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Abstract

The subject of this paper is a special class of closed-
chain manipulators. First, we analyze a family of two-
degree-of-freedom (dof) five-bar planar linkages. Two
Jacobian matrices appear in the kinematic relations
between the joint-rate and the Cartesian-velocity vec-
tors, which are called the “inverse kinematics” and the
“direct kinematics” matrices. It is shown that the loci
of points of the workspace where the condition number
of the direct-kinematics matrix remains constant, i.e.,
the isoconditioning loci, are the coupler points of the
four-bar linkage obtained upon locking the middle joint
of the linkage. Furthermore, if the line of centers of
the two actuated revolutes is used as the axis of a third
actuated revolute, then a three-dof hybrid manipulator
is obtained. The isoconditioning loci of this manip-
ulator are surfaces of revolution generated by the iso-
conditioning curves of the two-dof manipulator, whose
axis of symmetry is that of the third actuated revolute.

KEY WORDS : Kinematics, Closed-Loop Manip-
ulator, Hybrid manipulator, Isoconditioning surfaces,
Singularity, Working Modes.

1 Introduction

The aim of this paper is to study (a) a family of
two-dof, five-bar planar linkages and (b) a derivative
of this family, obtained when a third revolute is added
in series to the above linkages, with the purpose of
obtaining a three-dof manipulator. For the mechan-
ical design of this class of manipulators, various fea-
tures must be considered, e.g., the workspace volume,
manipulability, and stiffness. The analysis of single-

dof closed-loop chains is classical within the theory
of machines and mechanisms [1]. The study of the
workspace and the mobility of closed-loop manipula-
tors, in turn, is given by Bajpai and Roth [2]. Gosselin
[3], [4] conducted similar analyses for closed-loop ma-
nipulators with one single inverse kinematic solution
on both a planar and a spatial mechanism. One im-
portant property of parallel manipulators is that they
admit several solutions to both their inverse and their
direct kinematics. This property leads to two types of
singularities.

The singularities of these manipulators are cor-
respondingly associated with two Jacobian matrices
called here the “inverse kinematics” and the “direct
kinematics” matrices. By means of the inverse kine-
matics matrix, we can define the “working mode”
of the manipulator to separate the inverse kinemat-
ics solutions. It is useful to represent the manipula-
tor in the workspace and to define its aspects in this
workspace. The aspects of a manipulator are defined
in [5]. Moreover, a novel three-dof hybrid manipulator
is proposed, which is comparable to the one proposed
by Bajpai and Roth [2]; ours is obtained as the series
array of a one-revolute chain and the two-dof closed-
chain manipulator described above. In this array, the
axis of the former intersects the axes of the two actu-
ated joints of the latter at right angles.

The proper operation of a manipulator depends
first of foremost on its design; besides design, the op-
eration depends on suitable trajectory-planning and
control algorithms. In any event, a performance index
needs be defined, whose minimization or maximiza-
tion leads to an optimum operation. While various
items come into play when assessing the operation of
a manipulator, we focus here on issues pertaining to



manipulability or dexterity. In this regard, we un-
derstand these terms in the sense of measures of dis-
tance to singularity, which brings us to the concept
of condition number [6]. Here, we adopt the condi-
tion number of the underlying Jacobian matrices as a
means to quantify distances to singularity. Further-
more, we derive the loci of points of the joint and
Cartesian workspaces whereby the condition number
of each of the Jacobian matrices remains constant. For
the planar two-dof manipulators studied here, we term
these loci the isoconditioning curves, while, for three-
dof spatial manipulators, these curves become the iso-
conditioning surfaces.

2 A Two-DOF Closed-Chain Manipu-

lator

The manipulator under study is a five-bar, revolute
(R)-coupled linkage, as displayed in Fig. 1. The actu-
ated joint variables are θ1 and θ2, while the Cartesian
variables are the (x, y) coordinates of the revolute
center P .
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Figure 1: A two-dof closed-chain manipulator

Lenghts L0, L1, L2, L3, and L4 define the geom-
etry of this manipulator entirely. However, in this
paper we focus on a symmetric manipulators, with
L1 = L3 and L2 = L4. The symmetric architecture of
the manipulator at hand is justified for general tasks.
In manipulator design, then, one is interested in ob-
taining values of L0, L1, and L2 that optimize a given
objective function under some prescribed constraints.

2.1 Kinematic Relations

The velocity ṗ of point P , of position vector p, can
be obtained in two different forms, depending on the
direction in which the loop is traversed, namely,

ṗ = ċ + θ̇3E(p− c) (1a)

ṗ = ḋ + θ̇4E(p− d) (1b)

with matrix E defined as

E =

[

0 −1
1 0

]

and c and d denoting the position vectors, in the frame
indicated in Fig. 1, of points C and D, respectively.

