
Proceedings of the 1998 IEEE
International Conference on Robotics & Automation

Leuven, Belgium May 1998

Multi-agent Based Dynamic Scheduling for a Flexible Assembly
System

Yung-Yu Chen, Li-Chen Fu and Yu-Chien Chen
Dept. of Computer Science and Information Engineering

National Taiwan University,Taipei ,Taiwan,R. 0. C

Abstract

This paper proposes a multi-agent based dynamic
scheduling approach for a flexible assembly system.
We first introduce a flexible control system developed
by IntelligentRobotics and Automation Laboratory in
National Taiwan University. Based on that control
system, the agents can communicate with each other
conveniently. A generic agent architecture is proposed
to model the pieces of equipment in the flexible as-
sembly system. With a distributed architecture, the
agents make their scheduling decisions using their lo-
cal rule base. The agents acquire the resources follow-
ing the distributed resource allocation protocol. The
scheduling complexity is reduced to meet the real-time
response requirement in the applications for flexible
automated production. The present work is applied to
the experimental robotized flexible assembly system in
the above laboratory.

1 Introduction

A scheduler is called dynamic (on-line) if it makes
its scheduling decisions at run time on the basis of the
current requests for service. Dynamic schedulers are
flexible to adapt to an evolving task scenario and have
to consider only actual task requests and execution
time parameters [2]. Research on multi-agent systems
is mainly concerned with how to coordinate intelligent
behavioral activities among a collection of autonomous
agents [3]. The work in [3] discusses the negotiation
among agents for the allocation of resource with time
taken into account.

Jennings [4] detailed the design of the multi-agent
structure and discusses the principle of handling er-
rors. The work in [5] discusses the rescheduling issue
in a decentralized manufacturing system. Manufactur-
ing systems with multi-agent modelling can be found
in [6, 71. Resolution of real-time conflicts in multi-
robot systems appears in [8]. The work in [9] pro-
poses some criteria to set up a robotic assembly cell

and analyzes the interaction among multiple robots.
Recently, agent-based approach is applied to robotic

assembly environment [6, 7, 12, 13, 141. The work [14]
introduces an idea of cooperative action with group
organization and a strategy for cooperative task pro-
cessing using communication. There is an efficient ne-
gotiation algorithm using his proposed groupcast com-
munication and a learning mechanism with reference
to historical records on the past negotiation.

This paper consists of six sections. Section 2 de-
scribes a robotic assembly environment and introduces
a general control system for that environment. The
scheduling problem to be solved is also defined. Sec-
tion 3 introduces an agent architecture and describes
the functionality of the agent’s module. Section 4 de-
scribes the strategy for resolving resource contention
among agents. Section 5 describes the implementa-
tion of the dynamic scheduling for the flexible robotic
assembly cell. Section 6 describes the experimental
result. Finally, some conclusions are made in Section
7.

2 System Description

In our laboratory, we have a two-robot assembly
system that is dedicated to assemble various types of
mechanical parts sent serially into the conveyor belt
by the part loader. There are two products currently
assembled in this system, and each product has four
parts that are assembled by the robot manipulator.
The operations include vertical insertion, horizontal
insertion, and rotation in assembling with the sub-
assembly fixed at the assembly sites. The parts are
fed into the system without a specific order, and the
scheduling is made on-line. We proposed a rule based
dynamic scheduling approach to schedule for the whole
assembly system [17].

The cell is equipped with several pieces of hard-
ware that work together to assemble parts. The brief
description is given below:

0-7803-4300-~-5/98 $10.00 0 1998 IEEE 21 22

Robo t : There are two robots in the system,
namely ADEPT and CRS. Each of them is
equipped with an automatic tool changer(A"I'C)
in order to assemle different types of mechanical
products. Each robot has a mounted CCD camera
which serves the high-precision localization OF the
part. Also, each robot has its own form-torque
sensor that can be used to correct the measure-
ment error during assembly.

