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ABSTRACT

This paper presents further developments of the
earlier Vector Field Histogram (VFH) method for real-
time mobile robot obstacle avoidance. The enhanced
method, called VFH+, offers several improvements that
result in smoother robot trajectories and greater
reliability. VFH+ reduces some of the parameter tuning
of the original VFH method by explicitly compensating
for the robot width. Also added in VFH+ is a better
approximation of the mobile robot trajectory, which
results in higher reliability.

1. INTRODUCTION

The VFH+ method is an improved version of the
Vector Field Histogram (VFH) method originally
developed by Borenstein and Koren [1991] for
real-time, local obstacle avoidance with mobile
robots. VFH+ was developed for a special type of
mobile robot called the GuideCane. The
GuideCane, shown in Figure 1, is a novel
guidance device for the blind. In operation, a
blind user pushes the unpowered GuideCane
ahead of himself. When the GuideCane
encounters an obstacle it steers around it. The
user feels the changing orientation of the
GuideCane handle and can follow the device
intuitively and without any conscious effort
[Borenstein and Ulrich, 1997].

Because of the similarity in function
between the GuideCane and conventional mobile
robots, the VFH+ obstacle avoidance method is
equally well applicable to other mobile robots.
The VFH+ algorithm was extensively tested in
simulation and with the real GuideCane in
unstructured and unknown environments.

2. THE VFH+ ALGORITHM

The concept of the VFH+ obstacle
avoidance algorithm is similar to the original
VFH algorithm. The input to this algorithm is a

map grid of the local environment, called histogram grid
[Borenstein and Koren, 1991], which is based on the
earlier certainty grid [Moravec, 1988] and occupancy
grid [Elfes, 1989] methods.

The VFH+ method employs a four-stage data
reduction process in order to compute the new direction
of motion. In the first three stages, the two-dimensional
map grid is reduced to one-dimensional polar histograms
that are constructed around the robot's momentary
location. In the fourth stage, the algorithm selects the
most suitable direction based on the masked polar
histogram and a cost function. The following sections
briefly summarize each stage.

2.1 First Stage - The Primary Polar Histogram

A more detailed description for the first part of this
stage is given in [Borenstein and Koren,
1991]. The first data reduction stage maps
the active region Ca of the map grid C onto
the primary polar histogram Hp. The active
region Ca is a circular window of diameter
ws that moves with the robot. The content
of each active cell in the map grid is treated
as an obstacle vector. Based on the
reference system of Figure 4, the vector
direction βi,j is determined by the direction
from the active cell to the robot center
point (RCP):
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where:
x0, y0: Present coordinates of the RCP.
xi, yj: Coordinates of active cell Ci,j.

The vector magnitude of an active cell
Ci,j is given by:
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where:
ci,j: Certainty value of active cell Ci,j.
di,j: Distance from active cell Ci,j to the
 RCP.

Figure 1: A blindfolded
experimenter walks
with the GuideCane.
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and the parameters a and b are chosen according to:
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Note that ci,j is squared. This expresses our
confidence that recurring range readings (high ci,j)
represent actual obstacles, as opposed to single
occurrences of range readings (low ci,j) which may be
caused by noise.

The vector magnitude is also a function of the
squared distance di,j. Occupied cells produce larger vector
magnitudes when they are close to the robot.

A convenient property of this magnitude function is
that it is rotationally symmetric with respect to the RCP.
As a result, the robot's behavior is independent of the
direction in which obstacles are encountered.

Based on the obstacle vectors, the primary polar
histogram Hp is built. Hp has an arbitrary angular
resolution α so that n = 360°/α is an integer. In our
implementation, α is set to 5°, resulting in n = 72
angular sectors. Each angular sector k corresponds to a
discrete angle ρ = k⋅a.

