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Abstract. This paper formally introduces several

U.S.A.

stability

characterizations of fixtur,ed three-dimensional rigid bodies
initially at rest and in unilateral contact with Coulomb fric-

tion. These characterizations, weak stability and strong sta-

bility, arise naturally from the dynamic model of the system,
formulated as a compleme.ntarity problem. Using the tools of

complementarily theory, these characterizations are studied

in detail to understand their properties and to develop tech-
niques to identify the stability classifications of general sys-
tems subjected to known external loads.

1 Introduction
Many useful mechanical systems are composed of a num-

ber of bodies that interact through multiple, unilateral fric-
tional contacts. Examples include gegrs, cams, modular fix-
turing systems, and robot grippers. 1 Designers of such sys-
tems rely heavily on the analyses of initial designs, which are

often carried out under the rigid body assumption. Nonethe-
less, significant holes in bcth the relevant theory and compu-
tational tools remain. In this paper, we attempt to close one of

those holes through a rigorous study of the stability of a free
three-dimensional rigid body (called a workpiece) initially at
rest and in frictional contact with fixed rigid bodies (called
fixels). Our analysis is based on the theories of rigid body
dynamics and complementarily. Our primary objective is to
develop a sound basis that will enable us to gain a thorough
understanding of the main issues involved with stability. Our
secondary objective is to derive theoretical results that will
enable the development of tests that more accurately charac-

terize stability than the overly conservative tests in use today.
The main results are presented in three new theorems and il-
lustrated through a planar example.

1.1 Previous Work

There are two primary ways to stabilize a rigid workpiece.
The first is known as form closure [5]. A workpiece is form-
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closed if it cannot move, even infinitesimally, without at least

one fixel penetrating the workpiece. This sort of stability does

not rely on friction and is easy to check (by solving a linear

program [11]). Several automated fixture design systems are
based on form closure.2 However, because form closure re-

quires large numbers of contacts, it can sometimes be impos-

sible to design form-ciosure fixtures that provide sufficient

access for machining tools or part insertions.

Recognizing the limitations of using large numbers of con-
tacts, Palmer [8] and others have studied rigid body stability
without form closure (e.g., see [1, 4, 10. 14]). For such situa-

tions, the stability of the workpiece should be determined by
examining the solution(s) to the dynamic model composed of
the Newton-Euler equations for the workpiece, the relevant

kinematic constraints, and appropriate friction laws. How-
ever, typically the dynamic equations are replaced by equi-
librium equations, which can lead to false positive stability
conclusions. In order to prevent this problem, the results in

this paper are based on the dynamic equations.

Despite our beginning with a dynamic model, we do not
adopt the usual stability definition for dynamic systems. The
reason is that we allow sliding at the contacts which results
in an irrecoverable loss of energy, and hence an arbitrarily

perturbed workpiece will generally not return to its initial
equilibrium configuration. Instead. we will adopt Fourier’s

inequality [6]:

Definition 1: If the acceleration of the workpiece is zero
(for ail solutions of the dynamic model) for given fixel lo-
cations and appiied load, then the workpiece is said to be sta-

ble. Equivalently, a workpiece is stable if the virtual work for
every cinematically admissible virtual motion is nonpositive.
Note that for convenience, we will also refer to the load and
the fiture as being stable when this condition is met.

Palmer found that determining stability (which he referred
to as “infinitesimal stablliry”) in the presence of friction is ex-
tremely difficult (co-NP complete), so he identified two other
stability classifications that could be tested efficiently by lin-
ear programming methods. These classifications were:

2For ~ ~XCet[entreview and extensive bibliography of m~Y PaPe~ ‘n

this topic, see [2].
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Potential Stability – Contact forces exists that satisfy equi-

librium and Coulomb’s Iaw.
Guaranteed Stability - Contact forces exists that satisfy

equilibrium without frict.icm.

