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Abstract 
This paper introduces a novel heuristic nmdmap 
method for path planning, one that is inspired by the 
Vomnoi diagmm concept, but easiZy applicable to gen- 
eml configurntion spaces. The nmdmap i s  formed by 
connecting the local maxima of a clearance function 
which is  defined using distance finctions. Reaching 
the roadmap jivm any jive configurntion is achieved 
by applying the continuous active-set optimization al- 
gorithm to the maximization of the clearnnce finction. 
Preliminary ezperiments with the new nmdmap algo- 
rithm point to its potential utility in solving prnctical 
path planning pmblems. 

1 Introduction 
Path planning methods for determining collision-free paths 
for robots operating in static workspaces fall into three 
major groupe[9]: cell decomposition, potential functions, 
and road map methods. In this paper we introduce a novel 
roadmap method. Before we discuss it, let us fitst describe 
the underlying ideas of a general roadmap method. 
Let CS denote the free configuration space. A roadmap 

consists of VI a finite set of points in CS, and E, a finite 
set of feasible paths (i.e., paths that lie in CS) connecting 
some pairs of points in V. We will refer to an element of 
V as a node and an element of E as a pathway. Thus we 
have an abtract graph in which V defmes the vertex set 
and E defines the edge set. We say that the roadmap is 
complete if, for each connected component of CS, the part 
of the graph restricted to this connected component is con- 
nected. (Hereafter we will refer to a connected component 
simply as a component.) To use the roadmap for path 
planning, we also need an algorithm A which, given any 
x E CS, finds a feasible path that connects it to a point 
in V. Suppose a roadmap is complete and A is available. 
Then path planning between any two points 2 and y in CS 
can be done as follows. First use A (twice) to compute a 
feasible path from x to a point u(x) E VI and a feasible 
path from y to a point u(y) E V. Then use the graph 
defined by ( Y E )  to find a path (on the graph) between 
u(x) and u(g). If such a path on the graph is found then 
it leads to an overall feasible path between x and y. On 
the other hand, if a path between u(x) and u(y) does not 

exist on the graph, then, by completeness, it implies that 
x and y are in two a e r e n t  components of CS and there 
fore, there does not exist a feasible path between them. 
Difkrent Roadmap methods m e r  in the way they define 
V, E and A. 

Next we give a quick glance of existing roadmap meth- 
ods. The visibility graph[9] and Voronoi diagrams[lO, 41 
are limited to simple configuration spaces only. The 
silhouettebased method@, 2, 3, 121 are theoretically es- 
tablished to be powerful, but their complexity makes them 
impractical. In the probabilistic roadmap method[b] the 
roadmap is an extensive random network of points con- 
structed by repeatedly generating random free configurb 
tions and connecting these configurations using some sim- 
ple local planner. Algorithm A is implemented as follows. 
Given an arbitrary free configuration, x, a set of points on 
the network close to x are chosen and attempts are made to 
connect x to each of these points, using the local path plan- 
ner. If all such attempts fail then random-bounce walks 
are tried. The method is heuristic in that completeness 
cannot be proven. Also, the definition and construction of 
the roadmap, as well as the method of connecting an arbi- 
trary free configuration to the roadmap, are not based on 
systematic principles. Nevertheless, the method has been 
established as a useful practical tool. 

We call our roadmap as EquiDistance Diagram, or, 
EDD, in short. It is based on a simple (yet, power- 
ful) optimization-based algorithm, A for connection to 
the roadmap. Hence, after EDD is constructed off-line, 
paths between any two configurations can be computed ex- 
tremely fast, on-line, using EDD. Our inspiration for EDD 
came from the Voronoi Diagram (VD) concept. However, 
EDD is very different from VD. While VD is independent 
of how the objects in the problem are represented, EDD 
is representation-dependent. (In fact, this property adds 
an interesting flexibility to EDD that makes it powerful.) 
While defining and practically constructing VD for general 
non-polyhedral configuration spaces is extremely difficult, 
EDD is easy to define and construct. As far as we know, 
an idea similar to EDD has not been defined and used for 
general path planning before. The results that we report 
here on EDD are preliminary; the initial findings are ex- 
citing. Detailed work on complex path planning problems 
is currently being done by us and these results will be pre- 
sented in a later paper. 