The original VFH method does not explicitly take
into account the width of the robot. Instead, it uses an
empirically determined low-pass filter to compensate for
the robot width and to smooth the polar histogram. The
tuning of this filter is the main difficulty in implementing
the original VFH algorithm [Manz et al.]. However, even
with a well-tuned filter, the robot has a tendency to cut
corners.

The VFH+ method, by contrast, uses a theoretically
determined low-pass filter to compensate for the width of
the robot. Obstacle cells in the map are enlarged by the
robot radius rr, which is defined as the distance from the
robot center to its furthest perimeter point [Udupa, 1977].
For further safety, the obstacle cells are actually enlarged
by a radius r r dr s r s+ = +  where ds is the minimum
distance between the robot and an obstacle.

With the obstacles enlarged by rr+s, the robot can be
treated as a point-like vehicle. This method works well
for mobile robots whose shape can be approximated by a
disk. If the robot's shape is very asymmetrical, the
obstacles cells will have to be enlarged according to the
dimensions and the momentary orientation of the robot.

This width compensation method is implemented
very efficiently by enlarging the obstacles while building
the primary polar histogram. Instead of updating only
one histogram sector for each cell as done in the original
VFH method, all histogram sectors that correspond to the

enlarged cell are updated. An example for a cell is shown
in Figure 2.

For each cell, the enlargement angle γi,j is defined
by:
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For each sector k, the polar obstacle density is then
calculated by:
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 = 0 otherwise

The result of this process is a polar histogram that
takes into account the width of the robot. The h' function
also serves as a low-pass filter and smoothes the polar
histogram. Another important improvement is that this
process eliminates the difficult tuning of the VFH low-
pass filter.

As the histogram is built around the current robot
position, independent of its orientation, this first stage of
the VFH algorithm can be implemented very efficiently
by the use of tables of the size ws × ws. The βi,j, γi,j, and
a bdi j− ,

2  values for each active cell in the active region Ca

can be stored in tables for faster execution.

2.2 Second Stage – The Binary Polar Histogram

For most applications, a smooth trajectory is desired
and oscillations in the steering command should be
avoided. The original VFH method usually displays a

Figure 2: Enlargement angle
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very smooth trajectory. However, the fixed threshold τ
used in the original VFH method can cause a problem in
environments with several narrow openings, as the
corresponding opening in the histogram can alternate
several times between an open and a blocked state during
a few sampling times. In such a situation, the robot's
heading can alternate several times between this narrow
opening and another opening. The result is an indecisive
behavior, during which the mobile robot can get very
close to an obstacle.

This problem can easily be reduced by a hysteresis
based on two thresholds, namely τlow and τhigh. Based on
the primary polar histogram Hp and the two thresholds, a
binary polar histogram Hb is built. Instead of having
polar density values, the sectors of Hb are either free (0)
or blocked (1). This polar histogram indicates which
directions are free for a robot that can instantaneously
change its direction of motion. The binary polar
histogram is updated by the following rules:
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2.3 Third Stage – The Masked Polar Histogram

The original VFH method neglects the dynamics and
the kinematics of the robot. It implicitly assumes that the
robot is able to change its direction of travel instantly as
shown in Figure 3a. Unless the robot stops at every
sampling time, this assumption is clearly violated.

The VFH+ method uses a simple, but closer
approximation of the trajectory of most mobile robots. It
assumes that the robot's trajectory is based on circular
arcs (constant curvature curves) and straight lines, as
shown in Figure 3b. The curvature of a curve is defined
by κ = 1/r.

a) b)

Figure 3: Approximation of trajectories:
 a) without dynamics, b) with dynamics

The maximum trajectory curvature of a mobile robot
is often a function of the robot velocity. The faster the
robot travels, the smaller the maximum curvature. The

minimum steering radius can be zero for a differential
drive mobile robot if it has zero traversal speed. For
mobile robots that are based on the Ackerman steering or
the tricycle mechanism, the minimum steering radius
never equals zero. In these cases, the minimum steering
radius is approximately constant if the maximum velocity
is not too high. In special cases, e.g. the GuideCane, the
maximum curvature values can be different for right and
left turns.

