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Abstract

A new method of handling the kinematic singularities
of seria robotic manipulatorsis proposed. The ideaisto
transform the manipulator’s workspace ¥V into a desin-
gularized workspace YW*. Robotic motions can then be
planned anywherein W*, subject to limitson spatial veloc-
ity and acceleration, and the resulting joint velocities and
accelerations will be well-behaved and bounded. W* dif-
fers from W only near a singularity surface, where a de-
formation is applied in the direction normd to the surface.
While the technique does not handl e self-motion singul ari-
tiesand may not be practical in some cases, it is very easy
to implement for certain manipulators, such asthe PUMA,
whichisstudied in the paper. When applicable, the method
offersvarious advantages when compared with other meth-
ods of singularity control.

1 Introduction

Kinematic singularitiesof robotic manipulators correspond
to regionsin the manipul ator’ sworkspace where execution
of a prescribed spatial motion may lead to extremely large
valuesof thejoint vel ocities, accel erations, and higher time
derivatives. In particular, for revolute-jointed serial robots,
the outer workspace boundary usually correspondstoasin-
gularity, making it quite difficult to perform tasks there.
Thisboundary singularity reduces the usabl e workspace of
the manipulator and isparticularly evident to users of teler-
obotic systems.

In this paper, we demonstrate the possibility of desingu-
larizing arobot by locally deforming its workspace W in
the vicinity of singularities. Motions can then be planned
and directed anywhere within this deformed workspace
W+, using only conventional bounds V; and A, on the
spatial velocity and acceleration, and the resulting joint
velocities and accel erations will remain well-behaved and
bounded, in proportionto V; and A;.

Though not ableto handle sel f-motionsingularities(such
asthewell-knownwrist singularity), and possibly not prac-
tical for robots with complex geometry, this method has
a number of advantages that should make it of interest in
cases where it can be applied:

1. It can beextremely easy to implement, asour experi-

encewiththe PUMA (Section 5) suggests. Also, this
implementation requires little or no modification to
existing kinematic and control routines.

2. Thedesingularizationiscomplete, inthat joint veloc-
ities, accelerations, and higher time derivatives are
always well-behaved and bounded.

3. Path errors can be understood and quantified exactly
in terms of the applied workspace deformation.

4. Theresultingmotionsaretimeefficient, and therobot
will not get “stuck” at the singularity.

5. The method can be employed directly in online path
generation.

The combination of these items represents a useful con-
tribution to the state of the art. Although our method will
produce path errors, these are easy to quantify (item 3) and
may not be problematic in tel erobotic or sensor-driven ap-
plications. Note that for the case where arobot is required
to follow a fixed path without error, other methods can be
used [1].

Only regional singularities (i.e., those associated with
thetrandlational part of the robot’ skinematics) will be con-
sidered in this paper. When analyzing regional singulari-
ties, the workspace V' can be considered a subset of 13,
and apoint X € W can be described by avector p. The ap-
plication of workspace reparameterization to more general
singularitieshas not yet been studied.

Our analysiswill be based mainly on atheoretical result
[9] for non-redundant serial mani pulators. However, exper-
iments involving the boundary singularity of a planar 3R
robot have shown that workspace reparameterization can
be applied to redundant seria robotsas well.

2 Redated Work

Singularities are traditionally defined with respect to the
mani pul ator Jacobian J, which relates joint velocities ) to
gpatial velocitiesv accordingtov = J 9. Near asingular-
ity, J becomesill-conditioned and execution of aprescribed
v may requirearbitrarily highvaluesof ¢. A common way
to handle thisis to use a damping factor to desingularize



the inverse computation which produces ¥ [2, 3, 4]. Prob-
lems exist with this, however: exact motion in the degen-
erate (singular) directionis usually not possible, the result-
ing path errors are hard to quantify, and accelerations and
higher time derivatives are difficult to explicitly control.