The following notations will be used in the paper. If x 
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A is a vector, A is a real and P is a set, (z+AP) = {y : y = 
2 + Ap for some p E P} .  111 will denote the cardinality of 
the set I. 1 1 ~ 1 1  will denote the Euclidean norm of x. 

2 EDD: Definition, Properties 
For the purpose of motivation, let us briefly describe Leven 
and Sharir’s Voronoi diagram approach[lO] to a two dimen- 
sional path planning problem, in which a convex polygon, 
P moves only by translation among convex polygonal ob- 
stacles, (0;) which are pairwise non-intersecting. In the 
base reference frame, let us represent P such that the ori- 
gin is in its interior. Given a translation vector, z E R2, 
let us define d;(z), the one-sided growth distance between 

Clearly, P and 0; are non-intersecting if€&(%) > 0. There- 
fore the free configuration space is defined by CS = {z : 
di(z) > 0 V i } .  Let us assume that CS is bounded. 
Let c(z) = min;d;(z) and Z(z) = { i  : d;(z) = c(x)}. Let 
V = {z E CS : 1Z(z)1> 3) and E = {Z E CS : 11(~)1= 2). 
Generically, V consists of a finite set of points in CS and 
E consists of a finite set of feasible paths in CS; the end 
points of these paths are either in V or on the bound- 
ary of CS. Let us trim E by removing from it those 
paths that do not have both end points in V. Leven and 
Sharir[lO] showed that this roadmap consists of piecewise 
linear paths and that it is complete. They defined A as 
follows. Given z E CS, find I(z). If 1Z(x)1 = 1 move in 
a straight line direction that will lead to an increase in 
&(z) where Z(z) = { i } ,  until 1I(z)1 = 2 happens. When 
11(z)1 = 2, say, Z(z) = { i , j } ,  then move by maximiz- 
ing d;(z)  while maintaining the constraint, C(z) = dj(Z). 
This movement leads to a point in V. 

The advantages of the Voronoi roadmap defined above 
are: (i) the paths in E are central, i.e., they are located Ear 
from collision as much as possible; and (ii) IVl is typically 
small. However, the main disadvantages are: (i) it is diffi- 
cult to extend the idea to general path planning problems 
involving translational and rotational degrees of freedom 
for which the resulting CS is non-polyhedral; and (ii) even 
in the case of a three dimensional convex polyhedron trans- 
lating among three dimensional convex polyhedral obsta- 
cles, for which CS is polyhedral, the Voronoi roadmap 
defined in a way similar to the two dimensional case, is 
not complete. Detailed algorithms have been suggested in 
the literature for dealing with the second disadvantage[4]. 
But, from a practical point of view, it is the first disad- 
vantage that is more crucial. The EquiDistance Diagram 
(EDD) defined and developed in this paper is an important 
step in overcoming this disadvantage. 

Let us formulate a general robot path planning prob 
lem. Let z denote the vector of configuration variables. 
Let X denote the configuration manifold and n be the di- 
mension of XI i.e., n is the number of degrees of freedom. 
Let P denote the physical world space in which the robot 
operates; typically P is some subset of either a two or three 

P and Oi a~ d;(z) = -1 + min{X : (Z + AP)nO; # +}. 

dimensional space. Let t ( z )  c P denote the physical space 
occupied, together, by all links of the robot at configura 
tion z. Let L,(z), j = 1, ..., I denote some division of L(z ) ,  
i.e., the Lj(z)s are subsets of &(z) and their union is equal 
to L(z ) .  For example, in the case of a manipulator, we can 
associate each link with one L, and define the function of 
z using a representation of the link object with respect to 
a base reference frame and the forward kinematics associ- 
ated with that link. We will assume that each Lj is a set 
with a nonempty interior. 

