
Proc&ings 0: :ne iQSb 161 :
International ConferenLe on Robotics & Autoination

1 euven, Belgium May 1998
Multi- Agent ased Control erne1 for Flexible Automated

Production System

Sung-Hahn Liu and Li-Chen Fu
Dept. of Computer Science and Information Engineering

National Taiwan University,Taipei,Taiwan,R.O.C
Jung-Hua Yang

Dept. of Electrical Engineering
Yung Ta Junior College of Technology & Commerce

February 26, 1998

Abstract

An Intelligent Automated Robotic Assembly Sys-
tem consists of several subsystems capable of providing
dynamic interactions with the environment in order to
accomplish a task properly. These subsystems perform
various functions like data gathering, decision making,
and task execution. Although a great deal of work has
been done on individual subsystems, more attention
must be given to the way how these subsystems are
integrated so as to achieve the high efficiency of auto-
mated production. In this paper, we propose a coop-
erative multi-agent model of a shop floor control sys-
tem architecture of robotic assembly atuomation and
extend this model to all automated production sys-
tem. Based on this model, we develop a control kernel
named TOFAK(Task Oriented Flexible Automation
Kernel) to support users to easily implement any shop
floor control system. The by-product is to allow sys-
tem designers to easily expand an existing system or
to integrate several automation systems which are all
controlled by TOFAK.

1 Introduction

Due to the rapid change in consumers world re-
quirements, market flexibility has become one of the
most important factors in manufacturing environment
within the recent years. Large industial companies
have realized that flexible production systems are ca-
pable of rapid adaptation to varying number and var-
ious kinds of products. In general, flexibility of a con-
trol system in automated systems is greatly empha-
sized nowadays because it can make the system more
adaptable to various situations. One kind of flexi-
bility is the capacity of on-line reconfiguration. In

provide systematic ways to analyze and to build a con-
trol system, and then increase the reusablilty of the
components in the programs. In [8], a multi-agent con-
trol system were introduced. A new distributed object
model has been discussed recently, namely CORBA
[ll]. The new features of CORBA will be very helpful
in integrating diverse production systems.

For the goal of integrating scheduling systems and
operatioing systems on the shop floor, we here devise a
flexible model of manufacturing system and a flexible
control kernel for that model to solve those problems in
the domain of shop floor control. The model is called
Cooperative Multi-Agent Architecture (CMA) and the
control kernel is called the Task Oriented Flexible Au-
tomation Kernel (TOFAK) .

2 CMA: Cooperative Multi-Agent Ar-
chitecture

2.1 Agent Definition

In this model, the basic element is an agent, which
is viewed as anything that can perceive its environ-
ment through sensors and can act on the environment
through effectors.

In automated production systems, an agent can
be regarded as a combination of software agent and
robotic agent. That is, an agent is a program that
has the ability of communicating with its environment
and can also control real equipment to produce parts
through physical link. In CMA, we define two kinds of
agent : tack agent and communication agent. These
two kinds of agent are described below.

0 Task Agent: has both the ability to perform
some tasks and the ability to communicate with
domain server via TCP/IP.

[lo], a general control architecture for multiple vehicles
is proposed and dynamic reconfiguration is allowed.
Moreover, in [3] and [6], flexible control systems are
imdemented for flexible automated Droduction sys-
tems. Recently, formal languages [7] are also adopted
in the field of system control [5] . Hierarchical control 0 Communication Agent: links application
methods [a, 3 , 4 , 5, 101 and objected-orient approaches software with different communication protocol
[l, 6, 91 both contribute to this subject because they (other than TCP/IP) to domain kernel.
0-7803-4300-~-5/98 $10.00 0 1998 IEEE 21 34

TASK
Process with

different
protocol

(DDE,OLE,..,
TASK etc.)

Co"""lcati""
AZepnt

Task Agent

TOFAK

Figure 1: CMA Model

2.2 CMA Model

The main goal of this model is to provide a flexible
manufacturing system. It is agreed that a successful
automated production system should always try to al-
low use of different operating system (OS). For this
reason, our model will allow applications running, on
different platforms. For example, application under
DOS and application under UNIX can work ttogether
without any incompatibility. The whole architecture
model is shown in Figure.1, which has two basic enti-
ties shown as follows:

0 TOFAK (Task Oriented Flexible Autorna-
the task control kernel in the tion Kernel):

CMA model.

0 Agent: a program which is able to perform some
tasks and to connect the TOFAK.

By Figure.1, there are many agents working to-
gether, each agent has its own job function. AID agent
may need to handle the activity of physical robtot arm,
managing a vision system, or just a scheduler pro-
gram. Thus, every agent performs some specific task
and changes message with one another, of which all
these efforts are to achieve the goal of a productmion
system. As a result, communication network becomes
indispensible due to the need. In this research work,
the network protocol we choose is the TCP/IP, which
is the most popular network protocol and is supported
by most of vendors throughout the world.

