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Abstract 

This paper presents a novel approach to solving the 
single-vehicle pickup and delivery problem with time 
windows and capacity constraints (or single-vehicle 
PDPT W) .  While dynamic programming has been used 
to find the optimal routing to a given problem, it re- 
quires time exponential in the number of tasks. There- 
fore, at often fails to find the solutions under real-time 
conditions in an automated factory. This research 
explores anytime problem solving using genetic algo- 
rithms. By utilizing optimal but possibly partial solu- 
tions from dynamic programming, the hybrid genetic 
algorithms can produce near-optimal solutions for 
problems of sizes up to 25 percent bigger than what 
can be solved previously. This paper reports the exper- 
imental results of the proposed hybrid approach with 
four different crossover operators as well as three mu- 
tation operators. The experiments demonstrated the 
advantages of the hybrid approach with respect to dy-  
namic task requests. 

1 Introduction 

To this day, only relatively small VRP instances 
can be solved to optimality. 

In this paper, we consider the single-vehicle pickup 
and delivery problem with time windows and capac- 
ity constraints (single-vehicle PDPTW), which will be 
formally defined in section 2. Most exact algorithms 
capable of finding optimal solutions to this problem 
are based on dynamic programming. For a single- 
vehicle PDPTW with n tasks, the computational com- 
plexity of dynamic programming has been shown to be 
bounded by (an + 1)23"[5]. Therefore, existing algo- 
rithms cannot satisfy real-time requests. 

In order to handle dynamic task requests efficiently, 
it is desirable to have heuristic algorithms that can 
generate (sub-optimal) solutions to large problems on 

demand. The solutions should be improved incremen- 
tally whenever more time becomes available. Genetic 
algorithms (GAS) can generate incrementally better 
solutions at each succeeding generation regardless of 
the problem size. Therefore, they provide a reasonable 
solution to the dynamic single-vehicle PDPTW prob- 
lem. Unfortunately, the solutions from simple GAS are 
often of poor quality. 

This research explores hybridizing genetic algo- 
rithms with dynamic programming in order to take 
advantage of the complementary properties of both 
in solving the dynamic single-vehicle PDPTW prob- 
lem. The proposed hybrid approach starts by using 
dynamic programming to generate the optimal routes. 
If optimal solutions are not found within the specified 
time slot, the partially constructed routes are passed 
to the genetic algorithms. The sub-routes provide 
the basis for generating an initial population that of- 
ten leads to better convergence than a randomly gen- 
erated initial population. The hybrid approach en- 
ables dynamic programming to achieve real-time per- 
formance, and improves genetic algorithms in approx- 
imating near-optimal solutions. 

The next section introduces the single-vehicle 
PDPTW, and section 3 presents the hybrid approach. 
The experimental results and analysis are shown in 
section 4, followed by the conclusion in section 5. 

2 The Single-vehicle PDPTW 

We should know the static single-vehicle PDPTW 
before we focus our attention on the dynamic single- 
vehicle PDPTW. The section 2.1 will describe the 
static case of single-vehicle PDPTW. The dynamic 
case will be presented in section 2.2. 

2.1 Static case 

Suppose that N = { 1,. . . , n} is a set of tasks, where 
n is the number of tasks. To accomplish each task 
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i E N, the vehicle should pick up the goods at the 
pickup location if and then transport the goods to 
the delivery location i-. According to these pickup 
and delivery locations, V+ = {i+ I i E N} and 
V -  = {i- I i E N} indicate the set of pickup lo- 
cations and the set of delivery locations respectively. 
Let G = (V, A) be a graph where V = (0) U V +  U V- 
is a set of vertices and A = { (r,  s) I r # s, r, s E V} 
is a set of arcs. Vertex 0 represents an initial depot of 
the vehicle. Each arc ( r , s )  E A is associated with a 
non-negative travel time d,,, and each task i E N 
is associated with a non-negative demand qi. The 
total demand of a vehicle route may not exceed the 
vehicle capacity Q. Specifically, for every task i are 
required for picking up the goods within the time in- 
terval [ai+, bi+], and transporting the goods to its de- 
livery location i- on the time interval [ui - ,  b*--]. In 
addition, let t ,  and 1, represent the arrival time and 
the load of a vehicle respectively, when the vehicle ar- 
rives at a location r E V. 

Our goal is to find a vehicle route starting from an 
initial depot, finishing all the requests of tasks, and 
ending at one of the delivery locations. According to  
the route, both the total traveling time and waiting 
time of the vehicle are minimized. Certainly, this route 
must be a feasible route that is satisfied the capacity 
and the time windows constraints of each task. In 
addition, the feasible routes visit the pickup location 
i+ before the delivery location i- of task i E N .  