The primary problems with these stability characteriza-

tions are that they are overly conservative in one direction or
the other, so their use in fixture design algorithms is limited.
Figure 1 illustrates the problem. For a given fixture and work-
pieee configuration, let SS(P) denote the set of strongly sta-

Me external loads (i.e., those that satisfy stability Definition 1
in the presence of friction, where I.Lis the vector of friction
coefficients at the contact points). Similarly, let SS(0) de-

note the set of ioads that we strongly stable without friction
(Palmer’s “guaranteed stability”) and let WS(p) denote the

set of weakly stable loads with friction (Palmer’s “potential
stability”). A load can be tested for membership in WS(W) or

SS(0) using linear programming techniques, and as will be

demonstrated, one can identify all the external loads in these
sets for a given fixture. However, since there are loads in

WS(P) that have muhiple dynamic model solutions, some of

which correspond to instability (nonzero workpiece acceler-

ation), fixture design using this set is not recommended. On

the other hand, the set of loads SS(0) is usually a small subset
of SS (H), so its use in design is also limited.

~“’’’”

Figure 1: Important load subsets; SS(0) < SS(P) ~ Ws(p’1.

Despite the limitations,, Palmer’s stability characteriza-
tions have been the best available for rigid fixture design with-
out form closure. The results contained in this paper represent
a significant step toward sti~bility tests which are not conser-
vative, and hence cotdd lead to better fixture design and anal-

ysis tools.

2 Methodology
Our basic framework is the discrete-time dynamic model

for multiple rigid bodies in contact presented in [13]. By set-
ting the initial velocity of the free body (the workpiece) to
zero and fixing the positions of the actuated bodies (the iix-
els), this model represents a fixtured workpiece. Three sets
of conditions are imposed on the workpiece: (a) the Newton-
Euler equation written in terms of the contact accelerations.

(b) conditions on the normal contact forces, and (c) Coulomb

friction constraints on the tangentialforces.Theseconditions,

derived in [13], are listed below.

(a) The Newton-Euler equation:

EI=AE!1+b, (1)

where the subscripts n. t, o denote the normal (n) and two

tangential directions (t, o) in the contact coordinate systems,

A ~ ~TM-~~ and b E JTM-l gexc

with $ being the system Jacobian matrix and M the sys-

tem inertia matrix, the latter being symmetric positive def-

inite, and geXt being the external load applied to the work-

piece. The vector an = (ain)~~l is composed of the relative
normal accelerations at the contacts indexed by i, where n= is

the number of contact points among the bodies. The relative
accelerations in the tangential directions, t and o, are defined

analogously. The vectors of normal wrench intensities. Cfi,

and frictional wrench intensities, Ct and co, are defined simi-

larly. In the case of the fixture stability problem studied here.
the system Jacobian marnx (7 is composed of wrench matri-
ces TVn (in the normal direction), Wt and Wo (in the two
tangential directions):

JE[wn w, We].

These matrices simply map the contact forces into a common
inertial coordinate frame. The matrix A can be written in

partitioned form as follows:

[

A Ant An.
A= A: Ait

1

At. ,
A cm A.t Aoo

where for v, q E {n, t, o}. .4vn s TV~M–l Wq. Similarly,

[n t .lTwherefor
the vector b can be written as: b = bT bT bT

v E {n, t, 0}, bq = W:.@gex,.

(bl Normal contact conditions:

O<an lcn~ol (2)

where the notation L means perpendicularity. Note that this
condition expresses the compiementay relationship between
the normal load and acceleration at each unilateral contact.

(c) Constraints on tangential forces: for i = 1,..., nC,

(C,,,C,O) E argmin C~tU1f + c~oaio
(3)

subject to (<t, Cjo) E 3(~i Cin),

where Y(. ) is the Coulomb ‘friction map and Pi is the non-
negative friction coefficient at contact point i; that is, for each
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nonnegative scalar < z (l, f(<) is a planar circular disk with

center at the origin and radius <:

Note that in the context of the quadratic Coulomb law (4),

the “argmin” condition in (3) implies that the friction force

opposes the dkction of impending slip (we recall that the

system is initially at rest). . .

The results developed in this paper apply to more generaI
friction laws (including some axi-asymmetric laws (see [91));

nevertheless, for simplicity, we focus on the above standard

Coulomb friction law.

Every set of contact forces c ~ (c*, CL,co) induces a vec-
tor of body accelerations Q, as follows:

(5)Q s .i4-1 (J-c +gext).

Letting a s (an, at, a, ) denote the vector of relative accel-

erations at the contacts anld using the fact that the workpiece
is initially at rest, we see that

a= JTq.