0 Part Loader: It is composed of a Carte.,' <'Ian ma-
nipulator and a pallet that holds the parts walking
to be assembled. The Cartesian manipulator will
pick up the parts from the pallete and put it on
the coveyor belt.

0 CCD Camera : We have one overhead CCD
camera that can determine the type and orien-
tation of the incoming part on the conveyor lbelt.
Two Eye-In-Hand cameras are mounted on the
robots, respectively.

0 Conveyor Bel t : It is responsible for carrying
parts from outside into the cell.

0 R o t a r y Buffer: This is used to temporarily store
the incoming parts that are not suitable for imme-
diate assembly. Both robots can access the buffer,
but only one robot can be served at one time.

0 Proximi ty Sensors: These are to detect the
moving speed of each arriving part and act a8 an-
chors for the pick-up operation.

Based on the control kernal EMFAK [19], we can
easily integrate the different pieces of euipnient to-
gether. The scheduling problem is to provide a quick
response and safety guarantee for the working pieces of
equipment. We model each equipment as an agent. An
agent has its own capability and thus the scheduling
can be viewed as a group of schedulers working simu-
taneously. This is a distributed system architechre.
The coordination among agents is crucial in making
the entire system running smoothly.

3 Agent Architecture

There are different kinds of agents in the robotic
assembly cell. They can communicate with each other
through the communication center EMFAK [:19]. Fig
1 shows the layout of the multi-agent based system.

Each agent is composed of two main processes which
are manager process and controller process. A con-
troller process is related to the domain level system,

C I c

i

Figure 1: Muti-agent architecture

Figure 2: The agent architecture

which includes comimunication interface module and
domain level controller module. Communication in-
terface module is responsible for protocol conversion if
controller moudule does not support the pre-selected
communication prottocol.

On the other hand, manager process is responsible
for making the socid contact with other agents and
scheduling the local tasks. Its objective is to ensure
that the agent's domain level activities are coordinated
with the other agent and that its associated hardware
runs efficiently.

The agent architelcture is shown in Fig 2. The com-
ponents of the generic agent architecture is described
in the following sections.

3.1 Cooperatioln Module

This is an entity that handles the agent-to-agent
coordination through message exchange. It is respon-
sible for inter-agent communication. This module has
two functional roles:

Message processing :Since this module is directly con-
nected to EMFAK, it is responsible for sending
message on behalf of the agent and receiving mes-
sage from the other one.

Coordination In the later section, the distributed re-
source allocatioin protocol will be described. Re-
source contention is the motivation for agent co-

21 23

ordination. The agent’s scheduler module is con-
centrated on making its local scheduling and de-
pends on the cooperation module if it is in need
of a resource managed by the other agent.

3.2 Scheduler Module

The function role of the scheduler module is to keep
the controlled equipment working efficiently, and it will
focus on the local affairs. If there is a need of the
information or resource from the other agent, it will
pass the request to the cooperation module to serve
for it.

The agent has a degree of autonomy to make its
scheduling decisions. We can view the scheduling
problem as a single agent problem virtually. This is a
divide-and-conquer approach, and scheduling becomes
easier. The scheduler module searches for possible
next moves with its local state taken into considera-
tion, and it uses the cooperation module to cooperate
with the other agent.

3.3 Monitor Module

This module is to monitor the status of tasks sub-
mitted from the scheduler module. It must detect
whether the controller module finishes its work on
time. Thus, a time-out mechanism is used to assure
that the link between two components is active. There
are two links in this architecture. They are the link
between EMFAK and manager process and the link
between manager process and controller process, re-
spectively. For the link between EMFAK and manager
process, the manager process periodically informs EM-
FAK of its liveness. EMFAK keeps a timer that is reset
whenever EMFAK receives the liveness message. On
the other hand, the other link is treated in another
way. With the aid of the monitor module, the sched-
uler module can make decisions while the underlying
domain level system is executing.

3.4 Communication Interface

It serves as the protocol conversion module that can
translate different, communication media into a pre-
selected protocol. Currently we adopt TCP/IP as our
standard protocol [20, 211. In order to integrate dif-
ferent types of equipment, there should be a selected
protocol for communication. If the underlying equip-
ment does not follow that, the communication inter-
face module will be a translator.