Initially, we assume that the vehicle is stopped at 
an initial depot 0. Either the pickup location or the 
delivery location are associated with an advanced time 
window [a,, b,] ,  where r E V+ U V - .  The weight of 
goods q, for a task i E N is known, when the task i 
is assigned. We assume the value of travel time d,, is 
already known, where r , s  E V. If the vehicle arrives 
at a location r E V+ U V -  and its arrival time t ,  is 
earlier than a,, it has to  wait. Every task i E N is 
subject to a,+ 5 bi+, ai- 5 bi- and bi- - ai+ 2 di+,-. 

The solution cost of the static single-vehicle 
PDPTW problem is minimized. 

Zobject iue = w1 drsxrs + w2 fwai t ing(r )  
T,SEV r e V + U V -  

(1) 
The notation x,,, r ,  s E V, is defined as 

{ 0, otherwise. 
1, if arc (r, s) is used by vehicle; 

2,s = 

The function fwaiting(r), defines the waiting time of a 
location r E V+ U V -  as 

a, - t,, if vehicle arrives at loca- 
tion r early; 

f w a i t i n g  ( r )  = 

The first operand of the equation (1) is the total 
traveling time needed by the vehicle for completing 
the route, and the second operand of equation (1) is 
the total waiting time. The two factors 01 and wp are 
the weights, which reflect the relative importance of 
these two parts. We generally set w 1  + w 2  > 0 and 
W l , W 2  2 0. 

Solutions to the single-vehicle PDPTW are subject 
to the following constraints[2]. First, the vehicle starts 
from an initial depot, and each location is visited only 
once. Second, each task r E N should be picked up 
before it is delivered, which is called precedence con- 
straints. Third, the total load allocated to a vehicle 
cannot exceed its capacity. This constraint is named 
capacity constraints. Fourth, whenever the vehicle ar- 
rives at location i E V+ U V -  at time ti, the criterion 
ti 5 b, must be satisfied. In general, we named the 
fourth constraint as time window constraints. Finally, 
the vehicle routes will be open paths, ending at any 
one of the delivery locations. 

2.2 Dynamic case 

In the static cases, tasks to the problem do not 
change, either during the execution of the algorithm, 
or during the eventual execution of the route. By con- 
trast, in dynamic cases, tasks may change during the 
execution of the algorithm and the eventual execution 
of the route. For the requirements of a dynamic vehi- 
cle routing problem, we should modify the objective 
function Zobjec t ive  to accomplish a route in real time. 
A modified objective function is defined as 

Z d y n a m i c  = Zobject ive + [a1 f d e l a y ( r )  

r E V + U V -  

+ a 2  fouerload(r)]  
rEV+uV- 

The objective function Zdynamic  is based on the objec- 
tive function of the static case, but with some penal- 
ties. For any r E V+ U V - ,  the function f d e l o y ( r )  and 
foverload(T) represent the vehicle delay time and over- 
load at location r respectively, where a 1  and a2 are 
penalty coefficients. 

The functions fdelag(r) and foverload(r) are defined 
as following (r E V+ U V - ) :  

t ,  - b,, if a vehicle arrives at loca- 
tion r lately; 

otherwise. 

if the current load 1, ex- 
ceeds the vehicle capacity 
Q;  

{ 0, 

f d e t a y ( r )  = 

I 0, otherwise. 
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According to the definition of Z d y n a m i c ,  we will try 
to minimize it. 

3 Hybrid Approach 

Figure 1 shows the architecture of the hybrid ge- 
netic algorithms. 

module 
Re-Planned DP 

module Illod"k 

Figure 1: Architecture of hybrid GA 

3.1 Pre-planned module 

Algorithm 1 Genetic algorithm of single-vehicle 
PDPTW 

1: t = 0; 
2: Generate a population P(t ) ;  
3: Use Z d y n a m i c  to evaluate chromosomes in P( t ) ;  
4: while termination condition not satisfied do 
5: 
6: 
7: 
8: Perform crossover; 
9: 

Initialize a temporary population PI; 
for i = 1 to IP(t)I do 

Select two parents from P( t ) ;  

if the offspring and its parents are identical 
then 

10: Perform mutation; 
11: end if 
12: 
13: end for 

15: Replace P ( t )  by PI; 
16: end while 
17: Output the solutions; 

Place the offspring into PI; 

14: t = t -I- 1; 

A pre-planned module will arrange the tasks and 
prepare the information for the DP module. The pre- 
planned module collects the tasks that have not been 
finished, and set a new initial depot of the vehicle. The 
execution time and the load of vehicle are not equal 
to zero and the pre-planned module should maintain 
the proper values of them. 