If higher order derivativeinformationis utilized, then it
becomes possible to produce motion along a singular di-
rection [5], and it has been shown that proper time-scaling
of atrgjectory can permit motion along any fixed path con-
taining singularities[6, 7, 1]. This problem s closely con-
nected with reparameterizing a prescribed path in order to
remove the singularity [8, 9], the notion of which has been
used to improve conventional Jacobian-based control [10].
Enhancing Jacobian-based computations with information
from the manipulator’'sHessian has aso been studied [11,
12].

3 Workspace Desingularization

In this paper, the notion of desingularizing amanipulator’s
path is extended to the idea of desingularizing the entire
workspace. We being by reviewing the former.

Suppose that a manipulator is requested to follow some
spatial path X(s), where s isa scalar path parameter. Let
9(s) = (91(s),...,9m(s))T be the corresponding in-
verse kinematic solution. Motion aong the path is speci-
fied in terms of atiming s(¢) for the path parameter. Near
asingularity, v (s) and/or higher derivatives may become
very large, implying, from the chain rules

Oy =(s)s  and ;= 0(s) 5 + 0(s) §7
that 9; and/or J; may also become very large for non-zero
valuesof s and 5.

In desingularizing a path, theideaisto find a reparam-
eterization s(A) for which the corresponding ¥ () (and
higher derivatives) exist and are well-behaved at singular-
ities. The work of Kieffer [8] showed that this can some-
times be done by equating A with the arc-length of the
spatia curve in R7 formed by 9(s) and s. In[9], it was
shown that if X(s) is piecewise analytic and the robot is
non-redundant, then within either aright or left neighbor-
hood of asingularity a s = sy, an anaytic reparameteriza
tion can always be formed using

A= s —sol'M7, D)

where 7 is an integer guaranteed to be no greater than the
root multiplicity associated with the singularity. In other
words, even if 9(s) is not well behaved at s, 9(A) will
be well behaved, and in fact analytic, at s = sp,A =
0. Because most singular points of non-redundant robots
are associated with aroot multiplicity of 2 (i.e, only two
branches of the inverse kinematic solution meet there), this
impliesthat in most situationsasingularity can be removed

by the reparameterization

A=]s — sol. (2

Without loss, only such cases will be considered in the se-
quel.

We now turn our attention to theworkspace W. There-
giona singularities often form smooth 2D surfacesin W,
which frequently coincide with the boundary of W. Let
S € W be such asingular surface, let py be a point on
S, and assign a Euclidean z-y-z coordinate system at py
such that the » axisisaligned with the surface normal n and
pointsinto W (Figure 1). This means that = is paralle to
the degenerate direction of the singularity, and so constant
speed motion along « is not possibleat py (i.e., a = = 0)
without causing ¥ to blow up. Correspondingly, §v; /0z is
infiniteat = 0 for at least onejoint j. On the other hand,
sincethe y and » axes are tangentia to S, motion in those
directionsisfeasibleand so 99, /0y and 0v; /0= will exist.

[Jreachable part of Ww

reachable part of W

Figure 1: Crosssection showing and y axes of alocal coordinate sys-
tem centered at apoint pp onS.

Moreover, if wereparameterize the » axisby A = /=, then
09;/0X will exigt, for dl j, a x = A = 0. Thisfollows
from (2), by considering the » axisitself to be a path with
s =,z > 0and sg = 0. This suggests that smooth robot
motionscan be created at p, by using the coordinate system
A-y-z in place of z-y-z.

Now, theideaisto apply the abovetransformation to ev-
ery point on S, creating a new workspace YW* inwhich the
effects of the singularity a S have been removed. We do
thisasfollows. For each p € W, let d(p) beitsdistanceto
S, let py be the associated closest point on S, and let n be
the normal directed from S towards p. Both pg and n are
well-defined if S is smooth and d(p) is sufficiently small.
Also, define the function T'(d) (Figure 2) by

ifd > d
F(d):{d—i—db if d > dy,

2v/dpyv/d  otherwise, 3

where d;, controls the distance from S a which the repa
rameterization starts to take effect. The point p* € W*



corresponding to p isthen given by
p* = po + [T(d(p)) — dy] n. (4)

Qualitatively, thisproducesalocal stretching of VW perpen-
dicular to S. Pointsin W whose distance from S exceeds
d, are unaffected, while the transformation of S into W*,
denoted by §*, islocated adistance d;, away fromS (Figure
3).