3.5 Domain Level Controller System

It is the actual task execution unit that waits for
task given from the scheduler and then executes it. For

example, they are programs that control robot move-
ment or buffer rotation, etc. Domain level controller
system directly controls the physical device. It is the
entity that is dedicated to serve the request from the
manager process. Basically, it possesses less intelli-
gence and may be seen as a server that receives re-
quests and offers the coresponding service.

4 Distributed Resource Allocation
Protocol

In a decentralized environment, the resource allo-
cation problem is complicated. We must consider the
mutual exclusion problem when multiple agents want
to access to the same resources. There should be a
protocol to resolve the conflict on resource. Follow-
ing the agent’s architecture, the resource agent uses
its manager process to allocate the resource. For clar-
ity of discussion, the agent that needs the resources
is mentioned as consumer agent. The consumer agent
must get all the permission of all its required resources
before utilizing them. Each consumer agent has its
own priority that the resource agent uses to decide the
precedence of the resource usage.

The consumer agent first sends requests to all
relevent resource agents and the resource agent fol-
lows a decentralized protocol to allocate the resource.
The resource agent has a request list that keeps the
incoming request for the consumer agents. This pro-
tocol allows the consumer agent to try using mutiple
resources at one request. The following sections intro-
duce the distributed resource allocation protocol. The
consumer agent executes the following protocol:

1. Send request messages to all needed resource
agents.

2. Wait for each resource agents to respond with the
status of reply.

(a) If any reply is REJECT, GOTO 3.
(b) If all replies are OK, GOTO 5.

3. Send all other resources an REJECTED message.
The rejected agent’s request will be removed from
all resources’ lists.

4. GOTO 1. (Try again)

5. Inform all resource agents that it is allowed to use
the resources.
(send the ACCEPTED messages to the resource
agents)

6 . Use the resources.

21 24

-1 *'.*.d e 1 , sI

Ail..,.d se....

i ,

Figure 3: Distributed resource allocation protocol(1)

7. Release all resources.(Send RELEASE messages to
resource agents)

The resource agent uses the following rules to make
decision:

1. Reject all requests(send a REJECT message) when
there is a request of higher priority already en-
queued in the list or when the resource it! busy.
Otherwise, add the accepted request at th.e rear
of the list.

2. Upon receipt of an REJECTED message, remove
the sender's request from the list.

3. Send an OK message to the owner of the first te-
quest in the list or the owner of any request that is
promoted to the front of the list when the requests
in front of it is removed.

4. Upon receipt of an ACCEPTED message, send R,E-
JECT messages to the owner of all other requests
in the list, empty the list, and mark the resource
as busy.

5. Upon receipt of a RELEASE message, mark the
resource as free.

Fig 3 illustrates the case that the consumer agent
will get the resources it needs. In the first step, the
consumer agent sends requests to all relevant resource
agents. The resource agents all reply with OK mies-
sages to the consumer agent in the second step. The
consumer agent notices the resource agents that it will
use the resources in the third step. Finally, the con-
sumer agent free its resources and send RELEASIE mles-
sage to the resource agents.

The protocol is flexible because it operates in a dis-
tributed manner. The new agents, whether consumer
agents or resource agents, can be added into the sys-
tem dynamically without interfering the running of the
system. For one paticullar agent, the arrival order for
resource requesting messages does not affect the cor-
rectness of the protocol. Also, the message sendings of
different consumer agents can be mixed. These above
two characteristics can make the system have less as-
sumption about the quality of the communication me-
dia and requirement of the communication protocol.

This protocol makes the resource allocation effi-
cient. The resource is allocated to the consumer agent
that owns the permissions of all its required resources.
Once the resource is released, the contention for them
starts again. With this way, resources are kept as busy
as possible. The deadlock-free guarantee is proved.
This property is impoatant since it is concerned with
safety issue and continuous running of the whole sys-
tem.