Because of the above features of the CMA, we can
easily integrate many small systems into a new one.
In CMA, we can see that all agents are connected to
the TOFAK and change messages transparently. The
TOFAK is a broker based control kernel, which plays
the most important part in this model. All tasks are
sent to TOFAK first, and then TOFAK will decide
how these tasks should be executed. Despite that, any
agent does not need to know the addresses of other
agents. Once an agent wants to communicate with
another agent, it simply gives TOFAK the name of the
target agent and all necessary parameters (Figure.2).

Agent A requests
the task on agent B

t

Figure 2: Iksk Execution Process

2.3 Useful Properties

In the definition of the CMA model, it can be found
easy to integrate legacy systems into a new one, which
complies with the CMA model. The legacy automa-
tion system can be ab system without communication
ability or a system with different communication pro-
tocol (COM,OLE,or RPC).

Besides, since TOFAK has communication ability,
itself is also an agent. 13ecanse TOFAK can be treated
like an agent, it can be connected to an upper level
TOFAK, and hence can provide a hierarchical model
of CMA, as shown in Figure.3.

AGENT AGENT AGENT

Figure 3: Hierarchical Model of CMA

As we have defined before, each agent should be
associated with some kind of task. Therefore, TOFAK
also has some task defined on it. An example of the
task on TOFAK maybe is to report to the upper level
system or to execute ,some orders from the upper level
system.

3 TOFAK: Task Oriented Flexible Au-
tomation Kernel

Since the role of TOFAK in CMA model has been
introduced in the previous section, a complete descrip-
tion of the architecture of TOFAK will be provided
here. The basic architecture of TOFAK is illustrated
in Figure 4.

21 35

I ‘

Figure 4: TOFAK Architecture

3.1 CMA Specification

The CMA specification contains all necessary data
that TOFAK needs when building a brand new man-
ufacturing environment. It is nothing but a text file
such that anybody can tailor it for his own manufac-
turing cell. There are four sections in a CMA spec-
ification : Communication, Agent, Group and Sys-
tem-Task, which are respectively explained below.

Communication Section Because TOFAK is built
on TCP/IP, there are certainly some information
about the communication part that must be filled
in inside the control kernel. For example, the
socket port number and the name of this TOFAK.

Agent Section This section is focused on the issues
like which agents will join the cell and what tasks
can be provided by these agents. An agent which
wants to enter this TOFAK will not be accepted
if the name of this agent does not appear in this
section. The task requested by some agent will be
refused if the cell designer does not specify that
task in the agent section. Therefore, this section
allows one to layout his working environment flex-
ibly in a transparent manner.

Group Section In TOFAK, the system designer can
integrate several agents into one group and then
can send message to these agents by sending mes-
sage to this group. Agents in this TOFAK can
send information to each group by using the in-
terne1 task : SENDGROUP.

System-Task Section As has been pointed out ear-
lier, a TOFAK can be an agent itself, and hence
some task may be provided by it. This section will
be used to implement those tasks if that will be
the case. One can combine several internal tasks
into a system task. To do so, one must first de-
clare a unique task name and associate it with a
list of internal tasks.

Statusxepost Section The cell designel caii c a k e
a list of agent names on this section. Then, :he
system will automatically send agent status to ev-
ery agent that is specified in this section whenever
there is a status change in any of the agents.

3.2 Network Service Center

The Network Service Center (NSC) is the communi-
cation part in TOFAK. It takes responsibility of build-
ing connection among other components in a CMA
environment. That is, it builds connections between
agents and TOFAK and between the upper level TO-
FAK and the TOFAK itself. TOFAK sends and re-
ceives requests via NSC. There are two kinds of con-
nections that need to be established. One is the reg-
istration request from an agent to TOFAK. When the
agent undergoes the registration procedure, NSC will
make a logical connection between the agent and TO-
FAK so that messages can be exchanged.

3.3 Internal Task Interpreter

There are two kinds of task in CMA environment.
One is the agent task and the other is the internal
task provided by kernel itself. When NSC receives a
task request from the agent, it will be processed in two
ways. If it is an internal task, then the NSC will send it
into Internal Task Interpreter immediately. Otherwise,
it will be sent into Task Manager instead.

3.4 Database Manager

Within our system, there are a large amount of data
that need to be stored and retrieved such as task in-
formation, agent status, product working progress and
error message. Since the data set will be very complex,
huge and hard to handle, we prefer to design a special
element for handling every data set we need in our sys-
tem. This is what Database Manager needs to serve
in TOFAK.

3.5 Task Manager

^L_ .

I“

0
0

.