The values for the minimum steering radius as a
function of the robot velocity can easily be measured. We
define these radius for both sides as rr = 1/κr and rl = 1/κ
l.

With these parameters and the map grid, we can
determine which sectors are blocked by obstacles. An
example with two obstacles is shown in Figure 4. Again,
to take into account the width of the robot, the obstacles
are enlarged by rr+s. If a trajectory circle and an enlarged
obstacle cell overlap, all directions from the obstacle to
the backwards direction of motion are blocked. In our
example, obstacle A blocks all directions to its left
because of the robot dynamics. On the other hand,
obstacle B does not block the directions to its right.

With the original VFH method, the directions to the
left of obstacle A are considered to be suitable directions
of motion. If the desired direction of travel was to the
left, the original VFH algorithm would incorrectly guide
the robot to the left into obstacle A.

With the VFH+ method, the robot would correctly
proceed between obstacles A and B and make a left turn
after obstacle A was cleared.

Figure 4: Example of blocked directions

The positions of the right and left trajectory centers
relative to the current robot position are defined by:
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∆x rr r= ⋅sinθ ∆y rr r= ⋅cosθ (8)
∆x rl l= − ⋅sinθ ∆y rl l= − ⋅cosθ

The distances from an active cell Ci,j to the two
trajectory centers are given by:

( )( ) ( )( )d x x j y y ir r r
2 2 2

= − + −∆ ∆ ∆ ∆
(9)

( )( ) ( )( )d x x j y y il l l
2 2 2

= − + −∆ ∆ ∆ ∆

An obstacle blocks the directions to its right if:

( )d r rr r r s
2 < + + [condition 1]             (10a)

And an obstacle blocks the directions to its left if:

( )d r rl l r s
2 < + + [condition 2]             (10b)

By checking every active cell with these two
conditions, we get two limit angles, ϕr for right angles
and ϕl for left angles. We also define ϕb = θ+π as the
direction backwards to the current direction of motion.

This method can be implemented very efficiently by
an algorithm that only considers cells that have an
influence on either ϕr or ϕl:

1) Determine ϕb. Set ϕr and ϕl equal to ϕb.

2) For every cell Ci,j in the active window Ca with ci,j>τ:
a) If βi,j is to the right of θ and to the left of ϕr, check

condition 1. If condition is satisfied, set ϕr equal to βi,j.
b) If βi,j is to the left of θ and to the right of ϕl, check

condition 2. If condition is satisfied, set ϕl equal to βi,j.

If the robot’s sensors are not very reliable, ϕr and ϕl

could also be determined in a more stochastic way.
Instead of comparing the cell certainty values to a
threshold, one could build a polar histogram whose sector
values indicate the certainty that a sector is blocked
because of the robot dynamics. The values for ϕr and ϕl

could then be determined by applying a threshold to this
histogram. As the first method is more efficient, the
second method should only be applied if really necessary.

With ϕr, ϕl, and the binary polar histogram, we can
build the masked polar histogram:

Hk
m = 0 if ( ) [ ] [ ]{ }lr

b
k kandH ϕθθϕα ,,,0 ∈⋅=

Hk
m = 1 otherwise (11)

The masked polar histogram shows which directions
of motion are possible at the current speed. If all sectors

were blocked, the robot could not proceed at the current
speed. The robot would have to determine a set of new
values (ϕr, ϕl) based on a slower speed. If the masked
polar histogram was still blocked in all directions, the
robot would have to stop immediately. The masked polar
histogram can therefore also be used to detect that the
robot is trapped in a dead-end.

In Figure 5, the primary polar histogram, the binary
polar histogram, and the masked polar histogram are
shown for the situation of Figure 4. The binary polar
histogram incorrectly indicates that the directions to the
left of obstacle A are free. The masked polar histogram
correctly blocks these directions.