Based on the above mc}deI, we redefine our stability char-
acterizations in terms of contact forces and we introduce ter-
minology for the comp~ementary characterizations for three-
dimensionai bodies with Coulomb friction laws:

Definition 2: For a given external load geX~and fixel and
workpiece configurations., the workpiece (and fixture and

load) is said to be:
Weakly Stable – if a set of contact forces exists that satis-

fies equations (l-3) and that induces zero body accelerations;

Strongly StabIe – if every set of contact forces that satisfies

equations ( 1–3) induces zero body accelerations;
Weakly Unstable (Palmer’s infinitesimal instability) – if it

is not smongly stable;

S&ongly Unstable (Palmer’s guaranteed instability) - if it
is not weakly stable.

2.1 Weak stability

Clearly, the load geX[is weakly stable if and only if there
exists a contact force vector c satisfying:

,7C+ gexc= o
c G F(u),

(6)

where 3(P) is the Coulomb friction cone; that is

=.
S(p) = ~ { (C;n, C;i , C;.) : Gn 20, (c,,, C;o) E F(flic,n) }

;=1

with p S (pi) is the vector of friction coefficients /-1~at

the contacts and ~ represents the Cartesian product operation
applied to the spaces of the contact forces.

Geometrically, the system (6) definesthe cone of weakly

stable loads

WS(P) = { ge,, : the system (6) is consistent }. (7)

This cone is the image of the friction cone F(p) under the
linear transformation defined by the negative of the system

Jacobian matrix s; that is,

Ws(p;) = –y(.?-(#)).

As will be seen, the cone WS(K) wiil play a central role
throughout our study. The complement of WS (N) consists

of the strongly unstable applied loads. We illustrate this cone

in the example below.

Example: Consider a uniform laminar disk of mass m and

radius R in the plane in contact with two immovable fixels
and external loadlng g~X[as shown in Figure 2. The fixels are

located by the angles 61 and OQmeasured counterclockwise
about the origin of an inertial coordinate frame {z, y} cen-

tered in the disk. The normal contact forces, Cln and Czn, are

directed from the fixels coward the center of the disk, The

corresponding friction force components are tangent to the

disk, with positive values of Clt assumed to produce clock-
wise (negative) moments. We wish to examine conditions on
the angles @i ~ (O, ri) and the friction coefficients Pi so that
an appiied load gcXt c 3?3 is weakly stable.

/ i,

c
1(

Fixel 1

Figure 2: Loaded disk contacting two fixels.

The data for this problem are as follows. The problem
is planw; thus there is only one. tangential direction (no “o”
direction) at each contact. There are two contact points; thus
n~ = 2. Moreover we have:

[

~oS el — COS e2 sin OI sin &

[ W. } W, ] = ~sinel -sin% -.0s9, -,0s62
o 0 –R –R 1

Note that the analysis of this example is straight forward, but

tedious, so is not included here. The interested reader can find
the details in [9]. We resrnct thk presentation to the primary
qualitative aspects.
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Figure 3: The set of weakly stable loads in $23; ,uI = 0.2 and

M = 0.5.

The condition for the wIeak stability of g.xt k the existence
of c = (cl~, Czn, Clt, c2t) satisfying the following linear in-
equality system:

(7C + ge., =: o (s)

lC~~l < /liCinj i = 1,2. (9)

A contact force c satisfying equation (8) can be solved in
terms of the friction force at the second contact czt and then

substituted into the friction constraints to yield four inequal-

ities linear in czt. These inequalities define a convex cone of
all weakly stable loads. Figure 3 shows WS(,u) on the unit

sphere centered at the origin of 3?3 for PI = 0.2, ,u? = 0.5,

91 = 7r/4, and OZ = 2.5~/4. The generators of W.S(p)
are indicated by four medium-sized bubbles at the vertices

of the “quadrilateral.” Any external load passing through the
interior or boundary of this “quadrilateral” has weak stability.
Note that the gs-direction (the moment direction) is indicated

by the big bubble on the top of the sphere. The gz-direction
(the y-component direction of the external force) is marked

by the big bubble inside the quadrilateral.
Figure 4 shows the two dimensional slice of WS[p)

through the equator of the sphere shown in Figure 3, thus cor-
responding to g3 = O. In this case, the external loads in ques-
tion are those representable as pure forces passing through
the center of the disk. As expected, the set of weakly stable
external forces are those contained in the convex cone formed
by the radii to the contact points.