Figure 5: Task Manager
21 36

The major task of this component is that collecting
all task request in this system and then check iris vitlid-
ness and correctness, i.e., whether the task is clearly
defined in CMA specification and whether the .;ask
carries the right parameters with it. If a task be-
longs to agent task type, the Task Manager will ask
the Database Manager to add this task into the task
table. All tasks in task table is indexed by its prior-
ity and would be retrived by Task Dispatcher one by
one from top to end. The concept of Task Manager is
shown in Figure.5.

3.6 Task Dispatcher

The Task Dispatcher takes a task from the task ta-
ble maintained by the Database Manager if the task
matchs these two condition: has the highest priority
and the invoked agent is ready for serving this task. If
the agent that provides this task is ready for accepting
work, then it puts the task to the Task Executor for
execution.

3.7 Task Executor

When there is an executable task coming, the Task
Executor will find an agent which can perform t,his task
and then invoke this task on remote agent. When the
agent is executing this task, the Task Executor simply
puts the task into running state and continues the next
task invoking. Note that, because all the internal task
is sent to the Internal Task Interpreter, the Task Ex-
ecutor only invokes the remote tasks. After an agent
finished a task, it would send message to TOITAH: to
notify the Task Executor. It will move this task into
finishing state and drop this task from the task table.
The reply message will be sent to the request agent
also.

3.8 System Monitor

When there is a task in this shop floor manufactur-
ing system which must be executed, how do we know
all resources are ready for it? We need a monitor mech-
anism to keep track of all system states. The System
Monitor just plays this role in TOFAK. It can get the
timely information from agents connected to this sys-
tem and analyze all data captured. If there is a dan-
geous situation sensed by the System Monitor, it will
ask the Error Manager to handle it.

3.9 Error Manager

In real world, there are many problems which may
occur from time to time. For example, a collision be-
tween two robots occurs or some manufacturiing ma-
chine is down. There should have some recovery meth-
ods provided by the shop floor control kernell. The
Error Manager accepts these errors reported from out-
side agents and System Monitor. The concept of Error
Manager is shown in Figure.6.

delete
task

Figure 6: Error Manager Concept

3.10 Graphic User Interface

We provide a windows based interface in order to
present how system w'orks, how message is being ex-
changed, and what kind of problem exists. By this,
we can communicate with the operator and get his
feedback. The supervisory control with human opera-
tor can be implemented easily by using this interface.
The difficulty as how to deal with unknown type of
error can also be resolved by an operator through this
interface.

3.11 Task Management

A task in TOFAK inay be a remote agent task or
an internal task. No matter what kind of task it will
be, the task may stay in one of the five states, namely,
new, ready, running, suspend and finishing, Figure 7
shows the state diagraim of a task.

Figure 7: Task State Diagram.

New : When a task is being created by the System
Builder, it is in the new state. If there are some
agents making a request on it, it enters the ready
state.

Ready : When a, task is added on the task table
and is waiting for invoking, it enters the ready
state.

Running : When i5 task is executed by the Task
Executor, this taak is in running state.

21 37

0 Finish : When a task is ended normally, the task
enters the finishing state. And, the task will be
removed from the task table.

0 Suspend : If there are some problems which oc-
cur during the stage of task execution, the task
enters the suspend state and the Error Manager
will handle the error.

3.12 Monitoring Mechanism

Within TOFAK, the function of System Monitor is
to supply the necessary information to the agent con-
trolling and task scheduling, so that they can carry out
their respective tasks of planning and control. Thus,
the role of the System Monitor is to make good use of
real-time data collected from agents and internal state.
The purpose of this monitor element is to make useful
information for supporting system decision. There are
three main activities of the System Monitor, namely,
status capture, status analysis, and error finding.

1. Disable the agent associated with the error. The
Error Manager will put this agent into dismissed
state so that this agent will no longer be able to
perform any task.

2. Send alarm to the operator and wait for opera-
tor to recover this error. By using Graphic User
Interface, the Error Manager will send an alarm
to human operator and inform him of the kind of
error that happens to this system.

3. Do the right work according to the operator’s re-
ply. If the operator has completely recovered this
error, the Error Manager should put this agent
into ready state and let all tasks provided by this
agent continue their running. But, if the operator
reply that this error can not be recovered, then
the Error Manager should disconnect this weak
agent and delete all waiting tasks needed to be
invoked on this agent.

3.13 Error Recovery Method 4 Experiment

Emergency
Task 1 z:rg
Error

T
1

Network
Service Center I Error
- ~-

4.1 System Setup

Figure 9: Cell in Laboratory

In our laboratory, we have a two-robot assembly
system that is dedicated to assemble various types of
mechanical parts sent serially into the conveyor belt
by the part loader as shown in Figure 9. There are
two products currently assembled in this system, and
each product has four parts that are assembled by the
robot manipulator. The operations include vertical
insertion, horizontal insertion, and rotation in assem-
bling with the subassembly fixed at the assembly sites.
The parts are fed into the system without a specific
order, and the scheduling is made on-line. The cell
is equipped with several pieces of hardware that work
together to assemble parts, they included two robots,
a part loader, several CCD cameras, a conveyor belt, a
rotary buffer, and an assembly table with several kinds
of fixture.