Note that the vector magnitudes for obstacle A are
larger than for obstacle B. The reason is that obstacle A
is closer to the robot. Also note that obstacle A occupies
more sectors than obstacle B. As obstacle A is closer to
the robot, its enlargement angle is wider.

Figure 5: a) Primary polar histogram, b) binary polar histogram,
c) masked polar histogram

2.4 Fourth Stage - Selection of the Steering Direction

The masked polar histogram shows which directions
are free of obstacles and which ones are blocked.
However, some free directions are better candidates than
others for the new direction of motion.

The original VFH method is very goal-oriented by
selecting the valley that most closely matches the target
direction kt. It then selects the new direction of motion
dependent on the size of the valley.

The VFH+ method first finds all openings in the
masked polar histogram and then determines a set of
possible candidate directions. A cost function that takes
into account more than just the difference between the
candidate and the target direction, is then applied to
these candidate directions. The candidate direction kn

with the lowest cost is then chosen to be the new
direction of motion ϕn = α ⋅ kn.
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In the first step, the right and left borders kr and kl of
all openings in the masked polar histogram are
determined. Similar to the original VFH method, two
types of openings are distinguished, namely, wide and
narrow ones. An opening is considered wide if the
difference between its two borders is larger than smax

sectors (in our system smax = 16). Otherwise, the opening
is considered narrow.

For a narrow opening, there is only one candidate
direction so that the robot steers through the center of the
gap between the corresponding obstacles:

c
k k

n
r l=

+
2

 centered direction+ (12)

For a wide opening, there are two candidate
directions, one to the right and one to the left side of the
opening. The target direction is also a candidate
direction, if it lies between the two other candidate
directions:

c k
s

r r= + max

2
towards the right side

c k
s

l l= − max

2
towards the left side (13)

c kt t= if [ ]k c ct r l∈ ,

The candidate directions cr and cl make the robot
follow an obstacle contour at a safe distance, while ct

leads the robot towards the target direction.
For robots that are not goal-oriented, other candidate

directions could be added. For a robot that should
randomly explore its environment, we could add the
candidate directions that are equal to the current
direction of motion θi or equal to the previously selected
direction of motion kn,i-1:

α
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θ
ic = if   [ ]lr

i cc ,∈
α
θ

(14)

1, −= inkcϕ
if   [ ]lrin cck ,1, ∈−

In the case of the goal-oriented robot, we get between
one and three candidate directions for each opening in
the masked polar histogram. Next, we need to define an
appropriate cost function, so that the robot selects the
most appropriate candidate direction as its new direction
of motion ϕn. We propose the following cost function g as
a function of a candidate direction c:

                                               
+ Care must be taken when applying these equations because of the
histogram boundaries.
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where ∆(c1,c2) is a function that computes the
absolute angle difference between two sectors c1 and c2 so
that the result is ≤ n/2. One possible implementation is:

( ) { }∆ c c c c c c n c c n1 2 1 2 1 2 1 2, min , ,= − − − − + (16)

The first term of our cost function represents the cost
associated with the difference of a candidate direction
and the target direction. The larger this difference is, the
more the candidate direction will guide the robot away
from its target direction, and hence the larger the cost.

The second term represents the cost associated with
the difference of a candidate direction and the robot's
wheel orientation. The larger this difference is, the larger
the required change of the direction of motion.

The third term represents the cost associated with the
difference of a candidate direction and the previously
selected direction of motion. The larger this difference is,
the larger the change of the new steering command.

In short, the first term is responsible for the goal-
oriented behavior, while the second and third term make
the mobile robot commit to a direction. These two terms
provide the robot with a form of short-term memory. The
second term is similar to a mechanical memory. With the
help of the third term, the robot commits to a direction
even before its orientation has changed.

The higher µ1 is, the more goal-oriented the robot's
behavior. The higher µ2 is, the more the robot tries to
execute an efficient path with a minimum change of
direction of motion. The higher µ3 is, the more the robot
tries to head towards the previously selected direction and
the smoother is the trajectory.