Further analysis of this example leads to two interesting

cases summarized next.
Case 1. WS(P) = 3?3

In this case, all loads are weakly stable and the situation is
equivalent to “force-closure” as each friction cone contains
the other contact point [7]. Force closure is obtained for this
example, if and only if the smaller of the friction coefficients
is greater than 1.4966. In terms of the unit sphere in Figure 3,

increasing the friction coefficients corresponds to separating
the generators (the vertices of the “quadrilateral”). Once the
values of both friction coefficients increase beyond 1.4966,

the 4 generators positively span 3?3.

Figure 4: The set of weakly stable loads in 322; g3 = O, PI =

0.2, and ,U2= 0.5.

Case 2. WS(#) degenerates into a “triangle.”
In this case, the friction cone at one contact contains the

other contact point, but the converse is not true. For this

example, this situation a-ises when one friction coefficient
is greater than and the other is less than 1.4966. Figure 5

shows the set of weakly stable loads for PI = 1.8, PZ = 0.5
with the other data remaining the same as above, 81 = m/4

and 62 = 2.5z/4. Again, the big bubble on the top of the

sphere indicates the g3-direction while the one on the equa-
tor represents the g~-direction. Note that increasing pl from

0.2 causes the two left-most generators in the “quadrilateral”

shown in Figure 3 to separate following their great circle.

When pl reaches a value of 1.4966 the left-most generator
from the originai quadrilateral reaches the great circle defined
by the two right-most generators, causing the “quadriiaterai”
to degenerate into a “triangle.” Further increasing ,uI to 1.8
yields the “triangular” set shown. with one of the original
generators inside.

Figure 5: The set of weakly stable loads in 3?3; pl = 1.8 and

p~ = 0.5.

F@re 6 shows the slice through the sphere correspond-

ing to g3 = O. It is interesting to note that the set WS(K)
has grown (by 0.08 radians) to include loads outside the cone
formed by the radii to the contact points. ❑

We close this section by noting that it can be shown that

decreasing any coefficient of friction causes the set of weakly
stable loads to contract monotonically:

Ws(p) ~ Ws(pt) if p < ,uI.
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Figure6 The set of wezddystableloads in R2; gs = 0+PI =
1.8, and p ~ = 0.5.

3 Main Results

In this section, we present the main results pertaining to

the stability concepts defined in the last section. We begin
with a preliminary result that gives an equivalent way of de-

scribing strong stability. In essence, this result asserts that
stiong stability (i.e., zero body accelerations, ij = O) can be
characterized as nonpositive virtual work (i.e., ~~gext < O); 3

this result is consistent with the asserted equivalence in Def-
inition 1 of stability. A proof of the following proposition is
given in appendix A in [9].

Proposition 1 Let gex, be a given applied load. The fo[low-

ing statements are equivalent:

(a) gext is strongly stable:
(b) every set of contact forces consistent with equations (1-3)

yields nonpositive virtuai work.

(c) g.X, is weakly stable and every set of equilibrium corr~act
forces yields zero relative tangential accelerations, at and
aO.

The distinction between weak stability and strong stability
is clearly due to the nonuniqueness of the contact forces. If
the dynamic rigid body contact model has a unique solution,
then these two stability co:ncepts are equivalent. Based on a
uniqueness result obtained in [13], we state a sufficient con-

dition for this equivalence to hold. Subsequently, this result
will be generalized.

Proposition 2 Suppose thu[ the Jacobian man-ix J has jidl
column rank. There exisrs a scaiar ji > 0 such that if pi E

[O,ji]for al/i = 1,..., w gextk weakly (un)stable if and
only if it is strongly (un)stable.

The scalar p has to do with the preservation of the “P-
roperty” of certain perturk}ations of the marnx A (which is

positive definite under the full rank assumption in the above
proposition). For more discussion on this scalar, see [12].

sNote hat ~in~etie system bq@ at rest, the instassomeousaccelemaon

Q is proportiomd to the instantaneous veloeity q nnd hence the expression
given is proportional to the virtual work.