Let U c P denote the physical space occupied by all 
obstacles together. Let oh, k = 1, ..., m denote some divi- 
sion of U ,  i.e., the ohs  are subsets of 0 and their union 
is equal to U .  Note that, for a given 0, the O k S  can be 
chosen in many ways. We will assume that each o k  is a 
set with a nonempty interior. 

Given two objects A and B, let D ( A , B )  denote some 
measure of distance between the objects, i.e., D(A, B) > 0 
if€ AnB # 4. The popular measures of distance used in the 
Robotics literature are the Euclidean[S] and Growth[ll] 
distances, defined, respectively, by: 

Deucl = min{lla - bll : a E A ,  b E B }  

Dgrow = -1 + min{X : (p + AA)n(q + AB) # +} 
where p and q are reference points in the interiors of A and 
B, respectively. The one-sided growth distance, already 
mentioned in relation to Leven and Sharir’s method, i.e., 

Done-grow = -1 + min{X : (p + AA)nB # +} 

can also be employed. 
Let us collect the functions, D(Lj(z),ok) : j = 

1, ..., I ,  k = 1, ..., m, into a single class and name them as: 
(;(z) : i = 1, ..., N, where N = lm. We will m u m e  that 
d; E C1, the class of continuously differentiable functions. 
(By putting appropriate smoothness requirements on the 
objects involved this assumption can be easily ensured. 
The assumption is only needed for technical reasons. If it 
is violated, all the algorithms relating to EDD can be ex- 
tended to deal with the case, though they involve a higher 
computational cost.) Let us also-define small clearances, 
e;, i = 1, ..., N, and require that d;(z) - e; > 0 Vi.  Define: 
d;(x) = &(x) -e;. Thus, CS, the free configuration space 
is defined by 

CS = {Z : d;(z) > 0 V i = 1, ..., N) 

We will assume that CS is bounded. Typically tranasla- 
tional degrees of freedom have physical bounds; also, if a 
manifold representation is used for angular degrees of free- 
dom, they can also be bounded. Thus this assumption is 
quite reasonable. 

To give an intuitive feeling, we first give an informal 
definition of EDD. Let c(z) = min;d;(z), the clearance 
between the robot space and the obstacle space at config- 
uration x. Let I(z) = { a  : d;(x) = ~(x)}. Consider the 
optimization problem, 

max c(x) (1) 
E 

683 



Let A denote an algorithm which, given any starting con- 
figuration, xo E CS, generates a continuous ascent tra- 
jectory (i.e., clearance keeps increasing along the trajec- 
tory) that finally leads to a configuration which is a lo- 
cal maximum of the clearance function. (Note that, since 
xo E CS and c ( x )  keeps increasing, the complete trajec- 
tory lies in CS.) The continuous active set method81 is an 
excellent example of such an algorithm. Most often, what 
we find is that at such a local maximum configuration,x, 
we have 1I(x)1 = (n + 1). (Recall that n denotes the 
number of degrees of freedom.) For the sake of moti- 
vation, let us mume, for the moment, that this prop 
erty holds at all local maximum configurations. An in- 
teresting and very useful associated fact is that the set, 
EDD = {z E CS : 1I(x)1 2 n} defines a collection of 
paths that nicely connect several pairs of local maximums 
of c(x) .  Therefore EDD becomes an excellent choice for 
consideration as a roadmap. Figures 1 and 2 give a very 
good example of such a roadmap. In general, EDD is not 
complete. So we finally add some extra paths to EDD so 
as to make it complete. In short, these are the basic ideas 
underlying EDD. 