During operations of this assembly system, there
are numerous interactions between different conipo-
nents using message passing. For example, when the
optical sensor detects a part on the conveyor belt, it

1 operator
~ *Iarmto I. ‘ 1

ip- A END

-No -4 r- Retireagent Error
recovery

I
Yes I ‘ I

+ c
put agent to

ready, task can
be executed

Figure 8: Error Recovery Method

In Figure 8, the main concept on error recovery
method in this system is shown. When there are some
errors which occur, the Error Manager (EM) will get
the description of all these errors and then take the
following steps to try to recover these errors.

21 38

signals an interrupt and the associated interrupt ser-
vice routine sends a message to the PC in charge of
overhead camera to take a picture. The PC determines
the part’s type and orientation and sends a message to
an assigned robot to pick up the part. This is a simple
example that could appear in this assembly cell, and
there are other similar activties concurrently taking
place in the system.

4.2 CMA Model Specification

Since we have introduced the experiment environ-
ment in out labrotory, we want to make an example
for demonstrating how to use the Cooperative Multi-
Agent Architecture model and Task Oriented Flexible
Automation Kernel. First, in this section, we will de-
scrib the CMA model for this case in detail.

Figure 10: Example of Cooperative Multi-A,gent Ar-
chitecture

Figure.10 shows the abstract model view of whole
assembly system. There are several agents designed
for this cell. Each agent control one hardware in this
cell and make a physical link with the hardware (RS-
232 or one-bit signal port). Agents in this model have
their own tasks to perform.

4.3 Results

After setting up all agents and the CMA, specifi-
cation file. This cell performs smooth assembly tasks
without any problems. This control kernel help IUS to
establish the full control of the cell. We can get run-
time information via GUI of this kernel and perform
the recovery procedure easily.

5 Conclusion

In this paper, we have proposed a multi-agent hased
model for an intelligent flexible automated production
system. Under this model, every piece of equipment
is given as an agent and communication among agents
are through network using TCP/IP protocol. In or-
der to realize such model, we further develop a task
oriented flexible automation kenel (TOFAK:) to es-
tablish the necessary message control platform. The
present work is successfully demostrated in our 1 ntel-
ligent robotic assembly cell in our laboratory. The

results are considered extremely useful to expedite the
process of creating the shop floor control for any au-
tomated production system.

References

C. B. Basnet a:nd J . H. Mize. An object-oriented
framework for operating flexible manufacturing
systems. In Proceedings of International Confer-
ence on Object-oriented Manufacturing Systems,
pages 346-351, 1992.

D. M. Dilts, N. F’. Boyd, and H. H. Whorms. The
evolution of control architectures for automated
manufacturing systems. Journal of Manufactur-
ing Systems, 10(1):79-93, 1991.

Larry Jann and ILi-Chen Fu. Flexible control sys-
tem for robot assembly automation. Master’s the-
sis, National Taiwan University, Department of
Computer Science and Information Engineering,
1994.

Yunho Jeon, Jiingmin Park, Insub Song, Young-
Jo Cho, and Sang-Rok Oh. An object-oriented
implementation of behavior-based control archi-
tecture. In IEEE Int. Conf. on Robotics and Au-
tomation, page;s 706-711, 1996.

Sanjay B. Joshi, Erik G. Mettala, Jeffrey S.
Smith, and Richard A. Wysk. Formal models for
control of flexible manufacturing cells: Physical
and system model. 11(4):558-570, August 1995.

Li Lin, Masatoshi Wakabayashi, and Sadashiv
Adiga. Object-oriented modeling and implemen-
tation of control software for a robotic flexi-
ble manufacturing cell. Robotics and Computer-
Integrated Man,ufactum’ng, l l(1):l-12, 1994.

John C. Martin. .Introduction to languages and the
theory of computation. McGRAW-HILL, 1991.

Michel T. Martinez. Dynamic assembly sequence
- a multi-agent clontrol system. IEEE Symposium
on Emerging Technologies and Factory Automa-
tion, 2:250-258#, 1995.

D. J. Miller ancl 13. C . Lennox. An object-oriented
environment fo:r robot system architectures. IEEE
Control Systems, 11 (2) : 14-23, 1991.

J . Borges Soma and F. Lobo Pereira. A general
control architeckiire for multiple vehicles. In IEEE
Int. Conf. on hlobotics and Automation, pages
692-697, 1996.

Steve Vinoski. Corba:integrating diverse appli-
cation within clicitributed heterogeneous environ-
ments. IEEE Communication Magazine, 1.14(2),
February 1997.

21 39