2dy T

dy

Figure 2: ThefunctionT'(d).

Fi gure 3: Transformation of W, boundedby S (dark circle), into W*,
boundedby S$* (light circle). Transformation affectsonly thosepointsp €
W in the zone between S and the dotted line indicating d(p) = dp. A
straight-line motion (a) produced in W* may produce an actual motion
(b) which is bent somewhat inside this zone.

By thearguments above, we can expect theinversekine-
matic function to be differentiable everywherein W=, im-
plying that any motion generated in WW* (subject to con-
straints on velocity and acceleration) should result injoint
velocities and accel erations which are al so well-behaved.

The actual motion in W corresponding to a motion pre-
pared in W* can be determined by the inverse transforma-
tion W* — W. If for each p* € W* welet A(p*) beits
distance to $*, and n* and p* are the associated normal
and closest point on §*, then the correspondingp € W is
given by

P=p"o+ [T (A(P) +db] 07, (5)
where
e fA=dy iEA> 24,
= {/\2/(4db) otherwise. ©)

In particular, motions prepared as straight linesin W*
will result in actual motionswhich are bent slightly within
the threshold zone defined by d(p) < d; (Figure 3). There
will not, however, beany bending of motionswhichare per-
pendicularto S.

The continuity of thetransform W* — W isthesame as
thecontinuity of T =!()). Aspresently defined, I ~!()) has
C'(1) continuity, meaning that position and velocity conti-
nuity will be preserved when mapping from W* back to .
If necessary, smoother functions I'(d) and I'"!()\) can be
produced by smoothing the junction point at d = dp,.

4 Usage and Discussion

A standard way to employ workspace desingularizationis
asfollows:

Map the necessary task goalsinto W*;
Compute the required motions;

Map back into ¥/ and compute the inverse
kinematics.

For example, suppose a robot is required to track a refer-
ence point pg whichischanginginreal-time. Every control
cycle, we can then: (&) determine p*, € W* correspond-
ing to py; (b) adjust the robot’s position p* in W* so asto
try and rendezvous with p* ;; and (c) find p € W corre-
sponding to p* and solvefor the required joint values. The
resulting ¢ and ¥ will be well-behaved at singularities.

In step (c), joint solution determination is certainly eas-
iest if the manipulator has a direct kinematic solution. If
not, then a Jacobian-based solution can probably be used
without too much difficultly, since forming the motion in
W* implicitly provides much of the step-size adjustment
needed near singularities.

To remove dl the singularities of a manipulator, arepa
rameterization is required in the vicinity of each singular
surface S;. Itispossiblethat the above method may be dif-
ficult to apply to somesurfacetypes, or near theintersection
of two or more surfaces (for the PUMA, however, surface
intersection could be handled using composite mappings,
as described in Section 5). Also, when two singular sur-
faces meet, the kinematic root multiplicity will be greater
than 2, and so by equation (1), a higher order reparameter-
ization may be required. For the PUMA, theinverse kine-
matics decouples sufficiently that thisis not necessary.

Workspace desingul arizationisprobably not directly ap-
plicable to self-motion singularities, which cannot be han-
dled by path reparameterization [9].

An important quantity to consider is the threshold dj,
which controls how much of W is deformed when con-
structing W*. There is no “required” value for d. Low-
ering d, reduces the path error (Figure 3), but also necessi-
tates lowering the spatial vel ocity and accel eration bounds,
Vs and A;, used to produce motionsin W*. One way to



accommodate thiswould beto vary V; and A, over differ-
ent regions of WW*. While the exact relationship between
dy, Vs, As, ¥; and 9; can in principle be derived analyti-
caly, itisprobably easiest to determine agood valuefor d,
empirically with afew experiments.