5 Dynamic Scheduling in the Experi-
mental FAS

Our experimental ienvironment is a two-robot as-
sembly cell which is dedicated to assembling various
types of mechanical parts serially sent in through a
conveyor belt. The cell is composed of several pieces
of hardware.

Each product has fiour parts respectively. The first
product is assembled with only vertical insertion op-
erations. The second product includes more complex
operations. To assemble the second part with the base
part for the second product, the robot needs to do ver-
tical insertion and then a rotation to fasten the part
with the base part. Sixteen parts can be placed ran-
domly in the pallete oif the loader. The loader will
load the part onto the! conveyor belt one at a time on
request.

We model our cell i ts multiple agents that work to-
gether. The modelling; of the cell is depicted in Fig 4.

5.1 Error Recovery

Sometimes, there are machine failures during the
assembly process. T:he proposed agent architecture
can solve some of the failures. The manager process is
assumed to be more reliable. The controller process is
the main component that causes error for an agent.

Fig 5 shows the error recovery processs. There are
two communication links in the manager process. The

21 25

Pan loading agent i f

Figure 4: The agents in the FAS

IYU

I

Figure 5: Error recovery for equipment failure

monitor module detects the liveness of the link be-
tween the manager process and the controller process.
When the physical equipment is faulty, we just shut-
down the machine and kill its associated controller pro-
cess. The manager process is still alive and will wait
for the reconnection of the controller process once the
physical equipment is recovered. The agent's internal
state is kept and the agent restarts from the last kept
status.

6 Experiment

The simulation is performed on the pseudo robotic
assembly cell. We replace the physical equipment with
software. In other words, the agents can be easily mod-
ified to work in the real environment. In the simula-
tion, part loading machine loads part into the assembly
cell randomly, and the robot will either assemble it or
store it on buffer. There are total seven types of parts
that may be fed into the cell. removed. The parame-

Figure 6: The utilization of the robots

ters that we will examine are the robot utilization, the
histogram of the finished product, and buffer utiliza-
tion. In this simulation, we give Adept a high priority
than CRS.

6.1 Simulation result

We assume the robot operation time ranges from 2
to 12 seconds in this simulation, and the time depends
on the complexity of that operation. The average op-
eration time is less than 10 seconds.

In the two robot simulation environment, the uti-
lization of the robot is between 0.5 and 0.8 or so as
shown in Fig 6. There are resource contention be-
tween the two robots. For example, the robots com-
pete for the common workspace, for the shared buffer,
and for the shared Eye-In-Hand camera PC. Instead,
if only one robot is in operation, the utilization of the
robot will be above 0.8. The scheduling time is thus 1
to 2 seconds for each robot operation.

7 Conclusion

This paper is an extension of [17]. The relationship
between the agents and communication backbone EM-
FAK is discussed in section 2. To meet the real-time

2126

B v n n “saga

Figure 7: The buffer utilization

requirement in the robotic assembly environment, we
use a decentralized approach to solve the schecluling
problem. The basic idea is using the concept of agent
which is an autonomous entity that can communicate
with each other to achieve a coorinated behaviour.
Section 3 introduces the agent architecture anld the
functionality of the agent’s module. Section 3 also in-
troduces the distributed resource allocation protocol
that is used to allocate the resources among a group
of distributed agents. The benefits of using rnulti-
agent based modelling exhibits flexibility, robusitness,
and modularity. Section 4 describes the implementa-
tion of the agents for the flexible assembly cell. The
experimental result is given in section 5.

References

M. P. Groover, Automation, Production Systems, and
Computer Integrated Manufacturing. Prentice-Hall Inter-
national, 1987.

H. Kopetz, Scheduling, ch. 18, pp. 491-509. Addison-
Wesley publishing company, 1993.

S. Karus, J . Wilkenfeld, and G. Zlotkin, “Multiagent ne-
gotiation under time constraints,” Artificial Intelligence,
vol. 75, pp. 297-345, 1995.