Furthermore, note that ċ and ḋ are given by

ċ = θ̇1Ec, ḋ = θ̇2E(d− b)

We would like to eliminate the two idle joint rates θ̇3

and θ̇4 from eqs.(1a) and (1b), which we do upon dot-
multiplying the former by p−c and the latter by p−d,
thus obtaining

(p − c)T ṗ = (p − c)T ċ (2a)

(p − d)T ṗ = (p − d)T ḋ (2b)

Equations (2a) and (2b) can now be cast in vector
form, namely,

Aṗ = Bθ̇ (3a)

with θ̇ defined as the vector of actuated joint rates,
of components θ̇1 and θ̇2. Moreover A and B are,
respectively, the direct-kinematics and the inverse-
kinematics matrices of the manipulator, defined as

A =

[

(p − c)T

(p − d)T

]

(3b)

and

B = L1L2

[

sin(θ3 − θ1) 0
0 sin(θ4 − θ2)

]

(3c)

3 The Isoconditioning Curves

We derive below the loci of equal condition number
of the direct- and inverse-kinematics matrices. To do
this, we first recall the definition of condition number
of an m×n matrix M, with m ≤ n, κ(M). This num-
ber can be defined in various ways; for our purposes,
we define κ(M) as the ratio of the largest, σl, to the
smallest σs, singular values of M, namely,

κ(M) =
σl

σs

(4)

The singular values {σk}
m
1 of matrix M are defined, in

turn, as the square roots of the nonnegative eigenval-
ues of the positive-semidefinite m×m matrix MMT.
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3.1 Direct-Kinematics Matrix

To calculate the condition number of matrix A, we
need the product AAT , which we calculate below:

AAT = L2

2

[

1 cos(θ3 − θ4)
cos(θ3 − θ4) 1

]

(5)

The eigenvalues α1 and α2 of the above product are
given by:

α1 = 1 − cos(θ3 − θ4), α2 = 1 + cos(θ3 − θ4) (6)

and hence, the condition number of matrix A is

κ(A) =

√

αmax

αmin

(7)

where

αmin = 1−|cos(θ3 − θ4)| , αmax = 1+ |cos(θ3 − θ4)|
(8)

Upon simplification,

κ(A) =
1

| tan((θ3 − θ4)/2)|
(9)

In light of expression (9) for the condition number
of the Jacobian matrix A, it is apparent that κ(A)
attains its minimum of 1 when |θ3 − θ4| = π/2, the
equality being understood modulo π. At the other
end of the spectrum, κ(A) tends to infinity when
θ3− θ4 = kπ, for k = 1, 2, . . .. When matrix A attains
a condition number of unity, it is termed isotropic, its
inversion being performed without any roundoff-error
amplification. Manipulator postures for which condi-
tion θ3 − θ4 = π/2 holds are thus the most accurate
for purposes of the direct kinematics of the manipu-
lator. Correspondingly, the locus of points whereby
matrix A is isotropic is called the isotropy locus in the
Cartesian workspace.

On the other hand, manipulator postures whereby
θ3 − θ4 = kπ denote a singular matrix A. Such sin-
gularities occur at the boundary of the Joint space of
the manipulator, and hence, the locus of P whereby
these singularities occur, namely, the singularity lo-
cus in the Joint space, defines this boundary. Inter-
estingly, isotropy can be obtained regardless of the
dimensions of the manipulator, as long as i) it is sym-
metric and ii) L2 6= 0.

3.2 Inverse-Kinematics Matrix

By virtue of the diagonal form of matrix B, its sin-
gular values, β1 and β2, are simply the absolute values
of its diagonal entries, namely,

β1 = | sin(θ3 − θ1)|, β2 = | sin(θ4 − θ2)| (10)

The condition number κ of matrix B is thus

κ(B) =

√

βmax

βmin

(11)

where, if | sin(θ3 − θ1)| < | sin(θ4 − θ2)|, then

βmin = | sin(θ3 − θ1)|, βmax = | sin(θ4 − θ2)| ; (12)

else,

βmin = | sin(θ4 − θ2)|, βmax = | sin(θ3 − θ1)| . (13)

