH
a, APPLY ‘*’, PUSH b, PUSH b, APPLY ‘*’, APPLY ‘+’,
APPLY ‘sqrt’). Such a method is efficient for conven-

tional computers and does not require a literal graph-based
representation of the expression to work. A very differ-
ent evaluation method could also be used-one based on
message-passing between nodes of an explicit graph rep-
resentation of the expression. In such a method, each node
of the graph is represented by an object which may receive
messages from and send messages to its parent and child
nodes, and which knows how to compute its own value
when given the value of each of its child nodes. The eval-
uation process is triggered by sending a message to the
root node commanding it to evaluate the graph. The eval-
uation occurs through each node implementing the follow-
ing procedure:

1.

2.

For each child node (if you have any), send a message
to that child telling it to evaluate itself and to reply
with a message containing the result of this evalua-
tion.

Once all child nodes have replied, evaluate yourself
and return the result.

In the case of the expression graphed in Figure 4, the
“variable nodes” a and b immediately look-up their val-
ues and send them to the “multiplication nodes” which in
turn calculate their products and send these to the “addi-
tion node”, which sends the sum of these products to the
“square-root node”, which returns the final result (5) .

Although this method is obviously inefficient for the
example computation, it has some interesting characteris-
tics:

0 For each node in the graph which has more than one
child node, the order of evaluation of the child nodes
is unspecified, and the child nodes could even com-
pute their results in parallel.

0 If the underlying messaging system were to support
the necessary communication (see Section 3), each
node could be on any CPU of a multiprocessor sys-
tem or even on a separate computer. The evaluation
process would be exactly the same in these cases.

If we extend the evaluation process so that each node
controls when and if each of its child nodes is evalu-
ated, we can build expressions which explicitly repre-
sent temporal (as well as logical) relationships between
the execution of their subexpressions. We can, for in-
stance, implement “async nodes’’ which evaluate their
child nodes sequentially (equivalent to the stack-based
evaluation strategy); “conditional nodes” which evaluate
some child nodes depending on the results returned by
others (e.g. a node implementing an “if-then” operation);
“sync nodes” which evaluate all their child nodes in paral-
lel: and even “race nodes” which tell all their child nodes

to evaluate themselves and return the result of the first
child node to finish (aborting the evaluation of the other
child nodes). Figure 3 shows an example of the use of
a race node. Writing an equivalent expression in a system
programming language would be much more difficult. typ-
ically requiring the use of explicit polling mechanisms, or
a combination of a state-machine description and a state-
machine implementation.

MBE combines a standard expression evaluation tech-
nique, similar to the stack-based method, with an imple-
mentation of the message-passing method. This results
in an interpreter with both the efficiency of the standard
method and the ability of the message-passing method
for executing code representing explicit temporal relation-
ships between subexpressions. MBE extends the model
of the message-passing evaluation architecture by speci-
fying that a node must either return its result to its parent
node “immediately” or tell its parent node that it is “not
done yet.” The interpreter can thus use the standard eval-
uation method to evaluate an expression until a call to a
function within the expression raises a “not-done’’ excep-
tion. When this exception is raised, the interpreter creates
a child-node object representing the incomplete function
call, and a parent-node object representing the remainder
of the (as yet unfinished) computation. At the appropriate
time, the child-node can cause the interpreter to resume
the evaluation by sending its value in a message to its par-
ent node. Such an event is typically triggered by a message
sent from another branch of the evaluation tree or from a
low-level module indicating that a gripper has been closed,
a manipulator motion completed, or an obstacle detected.

When MBE switches from its standard evaluation strat-
egy to its message-passing strategy, it need only create
a single object to represent the remainder of the incom-
pletely reduced graph rather than an explicit graph rep-
resentation of the entire unfinished computation. This is
because the object representing the graph above the child
node contains a conrinuarion. A continuation is a repre-
sentation of the entire default course of a given compu-
tation, and as such is a full representation of the incom-
pletely reduced graph of an expression. Continuations are
typically used to implement co-routines, threading, and
throw-catch style exception handling. In Scheme, contin-
uations are first class objects. If a Scheme implementation
is based on a “continuation chain,” or a chain of “incom-
plete continuation” objects, rather than on a C-style stack,
then creating such a continuation object is roughly equiv-
alent in speed and memory cost to a function call. This al-
lows the switching between the two styles of evaluation to
be very efficient. Thus, MBE works quickly and cheaply
for interpreting the Scheme language.

