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Abstract

This paper addresses the problem of reducing the

hysteresis found in the actuation of most smart mate-

rials. They are divided in two groups: systems with no

saturation (e.g. piezoelectric actuators), and systems

with saturation (e.g. Shape Memory Actuators). For

the control of the �rst group the concept of phaser

is introduced, an operator which shifts the phase of

a periodic signal but keeps its magnitude unchanged.

Since it is possible to approximate phasers with lin-

ear �lters, it is possible to design practical compen-

sators. The design of a phaser requires the knowledge

of one parameter �, easily identi�ed from experimen-

tal transfer function estimates. For the second group,

two phasers are used in a tandem connection. One

phaser is designed as described before, and the second

is designed so as to vary with the input. This compen-

sation reduces the hysteresis to a single saturation. To

show its e�ectiveness, simulation results are provided

using the hystery model, then the method is applied to

an SMA actuator. The e�ectiveness of a single phaser

for non-saturated hysteresis have already been exper-

imentally demonstrated in previous work.

1 Introduction

Hysteresis is found in most actuation systems.

With reference to smart materials, hysteresis is sig-

ni�cant in two commonly used materials: piezoelectric

ceramics and shape memory alloys. In a restricted fre-

quency range, it is possible to consider that, in these

materials, hysteresis is rate independent and acts as

an additive disturbance on the linear dynamics of the

system. Here, a system with hysteresis is seen as a

parallel connection of a linear dynamical system with

a rate independent hysteresis with memory. In opera-

tor form the system can be represented by [2]:

y = L[u] + �̂[u] (1)

where �̂ represents the rate independent hysteresis

with memory and L represents the dynamics of the

system. This may also be viewed as the two �rst terms

of a Volterra series expansion.

1.1 Modeling and Control of Hysteresis

Modeling of hysteresis in smart materials has been

studied by Hughes and Wen in [7, 8], where the

Preisach model [10] is used to model the static be-

havior of a 
exible beam, which uses two piezoelec-

tric actuators and a shape memory alloy. Experi-

ments are used to show that the Preisach model can

be used to model their system. In [3], Ge and Jouaneh

model hysteresis found in a piezoelectric actuator us-

ing the Preisach model. Goldfarb and Celanovic [4],

introduced a causal representation of rate independent

hysteresis found in a piezoelectric stack actuator, in-

corporating a generalized Maxwell resistive capacitor

as a lumped parameter. For more theoretical models

of hysteresis, the reader is referred to Visintin [13],

Mayergoyz [10], Krasnoselskii and Pokrovskii [9] or

Brokate et al [1].

Control of systems with hysteresis has been consid-

ered by Ge and Jouaneh [3], where a combination of

a feedforward loop (including a nonlinearity) with a

feedback loop (PID) is used. Tao and Kokotovi�c [11]

have developed control algorithms to reduce the e�ects

of nonlinearities like hysteresis in a plant represented

by a linear part preceded by a hysteresis characteris-

tic. In [5], Gorbet and Wang gave passivity conditions

for a PI control to remain stable.

1.2 Approach

The compensation of hysteresis is considered for

periodic signals in a given frequency range. In most

cases, this frequency range will correspond simply to

the practical bandwidth of a particular actuator. The

e�ect of hysteresis is considered to be a combination

of phase distortion and magnitude distortion. The

present approach considers compensators which can

correct for the phase distortion while ignoring the

magnitude distortion. When successful, the compen-

sation results in a singular nonlinearity which can be

corrected separately if needed. In [2] this approach
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was applied experimentally to the correction of non

saturating hysteresis in a piezoelectric actuator. The

present paper extends that approach to reduce hys-

teresis �̂[u], which can have saturation as in SMA ac-

tuators.

The reduction of hysteresis with saturation is

achieved by applying phase correction by successive

approximations using a two stage controller.

In section 2, the hystery unit model is recalled. In

section 3, a brief introduction to the phaser approach

to the correction of hysteresis is given. In section 4,

systems which present hysteresis with no saturation

are considered. The reduction of this type of hystere-

sis is done using a variation of the phaser presented

in [2]. In section 5, the phaser is used to implement

what will be called a variable phaser which reduces the

hysteresis with saturation into a single nonlinearity,

by making the phase correction depend on the mag-

nitude of the input. Section 6 presents simulations

results while reducing a hysteresis with saturation in

the hystery model, and experimental results using an

SMA actuator. Finally, in section 7, conclusions and

future work are summarized.

2 The hystery unit model

The hystery unit is discussed in [12]. The upper

and lower branches of the hysteresis loop are both seg-

ments of hyperbolic tangent functions, and they are

described as a two families of curves. The placement

of these segments along the x-axis is Hc � 0.

The set of rising curves that passes through all pos-

sible starting points forms the family of rising curves.