5 Desingularizinga PUMA

In this section we will construct a WW* which removes the
elbow and shoulder singularitiesof a PUMA. The surfaces
associated with both of these comprise an outer sphere S,
withradius R, aninner sphere S; withradius 2;, andanin-
ternal cylinder C withradius R, (Figure4). Together, these
define the workspace boundary [13]. If a2, as, ds, and d4
denote the significant Denavit- Hartenburg parameters for
the PUMA [14, 15], and we define 4 = \/d3 + a3, theniit
can be shown that R. = ds, and

R, = (Clz + 14)2 + d% ad R; = (a2 — 14)2 + d%

Figure4: surfacesassociated with the elbow and shoulder singularities
of the PUMA (not to scale).

The workspace W lies outside of C and between S, and
Si. S, is associated with the elbow singularity, reached
when the arm is fully outstretched and ¥5 = =/2 —
tan~!(as/d4). C is associated with the shoulder singular-
ity, and S; is the counterpart to the elbow singularity that
occurs when the arm completely folds up on itself. On a
real PUMA, limitson 93 prevent S; from being reached,
and so we need consider only S, and C.

The deformation at S, will be considered first, with d,
denoting the associated deformation size d,. Because S, is
a sphere centered on the origin, the transformations given
by equations (4) and (5) are particularly simple. For any
pointp € W, wehaven = —p/||p||, po = —R,n, and

d(p) = R, — ||p||- Equations (4) and (5) then become:

p* — RO + dO F(RO ||p||) P, (7)
Il
—1 *
p= RO r (Ro*—i_do ||p ||) p* (8)
lIp=|
Thetransformed surface S isadightly larger sphereof ra-
dius R, + d, (Figureb).

ThedeformationaroundC isalso easy to compute. Since
thedistanceto C isindependent of z, it occursentirely inthe
z-y plane, sothat p? = p.. If wethenlet p,y = (pr, py)T
and p;, = (5, p})", andlet d. denote the desired defor-
mation size dy,, theca cul ationscorresponding to (4) and (5)
are

o _ Re—de+ T([[poyll — Re)

Y [Pzl !
Re+ T (|Jpyyll +de = Re
Pey = - ) Pyy-

The transformed surface C* isadightly narrower cylinder
of radiusds — d..

do

Figure5: Cross section through the workspace, showing the transfor-
mation of S, (heavy circle) into S} (light circle), along with the induced
bending of C near S

The transformation of W at points close to both S, and
C can be handled using composite mappings. First, the de-
formationat S, isperformed, transforming W= into W ac-
cording to equation (8). Then the deformation at C is per-
formed, transforming W, into W* according to equation
(10). The only complication is that the first deformation
modifies the shape of C near S, so that its radius, rather
than being constant, tapers outward dightly (Figure 5). To
accommodate this, thevaue of R. used in (10), which nor-
mally equals ds, ismade afunction of thevaue of z within
W, Thisfunction R.(z) is tedious to solve anaytically,
but can be quickly determined online using a spline ap-
proximation®. Moreover, by replacing d. withd., = d. +
R.(z) — ds, itispossibleto ensure that the transformed C*
in W* remains acylinder of radius ds — d..

In summary, the desingularized workspace WW* looks
exactly like W (Figure 4), except that S* isdlightly larger
and C* isdlightly narrower.

1The surface normal of C near S* also containsasmall =z component,
but this effect can beignored.
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Figure6: Straightlinemotionfromp = (0,400, 300) 7 into ashoulder
singularity at p = (0, ds, 300)”. Nominal velocities are shown on the
left; desingularized velocities are shown on the right. Plots are scaled as
indicated by the dotted lines on the rightmost graph for 3.