In light of expression (11) for the condition num-
ber of the Jacobian matrix B, it is apparent that
κ(B) attains its minimum of 1 when |sin(θ3 − θ1)| =
|sin(θ4 − θ2)| 6= 0. The locus of points where κ(B) =
1, and hence, where B is isotropic, is called the
isotropy locus of the manipulator in the joint space. At
the other end of the spectrum, κ(B) tends to infinity
when |θ3 − θ1| = kπ or |θ4 − θ2| = kπ, for k = 1, 2, . . .,
which denote singularities of B. These singularities are
associated with the inverse kinematics of the manip-
ulator, and hence, lie within its Cartesian workspace,
not at the boundary of this one. The singularity lo-
cus of B thus defines the Cartesian workspace of the
manipulator. Therefore, the Cartesian workspace of
the manipulator is bounded by the singularity locus
of B, i.e., the locus of points where κ(B) → ∞. In-
terestingly, B can be rendered isotropic regardless of
the dimensions of the manipulator, as long as i) it is
symmetric and ii) L1 6= 0 and L2 6= 0.

3.3 The Working Mode
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Figure 2: The four working modes
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The manipulator under study has a diagonal
inverse-kinematics matrix B, as shown in eq.(3c), the
vanishing of one of its diagonal entries thus indicat-
ing the occurrence of a serial singularity. The set of
manipulator postures free of this kind of singularity is
termed a working mode. The different working modes
are thus separated by a serial singularity, with a set of
postures in different working modes corresponding to
an inverse kinematics solution.

The formal definition of the working mode is de-
tailed in [5]. For the manipulator at hand, there are
four working modes, as depicted in Fig. 2.

3.4 Examples

We assume here the dimensions L0 = 6, L1 = 8,
and L2 = 5, in certain units of length that we need
not specify.

x
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O

Figure 3: The isocon-
ditioning curves in the
Cartesian space

Figure 4: The isocondi-
tioning curves in the joint
space

The isoconditioning curves for the direct-kinematic
matrix both in the Cartesian and in the joint spaces
are displayed in Figs. 3 and 4, respectively. A bet-
ter representation of isoconditioning curves can be
obtained in the Cartesian space by displaying these
curves for every working mode, which we do in Fig. 5.

In this figure, the isoconditioning curves are the
coupler curves of the four-bar linkage derived upon
locking the middle joint, of center P (x, y), to yield
a fixed value of θ3 − θ4. Each configuration where
points C and D coincide leads to a singularity where
the position of point P is not controllable.

4 A Three-DOF Hybrid Manipulator

Now we add one-dof to the manipulator of Fig. 1.
We do this by allowing the overall two-dof manipula-
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Figure 5: The four working modes and their isocondi-
tioning curves in the Cartesian space
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Figure 6: The three-dof hybrid manipulator

tor to rotate about line AB by means of a revolute
coupling the fixed link of the above manipulator with
the base of the new manipulator. We thus obtain the
manipulator of Fig. 6.

4.1 Kinematic Relations

The velocity ṗ of point P can be obtained in two
different forms, depending on the direction in which
the loop is traversed, namely,

ṗ = ċ + (θ̇1j + θ̇4k) × (p− c) (14a)

and
ṗ = ḋ + (θ̇1j + θ̇5k) × (p− d) (14b)

Upon dot-multiplying eq.(14a) by (p − c) and
eq.(14b) by (p − d), we obtain two scalar equations
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free of θ̇1 and the idle joint rates θ̇4 and θ̇5, i.e.,

(p − c)T ṗ = (p − c)T ċ (15)

(p − d)T ṗ = (p − d)T ḋ (16)

Furthermore, we note that ċ and ḋ are given by

ċ = (θ̇1j + θ̇2k) × c (17)

ḋ = (θ̇1j + θ̇3k) × (d− b) (18)

Substitution of the above two equations into eqs.(15
& 16), two kinematic relations between joint rates and
Cartesian velocities are obtained, namely,

[(p − c) × c] · kθ̇2 = (p − c)T ṗ (19)

[(p − d) × (d− b)] · kθ̇3 = (p − d)T ṗ (20)

Moreover, upon dot-multiplying eqs.(14a & b) by k,
we obtain two expressions for the projection of ṗ onto
the Z axis

kT ṗ = kT

[

ċ + θ̇1j × (p− c)
]

kT ṗ = kT

[

ḋ + θ̇1j× (p − d)
]

which, in light of eqs.(17 & 18), readily reduce to

kT ṗ = iTpθ̇1

kT ṗ = iTpθ̇1

It is apparent that the right-hand sides of the two
foregoing equations are identical, and hence, those
two scalar equations lead to exactly the same relation,
namely,

kT ṗ = (iTp)θ̇1

It will prove useful to have the two sides of the above
equation multiplied by L2, and hence, that equation
is equivalent to