3.1 The role of frictionkss stability
The frictionless problem corresponds to p = O. This case

plays an important role in the frictional problem. For one
thing, the frictionless case provides another instance where

weak and strong stability are equivalent. This is part of the
content of Theorem 1 below. Besides establishing the equiv-
alence of weak and strong stability, this theorem also shows

that frictiordess stability is easy to check, namely, by solv-
ing a linear program. More importantly, fiictionless stabil-

ity is actually equivalent to (weak or strong) stability for ail

friction coefficients. Thus we see that frictionless stability is

a very desirable property. Note that while many have pre-
viously conjectured that frictionless stability implies strong

stability with friction, we were not aware of a formal proof
until now (see Appendix B of [9]).

Unlike Proposition 2, the theorem below and all subse-

quent results do not require 7 to have full column rank.

Theorem 1 Let geX, be a given applied load. The following

five statements are equivalent:

(a) There exisrs a vecror Zn satisfying

Wnen - gext = o. 2* ~ o. (lo)

(b) The load gCX,ix weakly stabiefor all p.

(c) The load geXt is strong[y srable for ail p.

(d) The load geX1is weaki~ stable when p = O.

(e) The load geX, is strongiy srable when p = O.

W~th the above resuh, it is natural to ask what happens if

frictionless stability is absent. The next result asserts that if

the workpiece possesses a certain “separation property”, then
frictionless instability implies strong instability in the case of
small friction coefficients; thus in this situation, there must be

sufficient friction at the contacts in order for strong, or even
weak, stability to hold.

Theorem 2 Suppose fhar rhere exists a vecror Un satisjjing

WTun >0. The following two statements are equivalent:

(a)~e., is unsrablefor rhefricrionless problem;

(b) there exists a scalar ~ >0 such that if pi E (0, ji] for
alli=l ,..., nC, geX[ ~ WS(A); that is, g,,, is strongly
unstable for the problem wirh p E (pi).

The physical interpretation of the supposition of Theorem
2 (that is, the existence of the vector Un) is as follows. If
there exists a generalized acceleration (Un) of the tixtured
workpiece that would cause all contacts to separate simulta-
neously, then the external load is strongiy unstable for alI fric-
tion coefficients sut%cientiy small if and only if it is strongly
unstable when there is no friction. Notice that the existence
of such a separating acceleration Un depends entirely on ge-
ometry and has nothing to do with the applied load. We say
that the workpiece has the separation property if such an ac-
celeration exists.
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From Theorems 1 and 2, it becomes evident that the most
difficult case for analyzing strong stability is when the load

is - (strongly or weakly) stable in frictionless contact but

becomes strongly stable when friction is present. A critical
value of the friction coefficients where the transition from in-

stability to (weak or strong) stability occurs (if it occurs at

all) is unfortunately not known and is expected to be very dif-

ficult to determine in general. Nevertheless, such a value can

be computed in special cases.
In order to illustrate Theorems 1 and 2, it will be useful

to introduce the polyhedral cone defined by all nonnegative
combinations of the columns of the matrix – YVn; that is,

WS(0) ~ ‘pOS(W*) = { g.x~ : system (10) is consistent}.

Theorem 1 then says that this cone WS(0) is precisely the set
of all applied loads gmt that are strongly stable for all friction

coefficients; moreover, Theorem 2 implies that if the work-
piece has the separation property, then a load geXt $! WS(0) is
weakly (not necessarily strongly) stable only if there is suffi-

cient friction at the contacts. We illustrate Theorems 1 and 2

further using the example fTom the last section.

Example (continued): Setting ,U1 = p2 = O, we can show

that the cone WS(0) consists of all loads (gl, gz, gs) satis@-
ing:

93=0 (11)

91 sin t$ -- g2 cos e2 > 0 (12)

–gl sin 01 +- gz cos 61 ~ O. (13)

This closed cone consists of all pure forces passing through
the center of the disk and passing between the two contacts or
through one of them. It is the same set illustrated in Figure 4

as ws(/4).
Whh u. a (0, –1, O), we clearly have W~ufl >0. Thus

the disk has the separation property. To illustrate Theorem
2, consider a load gext = (,91, gz, 0) that fails one of the two
conditions (12) and, (13), and therefore lies outside of WS(0).
Such a load is illustrated in Figure 6. In order for this load

to be weakly stable in the frictional case, the analysis in [9]
implies that there must exist a scalar c2t such that four certain
inequalities, linear in c2t, hold. From these inequalities, it is
not dMicult to verify that if