Note that while this model of evaluation allows par-

CI !
I O

allel operations to be represented by multiple “not-done’’
child-nodes below a parent node, this does not mean that
MBE itself is performing any kind of multi-threaded op-
eration. The “not-done” nodes represent processes occur-
ring outside the main thread of the interpreter, typically in
the reconfigurable modules. These processes may include
things such as grippers opening and closing. and manip-
ulator arms executing motion commands. A “not-done’’
node may also be waiting for command-messages from the
teleoperation console, or for a panic-message from any-
where in the robot architecture indicating that the robot
needs an immediate shutdown for safety reasons. Thus,
RSK is usually waiting for messages rather than running
Scheme code, and its job is to react to these messages
without delay. The state of the current evaluation tree indi-
cates what actions the high-level system should take when
it receives messages from the reusable modules or the host
workstation.

3 Messaging infrastructure

In discussing the process of code evaluation by
message-passing, we noted that if the underlying messag-
ing system were to support the necessary communication,
each node in the graph of the expression could be evalu-
ated on a different CPU or computer. This motivated us
to design a system for message-passing that is optimized
for speed in the local delivery of messages, but which is
also able to use whatever operating-system communica-
tion mechanisms are available for passing messages to and
from remote domains.

Each RSK message contains a ‘To” address for direct-
ing message delivery and a “From” address so that it may
be easily replied to. Each address has a local component
and a domain name. Two nodes are in the same “domain”
if they are able to use valid memory pointers to one an-
other for their local addresses. Message passing within
a domain is thus an inexpensive operation, consisting of
adding a message to the priority queue “in-box” of its re-
cipient, and adding the recipient node to a prioritized list
of nodes in the domain which have pending messages. A
function written in C may also register a local address with
the messaging system, allowing it to receive messages via
a call-back mechanism. Among other things, this allows
high-level Scheme code to send parameters such as gains
and via-points to low-level control modules in a recon-
figurable subsystem. If a message is sent to a node in a
different domain, the message is converted from its local
representation (a Scheme object) to a binary representa-
tion which may be sent via operating-system communica-
tion mechanisms to a process in the appropriate destina-
tion. This remote process converts the message back to

its original form and performs the local delivery. Since
Chimera is a multiprocessor operating system, and be-
cause it is hosted by a UNIX workstation, RSK’s messag-
ing mechanism enables it to deliver commands and infor-
mation between CPUs of the real-time computer, and to
any computer on the host-workstation’s network (e.g. the
Internet).

The messaging infrastructure thus allows RSK inter-
preters running in each CPU of the real-time computer to
cooperate with one another, and provides a mechanism for
cooperation between the high-level control process of the
real-time computer and off-line resources such as remote
teleoperation consoles and planners. An additional bene-
fit is that this communication mechanism allows RSK to
offload some of the work of Scheme interpretation to the
host workstation. The host workstation can parse Scheme
code and compile it to a virtual machine-code representa-
tion (the compiler is actually a Scheme program running
on a UNIX implementation of RSK), and then send a mes-
sage containing the resulting virtual-machine code to the
real-time computer for execution. This allows the high-
level process on the real-time computer to focus its re-
sources on managing the operation of the robot rather than
on parsing and compiling Scheme code.

4 Memory management

In Lisp-like languages, explicit management of dynam-
ically allocated memory is infeasible. These languages
rely on “garbage collection”, which is a mechanism for
automatically determining what memory a program is no
longer using and recycling it for other use. Because
this determination involves a global analysis of the inter-
preter’s memory pool, most commonly used garbage col-
lection algorithms require that the interpreter be stopped
during the collection in ways which are incompatible with
real-time operation. Rees and Donald [I 1 J use an embed-
ded Scheme interpreter for control of small mobile robots.
This interpreter is appropriate for their work, but garbage
collection pauses make it inappropriate for use in real-time
applications. If a robot were unable to react quickly to
end-effector contact during a guarded move because the
high-level was paused for garbage collection, damage to
the robot and its environment could result.

In the initial version of RSK, we addressed this prob-
lem by simply using reference-counting for garbage col-
lection. This is a local strategy rather than a global strategy
for analysis of memory usage, and can be done in small in-
crements which preserve the overall responsiveness of the
interpreter. Although this strategy can be made to work for
managing the interpreter’s own use of data structures [121,

and though this strategy has been successful for control-
ling our robot without memory leaks, reference-counting
cannot reclaim data-structures which point to themselves
even when they are not referenced by any data structures
in use by the interpreter. Fortunately, there are now meth-
ods which allow garbage collectors to run efficiently on
stock hardware in hard real-time [131, in addition to those
which run on specialized hardware [14]. To allow pro-
grammers to use RSK for code which may use cyclic data
structures, and to simplify the interpreter, we are imple-
menting a real-time garbage collector based on the “write-
barrier’’ strategy used in Wilson and Johnstone’s real-time
collector [151.