Let us now go into a formal description of EDD. It is 
easy to introduce a new variable, z and reformulate the 
optimization problem, (1) as 

- Z  Subject to z I di (x) ,  i= l , . . . ,N ( 2 )  

Let Z denote the set of all non-empty subsets of (1, ..., N}. 
The first order necessary condition for this problem is that 
there exists I E Z and p i l i  E I such that the following 
hold 

~ = d i ( x )  V i € I  (34 
z < d;(x)  V i g I  (3b) 

(3c) pi 2 0 V i E I ,  C p i  = 1, C p i V d i ( x )  = O  
i E I  i E I  

where V d i ( Z )  denotes the gradient of di with respect to x .  
Hereafter we will refer to (3a)-(3c) simply as (3). Let 

P = { x  E CS : (3) holds for some z and p i }  

Under reasonable conditions we can show that 3 is a finite 
set. To do this let us take the tolerances, e; to be linear 
functions of x :  

Let us put bounds on these parameters: 
€ i ( Z )  = ai2 + 

tail L a m a x ,  &in 5 I &ax (4) 

a m u > O  and O < & i n < P m u  (5) 
where 

Suppose e is any given positive number. Then, since CS 

chosen such that the following holds: for any a; and /3i 
that satisfy (4), we have 

is bounded, a-, &in a d  that satisfy (5) can be 

0 < ci(x)  < E V x E CS 

Thus any user-set tolerance on our" manipulation" of die 
tance functions can be met by appropriately selecting the 
parameter bounds, amax,  o m i n  and pmu. Let US say that 
these constants have been selected and fixed. Transver- 
sality theorem[7] can be used to show the following useful 
result. 

Theorem 1.For almost all choiees o f ( a ; , & )  satisfying 
(41, V i s  a finite set. 

As already mentioned, for algorithm A we use the con- 
tinuous active set method[8], which is a gradient-based as- 
cent method for generating a trajectory that leads to a 
local d m u m  of the optimization problem, (2). It can 
be shown that, for almost all starting points, xo  E CS,  the 
continuous active set method genemtes a path in CS that 
finally terminptes at a point x E V. This together with 
the fact that V is a finite set prompts us to consider- V as 
the basis for defining a roadmap. Let us partition V into 
the following three disjoint sets: 

= { x  E CS : (3) holds for some z , { p i } ,  & 111 > n} 

A = { x  E CS : (3) holds for some z, {p i } ,  & IZI = n} 

% = { x  E CS : (3) holds for some z, { p i } ,  & IZI < n} 

As already mentioned, our definition of EDD is also 
strongly motivated by a typical observation: only in spe- 
cial rare conditions we come across an x E V such that 
the Z in (3) corresponding to that x satisfies IZl < n. (For 
instance, in all of the examples mentioned in section 4 we 
did not come across even a single x Kith t-his property.) 
So our main concentration will be on VI U V2 and how to 
systematically developpathways for connecting the points 
in that set. Let x E V2. Then by omitting the optimal- 
ity requirement, (3c), and tracking only (3a)-(3b) we can 
generate a on? dimensional pathway passing through z. 
Suppose x E VI. Then by trimming I (in many ways) so 
that it has exactly n elements and tracking only (3a)-(3b) 
leads to a number of pathways passing through x .  This 
prompts us to consider the set of pathways defined by 

E = { x  E CS : (3a) - (3b) hold for some z & 111 = n }  

Clearly, A c E. The set of nodes naturally associated 
with E is 

fi = { x  E CS : (3a) - (3b) hold for some z & IZl > n}  

Clearly, c G. Transversality theorem[7] can be used 
to establish the following result that describes the relation 
between E and V4. 

Theorem 2. For almost all choices of (ai, p i )  satisfy- 
ing (d), the following hold. (a) E i s  the union of a fini_te 
number of one-dimeniional manifolds (pathways). (ii) I4 
i s  a finite set. (iii) V4 does not have ?ny element x for 
which IZI > (n + 1). (iv) At  each x E Vq, ezractly (n + 1) 
pathways o f E  terminate; and, i f I  i s  the index set wm-  
sponding to x ,  then these pathways are defined by removing 
one element at a time from Z and following (3.) and (3b). 