O < max(p~,pz) < –
Sin(ej – 61)

– 1.4966 = ~,
1 – cos(o~ –&) –

then there cannot exist any c2t that balances gex, @ WS(0).
Theorem 2 is therefore verified. ❑

3.2 The WUR sets
One of the primary goals of this paper is to identify the set

of loads that are strongly stable (i.e., members of SS(p)) for
a given friction coefficient. Since it is hard to identify such
loads directly, we are interested in identifying loads that are
weakly unstable (WU(K) and therefore known to lie outside

SS(p)). By Theorem 1, we know that loads lying outside of

SS(p) must also lie outside of the cone SS(0). In order to
motivate the main result in this subsection, Theorem 3, we

state a preliminary result pertaining to the fnctionless prob-

lem. The next result is inspired by the concept of a comple-

mentary cone in linear complementarily theory [3].

Proposition 3 If W. hasfull row rank, an applied load geX,

is (weakly or strongly) unstable for the friction[ess prob[em

if and only if there exist a nonempty subset a of {1, . . . . nC}
with complement 6 and nonnegative vectors ana and Cnfi

with ana # O such that

w; Jti-li&xt = l.aan= – (Ann) .Gcn@.

Here CYand @ are the index sets of the contacts that are to

be separated and maintained. respectively. The dot subscript

folIowing Ann indicates that ail rows of Ann are included.

Notice that Proposition 3 depends on the full row rank as-

sumption of W. to guarantee that if an = O, then ij = O
also. Since this rank condition is rather restrictive, this re-
quirement is removed in the next proposition. Without this

restriction, the phrase “and only if’ must be removed.

Proposition 4 An applied load gcXCis (weakly or strongly)

unstable for the friction less problem if there e.rists a non empty

subsefczof {l,..., nc } wirh complement & and nonnegative

vecrors ana and cn~ with ane + Osuch lhat

W~,Vt-lgeX, = 1.~ana – (A~~).~c~fi.

The equation in the above propositions can be exily
derived from the original Newton Euler equation (1) by

setting friction forces to zero and removing the equations
corresponding to the tangential components of the contact
accelerations.~ Applying all subsets a of {1, ..., n. } to the
equation represents all possible combinations of breaking and
maintained contacts. We will henceforth refer to each such
combination as a “contact mode.” Note that the set of exter-

nal loads corresponding to any pardcuiar contact mode is a
convex cone. Thus we see that the set of applied loads, de-
noted WUfl, that are unstable for the frictionless problems can
be described in terms of the union of finitely many polyhedra
(the subscript “R” denotes “frictiordess”).

Introducing friction into the problem, we define, for a
given nonzero friction vector ~ ~ (Pl), tie set ~R (~)
(the subscript “R denotes “rolling”). consisting of all load
vectors g,,, for which there exist a nonempty subset a of
{l,..., n=} with complement & nonnegative vectors a~~
and Cna with ana # O, and (free) vectors Cta and cO&such

~NO~e~a[ ~~ ‘JmdOnlyif’ could be reinserted into proposition ~ if
one adds enough additiond Iineady independent equations correspondtrtg
to nonzero vatues of the relative translational md selative mguktr accelera-
tions at the contacts. However, we restrict our attention here to the present
propositions.

..”
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These equations define the set of external loads for which all
contacts either separate or :roll. Sliding is not allowed, as in-

dicated by the absence of at~ and ao~.
Of p~cukr interest ~ong ~ese ~R(#) se~ is

WUR(0); this is clearly a subset of TVUfl; moreover, because
the set ~R (p) does not iinciude extemal loads correspond-

ing to sliding contacts, we have

In words, as the friction coefficient increases, the se~ of
weakly unstable loads with no sliding contacts grows.

The role of the ~R sets is formally established in tie
result below.