Only the relationship between the three parameters is
important, not their magnitudes. To guarantee a goal-
oriented behavior, the following condition must be
satisfied:

µ µ µ1 2 3> + [condition 3] (17)

If an efficient path is more important than variations
in the steering commands, then µ2 should be set higher
than µ3. If the smoothness of the steering commands is
more important than the efficiency of the robot trajectory,
then µ3 should be set higher than µ2.

Experiments have shown that a good set of
parameters for a goal-oriented mobile robot is: µ1 = 5,
µ2 = 2, and µ3 = 2.

It is also possible to add other terms to the cost
function. For example, we can make the mobile robot
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avoid narrow openings by adding a term that takes into
account the opening width: µ4⋅∆(kr, kl).

On the other hand, the cost function could also be
temporarily modified to make the mobile robot look for
and go through narrow openings like doors by adding the
term: µ4⋅1/∆(kr, kl).

The cost function allows the user to implement a
subtler behavior than the coarse approach of the original
VFH method. The commitment effect of the cost function
is very important, especially when the robot approaches a
single object that is right in its path. Without the
commitment effect, the robot can actually bump into this
obstacle by hesitating between avoiding it on the right or
the left side. Another advantage is that the mobile robot
behavior can easily be changed by modifying either the
cost function parameters or the cost function itself.

3. EXPERIMENTAL RESULTS

The VFH+ method has been implemented and
extensively tested on the GuideCane. All improvements
were motivated by problems encountered while testing
the GuideCane’s obstacle avoidance performance.

The tests have shown that VFH+ allows safe travel at
speeds up to 1 m/s without noticeable oscillations. The
maximum speed was limited by the number of sonars and
their sampling rate, not by the VFH+ performance.

In our extensive testing we found the VFH+ method
to be generally more reliable than its predecessor. We
attribute this improvement mostly to the fact that VFH+
takes the robot trajectory into account. This is especially
important for systems that work in a semi-autonomous
mode  (as is the case with the GuideCane application), in
which the robot could be directed into an obstacle by
entering a new desired direction of motion at the wrong
time. For the same reason, the VFH+ performance does
not degrade if the target direction is more than 90°
different from the robot's orientation. The behavior of the
robot when driving around corners is also improved due
to the width compensation. We also found the VFH+
method to be rather insensitive to its parameter values;
that is, it performed well as long as condition 3 was
satisfied and the parameter values were selected
reasonably.

On a PC 486 running at 67 MHz, the VFH+
algorithm takes at most 6 ms for each iterative cycle (i.e.,
sampling time). The speed of an obstacle avoidance
algorithm is essential for several reasons. The higher the
sampling rate of the obstacle avoidance method is, the
faster the robot can travel without oscillations and
without risk of bumping into an obstacle, and the more
computational power can be used for generally time-
consuming high-level behaviors.

4. CONCLUSION

The VFH+ method is the result of several
improvements over the original VFH method. First of all,
by using a threshold hysteresis, the robot trajectory
becomes smoother and more reliable. Secondly, the
VFH+ method explicitly takes into account the robot
width, and therefore this method can easily be
implemented on robots of different sizes. This
improvement also eliminates the time-consuming
adjusting of the previously used low-pass filter.  Thirdly,
the VFH+ method takes into account the trajectory of the
mobile robot by masking sectors that are blocked by
obstacles in other sectors. As a result, the robot can not
be directed into an obstacle, as it was possible with the
original VFH method. Finally, by applying a cost based
direction selection, the performance of the obstacle
avoidance algorithm becomes better and more reliable
due to the commitment effect. The cost function also
gives the possibility of switching between behaviors by
simply changing the cost function or its parameters.

The remaining problem of the VFH+ method is its
local nature, which sometimes leads the mobile robot into
dead-ends that could be avoided. To overcome this
problem, we are currently working on introducing local
planning into the obstacle avoidance algorithm.
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