3.2 DP module 

The DP module performs a dynamic programming 
algorithm. When a specific time is expired, the DP 
module will pass its unfinished sub-routes to a tem- 
porary result pool; these unfinished sub-routes will 
be the initial population of genetic algorithms. We 
adopt the dynamic programming approach that pro- 
posed by Psaraftis[4]. In the current state of knowl- 
edge, the single-vehicle dial-a-ride problems can rarely 
be achieved to optimization when the number of tasks 
is more than 40. As to the dial-a-ride problems, they 
might be a special case of PDPTW when every task 
demands of the PDPTW are equal. Detailed algo- 
rithms of dynamic programming can be found in many 
publications[4, 5, 31. 

3.3 Genetic algorithm 

We summarize the genetic algorithm used in our 
work as Algorithm 1. The procedure of step2 will gen- 
erate an initial population. The initial population of 
the hybrid genetic algorithms is based on the partially 
constructed routes of DP module; the sub-routes are in 
front of the initial routes. According to the step 7, we 
apply the tournament selection to select two parents, 

and the tournament size is 2. Four crossover operators 
and three mutation operators will be discussed in this 
paper. The algorithm will be executed until one of the 
following conditions is met: (1) The number of gener- 
ation is larger than the maximum generation. (2) The 
solution that has the best fitness value appears more 
than a specific sequence. (3) < 0.005. The a(P)  
and m ( P )  are the standard deviation and the mean 
of the fitness value in the population P respectively. 
Currently, we set the values of maximum generation 
and the appearence sequence are equal to 2000 and 
100 respectively. 

m ( P )  - 

3.3.1 Representation 

Given a single-vehicle PDPTW with n tasks, a so- 
lution is encoded as a chromosome, which is rep- 
resented by a permutation of locations from 1+ to 
n-. For example, in 2 tasks problem, if a route is 
0 + 1+ + 2+ + 2- t 1-, the representation of the 
chromosome will be (1+ 2+ 2- 1-). This representa- 
tion could be understood easily and the space require- 
ment is less than other representations. In addition, 
it is convenient for implementation. 

In the single-vehicle PDPTW, the precedence con- 
straints can not be violated. The representation does 
not preclude routes from violating the precedence con- 
straints. A simple algorithm is used to maintain the 
feasibility of the corresponding routes. A chromosome 
adjustment algorithm will exchange the positions of 
i+ and i-, when the vehicle visits the delivery loca- 
tion i- before the pickup location i+ of a task i E N .  
According to the adjustment algorithm, the chromo- 
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somes will be satisfied the precedence constraints by 
making the pickup location be appeared before the 
delivery location for any specific task. 

3.3.2 Crossover operators 

In the present work, we compare to the performance of 
four crossover operators on the single-vehicle PDPTW 
problem. These operators are order crossover (OX), 
uniform order-based crossover (UOX), merge cross #1 
(MX1) and merge cross #2 (MX2)[1]. The first two 
operators are traditional crossover operators and the 
last two operators use a global precedence vector to 
be the guidance of crossover. We will not describe the 
two traditional crossover operators. The other two 
crossover operators are described below. 

Most traditional crossover operators for order- 
based GAS do not have strong connection to  the con- 
straints of the problems they are applied. If we apply 
the traditional crossover operators to the single-vehicle 
PDPTW, they might not be conducive to  the search- 
ing process of optimal solutions because the informa- 
tion of the constraints is not used by these operators. 
On the other hand, the notion of merge crossover op- 
erators is that a global precedence among genes inde- 
pendent of any chromosome, rather than the behav- 
ior of traditional crossover operators that defines a lo- 
cal precedence among genes specific to  a chromosome. 
That is, each gene in the chromosome has a precedence 
relationship to every other gene. From the charac- 
teristics of constraints of the single-vehicle PDPTW, 
a global precedence relation probably exists among 
genes. The global precedence vector is formed by such 
relationship and it could be the offspring-generating 
guidance. 

In our single-vehicle PDPTW, each gene is either a 
delivery point or a pickup point and has an associated 
time window. Therefore, we can make use of the time 
window [a,, bp] of the location r E V+ U V -  and a 
precedence relationship among each earliest processing 
time a,. Given r,s E V+ U V - ,  if a, less than a,, 
let the location r be appeared before the location s 
in the global precedence vector because it will be a 
reasonable solution to serve the location r before the 
location s. In other words, we can sort all a, in the 
ascending order, and the sorting result will be a global 
precedence vector. 