Each member, indexed by the number �+
k
, has the

form:

y+
k

= �+
k
+ (1� �+

k
) tanh(x+

k
�Hc);

where �+
k
=

y�
k�1 � tanh(x�

k�1 �Hc)

1� tanh(x�
k�1 �Hc)

(2)

The family of falling curves, indexed by the number

��
k
, has the form

y�
k

= ���
k
+ (1� ��

k
) tanh(x�

k
+Hc);

where ��
k
=

y+
k
� tanh(x+

k
+Hc)

�1� tanh(x+
k
+Hc)

(3)

This model has a full memory of the history of inputs

and can approximate the hysteresis found in magne-

tization. The hystery model is one of the simplest

among all hysteresis models. It is much simpler than

the Preisach model which requires experimental data

to be conveniently implemented in a computer.

3 The phaser

In [2], the e�ect of hysteresis is seen as a phase

shift between the input to the system and its output,

therefore, only periodic signals are considered. An

elementary operator termed the phaser (Lpa) shifts

its periodic input signal by a constant angle � > 0,

with a constant magnitude of 1, independent from the

frequency or the magnitude of the input signal.

The frequency domain representation of the phaser

is an imaginary number:

Lpa(j!) = a+ jb

jLpa(j!)j = 1 & ^Lpa(j!) = �
(4)

a =
tan�p

1 + tan2 �
& b =

1p
1 + tan2 �

It is impossible to realize a causal system that shifts

the input by a constant angle over the whole frequency

range. In practice, an approximation to the phaser

is taken using a series of lead controllers (see Figure

1). This controllers shift the input signal over a �nite

frequency range, which is chosen to be the bandwidth

of the system (usually low frequencies). When the

shift angle is small, the phase and magnitude error

are quite small. For example, for a shift of 5 degrees

and a phase error smaller than a tenth of a degree, the

magnitude error is about 1 dB per decade covered.
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Figure 1: Frequency response: a) An ideal phaser. b) An

approximation to the phaser over a certain fre-

quency range.

In the design of a practical compensator, � is the

only parameter to be determined. One way to obtain

� is to produce an open loop Bode plot of the system

(speci�cally the phase plot at the low frequency range,

where the phase is never 0 or a multiple of 90�). This

method was experimentally applied to a piezoelectric

actuator [2].
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4 Reduction of Hysteresis with no sat-

uration

Equation (4) can be rewritten as:

Lpa(j!) = cos(�) +
sin(�)

!
s (5)

where in this case cos(�) = a, sin(�) = b and s = j!,

or in the time domain:

u(t) = cos(�)u(x) +
sin(�)

!
_u(t) (6)

where y(t) is the output, � is the phase lag between

the input and the output, ! is the frequency of the

input signal, and u(t) is the input signal.

Consider Figure 2 which shows a typical response of

a system with no saturation. If the phase lag between

input an output is measured1, the angle � required for

the design of the phaser is immediately obtained. The

hysteresis loop is viewed as a a phaser with a negative

angle.

the signal

branch followed
while increasing

branch followed
while decreasing
the signal the signal

branch followed
while increasing

branch followed
while decreasing
the signal

a) b)

angle

positive

angle

negativeoutput

input u

y output

input r

u

Figure 2: a) Typical hysteresis loop with no saturation,

with a phase angle ��. b) The phaser loop

with an angle �.

If this phaser is connected in cascade with a hys-

teresis with no saturation, a perfect compensation is

obtained because one block cancels the other as in

Figure 3.

input output
uPhaser

Hysteresis
System with yr

Figure 3: The phaser in cascade with a plant without hys-

teresis.

1One other method is to approximate the hysteresis

loop by the set of coordinates (sin(x); sin(x � �)), where

x = fxjx 2 [0; 2�]g, and � is the angle which will be varied until

the hysteresis loop is best approximated.

5 Hysteresis with saturation

Consider the hysteresis in Figure 4.a). If the phaser

described in the previous section is used, the result

must be imperfect: depending on the input amplitude,

there must be over- or under-compensation, see Figure

4.c) for the result of the compensation of Figure 4.a).

u

output u

inputinput

output y

r s

c)

input r-s

b)a)

output y

Figure 4: a) Hysteresis loop with saturation. b) Phaser

loop. c) Loop after using a phaser in b) with

the hysteresis loop of a).

The e�ect of saturation is to cause imperfect com-

pensation leading to an input-output phase plot hav-

ing possibly several loops. The loop in the middle

resembles a hysteresis loop with no saturation. The

loops at the ends of the graph are symmetric and have

a positive phase angle. The second approximation in-

volves a second phaser to provide a positive angle �1
for the middle loop, and a negative angle �2 for the

others. These angles, once again, can be obtained con-

sidering each loop independent of the others, measured

as before.

The control strategy for hysteresis with saturation

will be now as shown in Figure 5.

stage1st2nd stage
output

variable
Hysteresis

System withPhaser
phaser

u yvr
input

Figure 5: Controller diagram.