N.R.Jennings, “Controlling cooperative problem solving in
industrial multi-agent systems using joint intentions,,’’ Ar-
tificial Intelligence, vol. 75, pp. 195-240, 1995.

T. K.Tsukada and K. G.Shin, “Priam: Polite rescheduler
for intelligent automated manufacturing,” IEEE “bansac-
tion on Robotics and Automation, vol. 12, no. 2, pp. 235-
245, 1996.

E. Oliveria, “Cooperative multi-agent system for an as-
sembly robotics cell,” Robotics and Computer-Intergrated
Manufacturing, vol. 11, no. 4, pp. 311-317, 1994.

R. J. Rabello and L.M.Camarinha-Matos, “Negotiation
in multi-agent based dynamic scheduling,” Robotm and
Computer-Intergrated Manufacturing, vol. 11, ino. 4,
pp. 303-309, 1994.

G. Cohen, “Concurrent system to resolve real-time con-
flicts in multi-robot systems,” Robotics and Computer-
Intergmted Manufacikring, vol. 8, no. 2, pp. 169-175,
1995.

P. M. Pelagagge, G. Cardarelli, and M. Palumbo, “Some
criteria to help the experimental setup of assembly
cells with cooperating robots,” Robotics and Computer-
Intergrated Manufacturing, vol. 12, no. 2, 1996.

Georgeff, “Communication and interaction in multi-agent
planning,” Proceedings AAAI-83, pp. 125-129, 1983.

F.-Y. Wang and G. N . Saridis, “A coordination theory for
intelligent machines,” Automatica, pp. 833-844, 1990.

J. S. Barsran, E. M. Petriu, and D. C. Petriu, “Flexi-
ble agent-based robot,ic assembly cell,’’ Proceedings IEEE
International Conference on Robotics and Automation,
pp. 3461-3466, 1997.

A. A. Rizzi, J . Gowdy, and R. L. Hollis, “Agile assembly
architecture: An agent based approach to modular preci-
sion assembly systems,” Proceedings IEEE International
Conference on Robotics and Automation, pp. 1511-1516,
1997.

H. ASAMA, K. OZAKI, Y. ISHIDA, K. YOKOTA,
A. MATSUMOTO, H. KAETSU, and I. ENDO, “Collabo-
rative team organization using communication in a decen-
tralized robotic system,” Intelligent Robots and Systems,
pp. 816-823, 1994.

R. G. SMITH, “The contract net protocol: High-level com-
munication and control in a distributed problem solver,”
IEEE fiansactions on computers, vol. C-29, no. 12,
pp. 1104-1113, 1990.

V. K. Garg and B. Watldecker, “Detection of weak unstable
predicates in distributed programs,” IEEE Zhnscations
On Parallel And Dist!ributed Systems, pp. 299-307, 1994.

T.-S. Huang, L.-C. Fu, and Y.-Y. Chen, “Design and anal-
ysis of a dynamic scheduler for a flexbile assembly system,”
Proceedings IEEE International Conference on Robotics
and Automation, pp. 3334-3339, 1997.

C.-S. Jann and L.C.Fu, “Flexible control system for robot
assembly automation I)) Proceedings IEEE International
Symposium on Assenkbly and Task Planning, pp. 286-292,
1995.

H.-S. Huang, L.-C. F’u, and J. Y. jen Hsu, “Rapid setup
of system control in a flexible automated production sys-
tems,” Proceedings IEEE International Conference on
Robotics and Automation, pp. 1517-1522, 1997.

D. E. Comer, Internetworking With TCP/IP Vol 1: Prin-
ciples, Protocols, and Architecture. Prentice-Hall, 1991.

W. R. Stevens, CJNIX network programming. Prentice-Hall
International, 1991.

H. F. Wedde, B. Korel, S. Chen, D. C. Daniels, S. Na-
garaj, and B. Santhanam, Ransparent Access to Lame
Files That Are Stored accross Sites, ch. 9, pp. 490-510.
IEEE Computer society press, 1994.

21 27