We demonstrate the operations of MX1 with 
an example. Suppose that the set of tasks 
N = {1,2,3,4} and the set of locations V = 
{0,1+, 1-, 2+, 2-,3+,3-,4+,4-}. Given a global 
precedence vector (l+, 2+, 3+, 4+, 1-, 2-, 3-, 4-), the 
location 1+ is top-priority, and the location 2- takes 
precedence over the locations 3- and 4-. In other 
words, the location 1+ has the precedence of the oth- 

ers and the location 4- has the lowest precedence. The 
MX1 operator on two chromosomes (say PI and P2) 
produces single offspring, as shown below: 

PI: 1+ 1- 2+ 2- 3+ 3- 4+ 4- 
P2: 2+ 3+ 1+ 2- 1- 4+ 4- 3- 

At the first step, we make a comparison between the 
first gene of PI and that of P2, so we compare 1+ 
with 2+ according to the global precedence vector. In 
the global precedence vector, the location 1+ takes 
precedence over location 2+, so 1+ is the first gene 
of the offspring that inherits the gene from PI. With 
regard to P2, the first gene 2+ exchanges the position 
with the gene 1+, so that we can maintain the validity 
of the route. 

The gene with the earlier precedence is placed into 
the offspring C and genes are swapped to maintain 
validity if necessary. Continuing the process until C 
is filled with genes. Finally, a route is produced. 

1+ 3+ 2+ 2- 1- 4+ 3- 4- 

Effectively, MX1 produces a child that is close to the 
order of the global precedence. 

With the same global precedence vector as the MX1 
operator, the MX2 operator on two chromosomes also 
produces a single offspring. The contents of PI and 
P2 are also the same as the preceding example. 

The process is similar to merge two sorted vectors. 
The first gene of PI is found to  be prior to the one of P2 
according to the global precedence vector. The prior 
gene 1+ is placed in the offspring C. Then, the first 
gene of PI is removed in both individuals, hence the 
1+ is removed from both PI and Pz. The second gene 
of PI is compared with the first gene of P2 according 
to the global precedence vector. The first gene of PZ 
(2+) is found to be the prior gene. Again the prior 
gene is placed into the offspring C, and removed from 
the both chromosomes. By continuing the process in 
this fashion, we can get an offspring C shown below. 

1+ 2+ 3+ 1- 2- 4+ 3- 4- 

precedence near the end of the chromosome. 
This operator will move the gene with the lowest 

3.3.3 Mutation 

The probability of mutation rate is very small, and in 
our approach, it is not a fixed value. Mutations will 
be applied when the offspring is the same as one of 
its parents. In general, the mutation is worked with a 
single chromosome. A chromosome will be created by 
applying the mutation operator, and it will substitute 
the new chromosome for its original one. We will con- 
sider three mutation operators that can be applied to 
the single-vehicle PDPTW problem. 
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(1) Two genes are selected randomly, and their posi- 
tions are interchanged. 

task cr. mutation operators 
no. rate - I (1) I (2) I (3) 

(2) Randomly two cut sites are chosen, and the order 
of the sub-route specified by the genes is inverted. 

(3) If the vehicle arrives at the ith stop and violates 
the constraints, we will disturb the order of the 
genes within the first ith sub-route. 

The first operator will create a new route which has 
four different edges from its original route. The sec- 
ond mutation operator is similar as the 2-opt move in 
TSP; the difference between the new and the original 
route is two edges. Finally, the third mutation opera- 
tor rearranges a specific sub-route; such a change may 
affects the solution cost significantly. 

optimal 
value 

4 Experimental Results 

10 

We have tested the hybrid genetic algorithm on five 
problems consisting of 10, 20, 30, 40 and 50 tasks, re- 
spectively. In these problems, the pickup locations 
and the delivery locations are randomly placed in a 
rectangular grid. The locations of each task are as- 
sociated with a time window, which is generated ran- 
domly. The Euclidean distance is used to measure the 
distance between a pair of locations. 

In our experiments, the global precedence vector of 
MX1 and MX2 is based on the lower bound of time 
windows. We test the four crossover operators associ- 
ated with three different crossover rates, the rates are 
0.45, 0.6 and 0.75. The population size of each prob- 
lem is the number of task multiplied by 5. That is, 
if the number of task is 40, the total number of loca- 
tion is 81 and the population size is 200. The value of 
each factor in the objective function will be a1 = 10, 
a2 = 50, w1 = 1, and w2 = 2. 