6 Demongtrations

The effectiveness of the reparameterization is now shown.
Each exampleinvolvesastraight-linemotion toward asin-
gular point, and is illustrated by a three-frame animation.
Time profiles are shown of the resulting joint velocities,
first for a nominal motion prepared in YV (with no singu-
larity compensation applied), and second for amotion pre-
pared in WW*. The nomina motions were executed with
congtant path speed § = V;. The motions prepared in W*
were executed using atrapezoidal profilefor s, with|s| and
|5] bounded by V; and A,. Vauesfor V; and A, were 250
mmv/s and 500 mm/s?.

The Denavit-Hartenburg parameters used for the PUMA
wereas; = 431.8,ds = 149.09, a3 = —20.32,and dy =
433.07, withthekinematicsdescribed in[14]. Themotions
were undertaken using the “right-handed, el bow down” so-
lution branch?. W* was congtructed with d, = d. = 80
mm.

In the first example (Figure 6), the robot is driven into
ashoulder singularity (i.e., the path terminates on C), nom-
inaly causing large spikesin ¥, and ¥,. However, if the
same motion is prepared in W*, with bounds on s and s,
theresulting ¥; and +J; are well-behaved.

Similar results hold for the other examples. In Figure
7, the robot is driven along a straight line that makes tan-

’meaning that that —7 < ¢; — atan2(py, p=) < 0and —7/2 <
a3 + aIan(ag,,d4) S 7'['/2.

Iy
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Figure 7: Straight line motion fromp = (—ds,300,300)T top =
(—ds, —300,300) T, which goesthrough a shoulder singularity by mak-
ingtangential contactwith C at itsmidpoint. Nominal velocitiesare shown
on theleft; desingularized velocities are shown on theright.

gential contact with C, so that it is driven through a shoul-
der singularity. Our choice of kinematic solutionson either
side of the singularity caused nomina discontinuitiesin
and ¥,. These are removed, however, when the motionis
prepared in W*. Lastly, Figure 8 shows the results when
the robot is driven into a double singularity near the ready
position, such that the final path point makes contact with
both &, and C. The nominal motion therefore causes vel oc-
ity spikesin al three joint angles, but again these are prop-
erly removed by preparing the motion in W*.

7 Conclusion

A new method for controlling manipulators at kinematic
singularities has been presented, involving the creation of
an aternate workspace WW* in which the singularities are
removed. Motions can then be prepared in W*, with lim-
itsonthespatia velocity and accel eration, and theresulting
joint velocities and accelerations will be well behaved and
bounded. WW* equals W except within acertain distance d,
of asingular surface. The actua motions resulting in W
will generally have a path error near the singularity. How-
ever, thiserror can be understood and quantified directly in
terms of themapping from W to W*. Moreover, thesize of
the deformation (and hence the error) associated with W~
can be controlled by adjusting thethreshold d;,, withtheun-
derstanding that as d;, is decreased, lower limitson the spa-
tial velocity and accel eration will bereguired within W* to
keep joint vel ocities and accel erations within bounds.
Loosely speaking, our approach turns the singularity
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Figure 8: Straight line motion fromp = (0,400,300)7 to a combi-
nation elbow-shoulder singularity at p = (0,ds, a2 + {4)T. Nominal
velocities are shown on the left; desingularized velocities are shown on
theright.

control problem into an ordinary collision control problem
inWw*.

Themethodisnot directly applicableto self-motiontype
singularities (including the wrist singul arity), and the com-
putation of WW* may not aways be easy or possible. How-
ever, our experience withthe PUMA showsthat the method
can be very easy to apply to certain simple manipulators.
Advantages of the method include: (a) computationa and
implementationa ease, (b) control over accelerations and
higher derivatives as well as joint velocities, (c) precise
knowledge of the resulting path errors, (d) time efficient
motions which don’'t get stuck at singularities, and (€) the
ability to handle motions generated online.

Our experience with this method is very new, and so
many questions remain. A more rigorous mathematical
analysisisalsorequired. Experimentsinvolvingthebound-
ary singularity of a planar 3R arm indicate that the method
can aso be applied to redundant robots. It will be interest-
ing to see how broadly applicable the method is, and how
it relates to (or can be used to enhance) more traditional
Jacobian-based singularity control methods.
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