The second stage is a variable phaser since its phase

angle varies from the positive angle �1 to the negative

angle �2. Therefore, its mathematical expression is:

v(t) =

(
cos(�1)r(t) +

sin(�1)

!
_r(t) if jrj � s

cos(�2)r(t) +
sin(�2)

!
_r(t) if jrj > s

(7)

where �1 � 0 and �2 � 0, and s is a suitable value

obtained from Figure 4.c) where a change in the orien-

tation of the loop occurs. The phase will be changing

as in Figure 6, as opposed to the constant phase of the

original phaser.
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Figure 6: Variation of the phase angle as a function of the

input.

6 Simulations and experimental re-

sults

The simulated hysteresis loop, using the hystery

model, is shown in Figure 7.
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Figure 7: Hysteresis loop.

The result after using the �rst stage of the con-

troller in Figure 5, with � = 25 deg., is shown in

Figure 8.

-s s
Figure 8: Input-output response after a �rst stage con-

troller (phaser) was used.

The �rst stage gives as a result a reduced area inside

the loop, but the original loop is divided in three, as

predicted before. The loop created in the middle of

the graph is a loop with negative phase and the loops

at the ends have positive phase, as predicted.

A second phaser is designed using equation (7)

with values: �1 = 1:25 deg., �2 = �1:64 deg., and

s = �1:39. The result of the two stages controller,

is presented in Figure 9. The second controller yields
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Figure 9: Input-output response after a two stage con-

trollers were used. The second stage is a phaser

varying with discrete values of �.

almost perfect compensation. However, the disconti-

nuity in the control signal causes large jumps in the re-

sponse which can be explained as follows. The phaser

has a constant magnitude, yet, the switching from one

phase angle to another a�ects the response. The out-

1

r
b)

r
a)

s

1

vv

s

a

1a

2a

1a

2

Figure 10: a) Two possible outputs for the variable

phaser, thick graph: when � = �1, thin line:

� = �2. b) Output of a variable phaser for

continuous changes of �.

put of the variable phaser is di�erent whether using �1
or �2 (Figure 10.a)). Furthermore, if a switching has

to be done at r = s, the phaser will switch from the

value a1 to the value a2 producing the jumps seen in

Figure 9. The �nal version of the compensator changes

the compensation continuously with the input signal.

A continuous approximation to Figure 6, can be

found using the following equation:

�(r(t)) =

8>><
>>:

�A tanh(Br(t) � C)�D

if jr(t)j � 0

A tanh(Br(t) + C)�D

if jr(t)j < 0

(8)
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Figure 11: Control signal u(t).

where parameters A;B;C, and D are chosen to ap-

proximate the discrete function. The continuous vari-

ation of the angle as a function of the input for the

present problem has the form:

�(r(t)) =

8>><
>>:

�1:8 tanh(2:75r(t)� 4:8)� 0:5

if jr(t)j � 0

1:8 tanh(2:75r(t) + 4:8)� 0:5

if jr(t)j < 0

(9)

The discrete and continuous variations of the angle �

are shown in Figure 12.
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Figure 12: Variation of the angle � with the input. Thick

line discrete variations, continuous line contin-

uous variations.

Using an angle � with continuous variations, Figure

13 is obtained. where the hysteresis has been reduced

to a singular nonlinearity.

Experimental Results. An SMA actuator2 test

bed was built to validate the results for the reduction

of hysteresis with saturation obtained above. Figure

14 presents the hysteresis loop of the SMA actuator.

This loop has saturation and is not symmetric as the

one considered above.

After using the �rst phaser Figure 15 was obtained.

The original loop was divided in just two and not three

loops as predicted. This is because the asymmetry of

the original loop.

2A current input to displacement output con�guration was

used. For technical speci�cations of the SMA actuator see [6]
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Figure 13: Input-output response after a two stage con-

troller (phasers) was used. The second stage

is a phaser varying with continuous values of

�.
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Figure 14: Hysteresis loop of the SMA actuator. Input

frequency 0.05 Hz.
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Figure 15: Hysteresis loop of the SMA actuator in series

with a phaser with parameter � = 24.

Finally a variable phaser was constructed using the

values, A = 3, B = 3, C = 3 and D = 3, and Figure

16 was obtained.
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Figure 16: Loop obtained after using two phasers with

the SMA actuator.

7 Conclusions and future work

A control design strategy by successive approxi-

mations has been introduced to reduce the hystere-

sis commonly found in nonlinear systems, speci�cally

smart materials. The approach uses the so-called

phaser, an operator that shifts its periodic input signal

by a constant phase angle �. The phaser when used to

reduce the hysteresis without saturation, results is a

perfect linear input-output relation. A two stage com-

pensator has been shown in simulation to be able to

reduce almost completely the hysteresis with satura-

tion modelled by the hystery unit, and the hysteresis

found in SMA actuators.

Current work is carried out toward the development

of a complete control design methodology which in-

cludes:

� Quanti�cation of performance;

� Ability to handle minor loops;

� Inclusion of the dynamic behavior of the system

under consideration.
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