5 Conclusion

We have described dynamically reconfigurable subsys-
tems for sensor-based control of robot systems, and pre-
sented the Robot Scheme Kernel (RSK), an embedded
Scheme interpreter designed for high-level management
of these subsystems. To allow RSK to evaluate Scheme
expressions which represent temporal relationships be-
tween their subexpressions, we have developed “message-
based evaluation” (MBE). MBE allows the structure of
high-level robot control code to reflect the structure of the
robot’s intended task performance. The messaging infras-
tructure underlying MBE helps to simplify operation in
multiprocessor environments, providing a mechanism for
the robot to interact cooperatively with remote processes
such as teleoperation consoles and off-line planners. Real-
time garbage collection strategies allow RSK to respond
in hard real-time to important events during the course of
robot operation. Future work will focus on a more for-
mal characterization of this method and its use in robot
systems, and a more complete comparison between it and
other currently available methods for high-level robot con-
trol.

References

[I] D. Stewart, R. Volpe. and P. Khosla, “Integration of real-
time software modules for reconfigurable sensor-based
control systems,’’ in Proceedings of IEEURSJ Interna-
tional Conference on Intelligent Robots and Systems,

[21 J. D. Morrow, Sensorimotor primitives for programming
robotic assembly skills. PhD thesis, Robotics Institute,
Carnegie Mellon University, April 1997.

131 A. Douglas and Y. Xu, “Real-time shared control system
for space telerobotics,” Journal of Intelligent and Robotic

pp. 325-332, 1992.

Systems: Theory and Applications, vol. 13, pp. 247-62,
July 1995.

[4] S. Schneider, V. Chen, J. Steele, and G. Pardo-Castellote,
“The ControlShell component-based real-time program-
ming system, and its application to the Marsokhod Martian
rover,” in ACM SIGPLAN 1995 Workshop on Languages,
Compilers, and Tools for Real-Time Systems, vol. 30 of
SIGPLAN Notices, pp. 146-55. June 1995.

[5] E Boussinot and R. D. Simone, ‘The Esterel language,”
Proceedings of the IEEE, vol. 79, pp. 1293-1304, 1991.

[61 D. Simon, B. Espiau, K. Kapellos, and R. Pissard-Gibollet,
“ORCCAD: software engineering for real-time robotics;
a technical insight,” Robotica, vol. 15, no. 1, pp. 11 1-5.
1997.

[7] M. Gertz. D. Stewart, and P. Khosla, “A software
architecture-based human-machine interface for reconfig-
urable sensor-based control systems,” in Proceedings of
8th IEEE International Symposium on Intelligent Control,
(Chicago, IL), pp. 75-80. IEEE, August 1993.

[81 Y. Xu, C. Lee, and H. B. Brown, Jr., “A separable combi-
nation of wheeled rover and arm mechanism: (DM)’,” in
Proceedings of the 19% IEEE International Conference on
Robotics and Automation. vol. 3, pp. 2383-8, IEEE, April
1996.

[9] C. Lee and Y. Xu, “(DM)*: A modular solution for robotic
lunar missions,” International Journal of Space Technol-
ogy, vol. 16, no. 1, pp. 49-58. 1996.

[lo] H. Abelson et al., “Revised4 report on the algorithmic
language Scheme,” ACM Lisp Pointers IV, vol. 4, July-
September 1991.

[I t] J. Rees and B. Donald, “Program mobile robots in
Scheme.” in Proceedings of 1992 IEEE International
Conference on Robotics and Automation, (Nice, France),
pp. 2681-8, IEEE, May 1992.

[121 D. Friedman and D. Wise, “Reference counting can man-
age the circular invironments of mutual recursion.” Infor-
mation Processing Letters, vol. 8. pp. 41-45, Janary 1979.

[131 P. Wilson, “Uniprocessor garbage collection techniques,”
in International Workshop on Memory Management,
no. 637 in Springer-Verlag Lecture Notes in Computer Sci-
ence, (St. Malo, France), September 1992.

[141 K. Nilsen, “Reliable real-time garbage collection in C++,”
Computing Systems, vol. 7, no. 4. pp. 467-504. 1994.

[IS] P. Wilson and M. Johnstone, “Real-time non-copying
garbage collection,” in ACM OOPSLA Workshop on Mem-
ory Management and Garbage Collection, (Washington
D.C.), ACM, September 1993.