L2k
T ṗ = L2(i

Tp)θ̇1 (21)

In the next step, we assemble eqs.(19 & 20), which
leads to an equation formally identical to eq.(3a), but
with A and B defined now as 3 × 3 matrices, i.e.,

A≡





L2k
T

(p − c)T

(p − d)T



 (22a)

B≡L1L2





sin θ2 + λ1 sin θ4 0 0
0 sin(θ2 − θ4) 0
0 0 sin(θ3 − θ5)



(22b)

with λ1 defined as λ1 ≡ L2/L1, while vectors θ̇ and ṗ

are now given by

θ̇ ≡





θ̇1

θ̇2

θ̇3



 , ṗ ≡





ẋ
ẏ
ż



 (23)

5 The Isoconditioning Surfaces

We conduct here the same analysis of Section 3.

5.1 The Direct-Kinematics Matrix

Apparently, matrix A in the 3-dof case has a struc-
ture similar to the corresponding matrix in the 2-dof
case. Indeed, upon calculating AAT in the 3-dof case,
we obtain

AAT = L2

2





1 0 0
0 1 cos(θ4 − θ5)
0 cos(θ4 − θ5) 1



 (24)

The eigenvalues of the foregoing matrix are, then,
α1 = 1−| cos(θ4−θ5)|, α2 = 1, and α3 = 1+ | cos(θ4−
θ5)|, the foregoing eigenvalues having been ordered as

α1 ≤ α2 ≤ α3

The condition number of matrix A is thus

κ(A) =

√

1 + | cos(θ4 − θ5)|

1 − | cos(θ4 − θ5)|

which can be further simplified to

κ(A) =
1

| tan((θ4 − θ5)/2)|
(25)

Therefore, the condition number of the two direct-
kinematics matrices, for the 2-dof and the 3-dof cases,
coincide. However, the loci of isoconditioning points
are now surfaces, because we have added one dof to
the manipulator of Fig. 1. These loci are, in fact,
surfaces of revolution generated by the isocondition-
ing curves of the 2-dof manipulator, when these are
rotated about the axis of the first revolute. We repre-
sent the boundary of the workspace (Fig. 7).

5.2 The Inverse-Kinematics Matrix

Given the diagonal structure of matrix B, its sin-
gular values are apparently, {L1L2βi }

3

1
, with the def-

initions below:

β1 = | sin θ2 + λ1 sin θ4|,

β2 = | sin(θ2 − θ4)|,

β3 = | sin(θ3 − θ5)|

Therefore, the isoconditioning locus of B is deter-
mined by the relation

| sin θ2 + λ1 sin θ4| = | sin(θ2 − θ4)| = | sin(θ3 − θ5)|
(26)

5



Figure 7: The boundary of the workspace

Notice that the distance d1 of P to the Y axis is

d1 = L1 sin θ2 + L2 sin θ4 = L1β1 (27)

Likewise, the distances d2 and d3 of P to the two axes
of the other two actuated revolutes, i.e., those passing
through A and B are, respectively,

d2 = L2β2 (28)

d3 = L2β3 (29)

It is now straightforward to realize that, for the case
at hand, the locus of isotropic points of B are given by
manipulator postures whereby P is equidistant from
the three actuated revolute axes. Likewise, postures
whereby point P lies on the Y axis are singular; at
these postures, κ(B) tends to infinity. Moreover, the
inverse-kinematics singularities occur whenever any of
the diagonal entries of B vanishes, i.e., when

d1 = 0, or θ2 = θ4 + kπ, or θ3 = θ5 + kπ (30)

for k = 1, 2, . . ..

6 Conclusions

We have defined a new architecture of hybrid ma-
nipulators and derived the associated loci of isocondi-
tioning points. Two Jacobian matrices were identified
in the mapping of joint rates into Cartesian veloci-
ties, namely, the direct-kinematics and the inverse-
kinematics matrices. Isoconditioning loci were defined
for these matrices. Two special loci were discussed,
namely, those pertaining to isotropy and to singular-
ity, for each of these matrices.

The study has been conducted for three-dof-hybrid
manipulators but applies to six-dof-hybrid manipula-
tors with wrist as well.

The hybrid manipulators studied have interest-
ing features like workspace and high dynamic perfor-
mances, which are usually met separately in serial or
parallel manipulators, respectively. Futher research
work is being conducted by the authors on such hy-
brid manipulators with regard to their optimal design.

Acknowledgments

The third author acknowledges the support from
the Natural Sciences and Engineering Research Coun-
cil, of Canada, the Fonds pour la formation de
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