At first, we would like to make a comparison among 
the crossover operators without the mutation opera- 
tors, in order to  study the pure relative performance of 
the crossover operators. In Figure 2, the mutation op- 
erators are not applied to the single-vehicle PDPTW 
problem. The solution cost is based on Zobjective 

where w1 = w2 = 1. In Figure 2, for each genera- 
tion, the values of solution cost are the average in 20 
runs. 

Figure 2 shows the MX1 could achieve better solu- 
tion cost than the other crossover operators do. Ac- 
cording to the Figure 2, OX is not a proper operator 
for the single-vehicle PDPTW problem. OX creates 
offspring which inherits sub-tours of its parents. Such 
a new route is analogous to its parent routes. The so- 
lutions were trapped to similar routes, and therefore 

0.45 1.000 1.000 ~‘000 j 1.~000 
0.60 1.000 1.000 1.000 1 1.000 1135 

4 

20 

. . . . . . . . . . . .  

................................................ 

0.45 1.000 1.000 1.000 1.000 
0.60 1.000 1.000 1.000 1.000 1794 
0.75 1.000 1.000 1.000 1.000 
0.45 1.033 1.000 1.000 1.033 

I 
0 150 m 250 300 50 

Irn generation 

Figure 2: The comparison of crossover operators 

0.75 
0.45 

feasible solutions may not be found. As to MX2, a lo- 
cation with the lowest precedence is moved to near the 
end of the routes, and the solution may be stuck to a 
local minimum. The solution cost of UOX is approxi- 
mate to the solution cost of MX1 when the generation 
is larger than 200, but MX1 achieves the same solution 
cost before the 50th generation. For the real-time re- 
quests, the UOX may not be suitable for the dynamic 
single-vehicle PDPTW problem. 

We apply the three mutation operators with the 
MX1 crossover operator. Table 1 describes the ra- 
tios of best costs to the optimal cost of the 10, 20, 30 
and 40 task problems. A dynamic programming[4] ac- 
complished the optimal solution of the single-vehicle 
PDPTW problems. The optimal solutions of 10, 20, 

I 

1.033 I 1.000 1.000 1.033 
1.053 I 1.000 1.000 1.051 

Table 1: Relative optimality of the solutions 

I I 0.75 I 1.000 I 1.000 I 1.000 I 1.000 I 

30 

40 

50 

I 0.60 I 1.022 I 1.000 I 1.000 I 1.033 I I I 

2602 1’ 40y2 
0.75 1.040 1.000 1.000 1.051 
0.45 5336 5247 5247 5336 

0.75 5341 5266 5276 5336 
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30 and 40 tasks are listed in the last column of Ta- 
ble l. The mutation operator l-’ means that no mu- 
tation operator is applied to the genetic algorithms. 
As to the problem of 50 tasks, the results are shown 
in the last three rows of Table 1. Most of exact al- 
gorithms applied to vehicle routing problems can not 
solve relatively larger problems, and we can not ob- 
tain the optimal values neither. From the results of 
Table 1, it shows the mutation1 and mutation2 attain 
better solution cost than the other mutation operator 
does. 

Figure 3 shows the average solution costs of the 
hybrid genetic algorithms are better than the average 
costs of the traditional genetic algorithms. A dynamic 

Figure 3: DP+GA vs. GA only 

programming is applied to generate the initial popu- 
lation instead of creating the it randomly. Since the 
initial population filtered out some of the infeasible 
routes and put the initial population contents more 
feasible sub-routes, the hybrid genetic algorithm al- 
ways obtain the lower solution cost than the tradi- 
tional genetic algorithms. 

5 Conclusion 

In this paper, we show that the hybrid genetic al- 
gorithm solves the dynamic single-vehicle PDI’TW 
problem. With such approach, that takes advan- 
tage of both dynamic programming and genetic al- 
gorithms. The approach enables dynamic program- 
ming to achieve real-time performance and genetic al- 
gorithms to approximate optimal solutions. The ini- 
tial population created by the dynamic programming 
instead of generating it randomly. The dynamic pro- 
gramming passes the unfinished routes to genetic al- 
gorithms to accomplish the real-time performance. A 
good initial population of the genetic algorithms is im- 
proved by the dynamic programming. 

The hybrid approach can generate incrementally 
better solutions at any time, which is essential for deal- 
ing with dynamic task requests. Comprehensive ex- 
periments using an efficient and flexible implementa- 
tion of the hybrid genetic algorithms were performed. 
The experimental results showed that the hybrid ap- 
proach could produce near-optimal solutions for prob- 
lems of sizes up to 25 percent bigger than what can 
be solved previously by dynamic programming. In 
addition, the hybrid approach may find sub-optimal 
solutions for dynamic vehicle routing problems of any 
size. 
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