If we define 
v = v i u G  
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then V and E define a powerful roadmap for use in path 
planning. W i m i n g  off pathway may also be done to sim- 
pliy the network. For example, we can trim off any path- 
way (or part of a pathway) which directly connects a point 
on the boundary of CS (i.e., a collision point) to a point 
in v 2  U G. After these trimming operations, the network 
cpnsists of: V, a set of points which necessarily contains 
V in it and also contains some points of V4; and, E, a set 
of pathways connecting some pairs of elements of V. We 
refer to V U E as the EDD. 

As in the two dimensional example discussed at the be- 
ginning of this section, V and E define an abstract graph. 
This graph, in association with algorithm A defined by the 
continuous active set method, helps us do path planning. 
In general, EDD is not complete. However, EDD is very 
valuable because: (i) the number of components of EDD is 
usually small; and (U) the region of CS attracted by each 
component of EDD (via application of A) is large. Be- 
cause of these properties, adding extra pathways to EDD 
so as to make it complete is not very hard. We approach 
this problem of incorporating completeness using heuristic 
schemes that will be discussed in the next section. 

3 Construction of EDD 
The very definition of EDD suggests a simple algorithm for 
constructing an EDD component. Suppose we are given 
?ne xo E CS. Then we can apply A to reach a point, x E 
V. Let I denote the i n d y  set of distance functions active 
at x. If 111 < n then x E VZ and so it is an EDD component. 
If 111 = n then we leave out (3c) and track the pathway 
defined by (3a) and (3b) which passes through x. If 111 = 
(n + 1) then we define (n + 1) pathways at z by tracking 
(3a)-(3b) after leaving out one element of I at a time. As 
we do the pathway tracking we look for encounters with 
points of V; this can be done by using a numerical curve 
tracing algorithm with root finding capability. When a 
point of V is encountered, it is expanded in a similar way 
as at x. The process is continued until all elements of V 
that have been encountered are fully expanded. We will 
not go into a detailed description of the procedure as it is 
rather obvious. Note from the way the above computations 
proceed, that, such a construction of an EDD component 
is very suited for sensor-based computations where only 
local information is available in any situation. 

Let us now consider the issue of adding extra pathways 
so as to ensure completeness of EDD. The first problem 
is to determine the various components of EDD. As we 
already discussed above, once we get a point on an EDD 
component, it is quite easy to numerically track all details 
of that component (nodes, pathways etc.). How do we 
obtain at least one point on each EDD component? Let 
EDDc be one component of EDD. Let X ,  denote the set of 
all points of CS which will lead to a node of EDDc when 
A is applied. We can view X, as the region of attraction 
for ED&. As remarked earlier, typically, the number of 

components of EDD is small and so X, covers a sizeable 
fraction of CS. Hence, even if we put a coarse grid of points 
in the configuration space, there is an excellent possibility 
that there is at least one grid point that belongs to each 
component of EDD. Therefore we place a coarse grid of 
points in the configuration space, and determine the EDD 
component associated with each one of these points which 
lie in CS. (For efficiency reasons, we incorporate simple 
checks to find out if a point leads to a component that 
has already been tracked.) The above described scheme 
has worked well on all examples that we have tried. Cur- 
rently, we are also working on other elaborate schemes for 
determining all EDD components. 

Once the various EDD components have been found, 
the remaining job is to connect them. Note that, if CS it- 
self is disconnected, then it is impossible to connect a com- 
ponent'of EDD that lies in one component of CS with an- 
other component of EDD that lies in a merent  component 
of CS. We proceed as follows. We take one pair of EDD 
components at a time and search on these components to 
find one point in each of these components such that these 
points are close to each other. After doing this for every 
pair of EDD components we rank order the pairs of points, 
thus found, according to closeness. Then we take one pair 
at a time, in that order, and make attempts to connect the 
two points in the pair by a pathway. We can do this by 
having a bag of methods (simple to complex) and applying 
one by one to the pair of points until we get a connecting 
path. An example of a simple method is that of trying a 
straight line segment path between the points in config- 
uration space. This simple method has been successfully 
used by Kavraki et.al.[S] in their probabilistic roadmap 
approach, for connecting closely spaced points in CS. An 
example of a complex method is to parametrize the path 
between the given points by splines and use a nonlinear 
optimization strategy to find the spline coefficients that 
yield a feasible path between them. As extra connections 
get added, if all EDD components get connected, we stop. 
On the other hand, if, even after all pairs of points have 
been tried for connection using all methods, and still there 
are disconnected EDD components, then we conclude that 
CS also possibly has disconnected components. 

Let 21 and 2 2  be two closely spaced points, lying on 
different components, EDDl and EDD2, respectively. We 
have tried an interesting scheme in which we include an 
extra artificial distance function in such a way that when 
the modified EDD is constructed, there is a good chance 
that EDDl and EDD2 get connected. Specifically, let the 
clearances at 2 1  and 2 2  be c1 and c2 respectively, i.e., 
c1 = d ; ( z l ) ,  t E I(z1) and c2 = di(x2),  i E I (x2 ) .  A 
pseudo obstacle 0, is placed at location xp = O . ~ ( X I  + 2 2 )  

in the configuration space. Note that 0, is a point ob- 
stacle in the Configuration Space and has no world space 
equivalence. The artificial distance function, d,, is associ- 
ated with 0,. In order to connect EDDl and EDD2, d p ( x )  
has to affect the EDD passing through 21 and x2 such that 
new EDD nodes are aeated which may help connect EDDl 
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and EDD2. This is achieved by choosing dp(z) such that 
dP(x1) < CI and dp(22) < c2. On the other hand, we want 
to limit the influence of dp(x) so that other parts of the 
EDD that are far away &om 21 and x2 are not affected. 
This is achieved by making dp(z) as large as possible when 
2 is far away from x,. We do so by selecting the radius 
of the sphere of influence of 0, as R = wllzl - zpll and 
choose w = 1.1. The distance function associated with 0, 
takes the form 

-xiog(i - 112 - ~ ~ l l ~ / ~ ~ )  if 11% - zPll I &R 
-A l0g(0.00975) if 112 - zpll > dR 

where d = 0.995 and, X is chosen just small enough such 
that dp(xl) < ct and d,(z2) < c2. This new distance 
function dp(z) is added to the list of N inequalities in for- 
mulation (2). The efTect of this new function can be seen 
&om Figures 1-3. Figures 1 and 2 show the world space 
and configuration space for the 2-link manipulator. Figure 
2 also shows that the EDD has 3 disconnected components. 
When 2 pseudo obstacles and the corresponding dp(x) are 
included, the modified EDD has only one connected com- 
ponent as shown in Figure 3 (the locations of the pseudo 
obstacles are marked by a 

There is yet another interesting way of connecting dif- 
ferent components of EDD. We have mentioned that EDD 
is representation dependent. To see this, consider the pi- 
ano mover's problem of the long ellipse shown in Figure 4, 
moving with translation and rotation in an environment 
with 9 obstacles (labeled 0-8). The EDD generated using 
this obstacle field has 6 disconnected components. How- 
ever, when obstacle 4 is broken into two equal halves and 
represented as the union of two obstacles, and the same 
is also done for obstacle 8, it turns out that the EDD has 
only 1 connected component! For lack of space we do not 
give the full details here. 

Figure 5 shows another pianemover's problem where 
the moving object is a "T"-shaped object. The starting 
and ending configurations are also shown in the Figure. 
This example is a more difficult problem than that given in 
Figure 4. However, the standard EDD construction yields 
a single connected component. Figure 5 also shows details 
of a motion executed using the EDD. 

dP(4 = { 

4 Conclusion 
In this paper we have introduced EDD, a new heuristic 
roadmap method for path planning. The initial results 
that we have reported here indicate that it is a promising 
practical method. 
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Figure 2: C space of two link manipulator. EDD has 
three components. 
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Figure 3: C space of two link manipulator with two 
artificial distance functions included at points shown 
with a +. EDD becomes connected. 
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Figure 4: World space for an ellipse moving with 
translation and rotation. 
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Figure 5: Example of a motion of a T-shaped object 
moving with translation and rotation, obtained using 
EDD. 
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