Theorem 3 If gex, ~ Wb’R(~) for some friction Vectors fi,
then g~xtis weakly unstable for all fn’ction vectors P ~ fi. [n

particular if gextlies in W’R(0), then g.., is weakly unsrabie
(via a non sliding contacr mode) for all fricrion coefficients.

Example (continued): Fcr convenience, we take the disk
radius R = W and the mass m = 1; thus A-4 becomes the

identity matrix. Funt.her, define the quantities: r = sin(60 –
191)ands = COS(62 – O1). Then, we have

‘=[4+FH
Omitting the algebraic manipulations, we can obtain a com-
plete description Of the Set ~R(~) as three convex cones.

For this purpose, we define several vectors:

“=[+?:ll‘2=[-?%21

and U3 = (O, O, I)T. We have

WUR2(p) s { g~.~ ~ %3!gext = Z19° -t Z2(91 + S92)+ z3g6
for some (Z1, Z2, Z3) 3 Z1 >0, IZ31 < ,fJ2Z2}

WUR12 = { 9exCE ~3 Igext = ‘Z@l - Zzgz + Z3U3

for some (Z1, X2, Z3) 30 # (Z1,Z2) z 0}.

These sets are illustrated on the unit sphere in $?3 in Fig-

ure 7 for #l = 0.2 and ~z = 0.5. The big bubble at the
north pole is the positive g3 axis, while the big bubble at the

lower right points in the y-direction. The 5/16 sector of the

sphere toward the back left corresponds to ~Rlz and is inde-
pendent of the values of the fiction coefficients. It becomes

narrower as the contact points separate on the disk. The “tri-

angular” set in the front delineates the loads in ~R1. The
short leg of the triangle widens along its present great cir-

cle as pl increases, as predicted by Theorem 3. As expected

from the symmetry of this example, there is also a triangular

set emanating from the Otier side of ~R,2 with a leg that

extends with increasing values of ,LQ. The leg dependent on
p2 is indicated by the smail gray bubbles on the right hori-

zon. It is interesting to note that the quadrilateral formed by
the convex combination of the two extensible legs of the tri-
angular regions is exactly be set WS(P) shown in Figure 3

(as long as both friction coefficients are less than 1.4966).

The remaining uncharted regions on the sphere correspond to
external loads which induce contact modes with at least one
sliding contact as long as both friction coefficients are less
than 1.4966. Otherwise, some loads correspond to more than

one contact mode. n

Figure 7: The set of we~y unstable loads in %3; pl = ().2

and ,U2= 0.5.

4 Conclusion
Motivated by the problem of fixture synthesis, we have

studied the stability of a moveable rigid body (a workpiece) in
frictional contact with several fixed rigid bodies (fixels). We
have in~oduced the terms weak stability and strong srabiiio
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to characterizetwo types of “stability”of a fixtured work-

piece. These classifications are particularity relevant to the sit-

uation in which the contact forces of the workpiece cannot be

uniquely determined from Newton’s Laws, the relevant kine-

matic constrains, and a friction law. Strong” stability exists
(for a given external load) when all admissible contact forces

imply zero workpiece acceleration. This is the most desirable
type of stability, because it provides absolute assurance that

the workpiece will remain in place despite unknown internal
stresses, however, strong stability is difficult to test.

The primary contribution of this paper is new insight into

the stability problem derived from three theorems (a fourth

theorem for the case of a linearized friction cone is derived in

[9]) that provide ways to test for strong stability. While we
have focused on the case of one workpiece, the extension to

multiple workplaces is trivia]. Specifically, the dimensions of
the vectors and matrices appearing in the various equations

increase, but the results and conclusions still hold. The three

theorems are summarized below and illustrated in Figure 8 in
the context of a disk in the plane in contact with two fixels.

For simplicity, the figure only applies to external loads which
are pure forces passing through the center of the disk.

Theorem 1 presents (for the first time known to the au-
thors) a formal proof that if a workpiece is (weakly or

strongly) stable without &lction, then it is strongly stable for
all (positive) values of the friction coefficients. For the exam-
ple summarized in F@re :8, the extemaI forces in the con~ex
cone labeled ‘Theorem 1“ are stable without friction. Theo-
rem 1 implies that this cone is a subset of the set of all strongly
stable loads for any (nonnegative) friction coefficients.

Theorem 2 implies that weak and strong instability are

equivalent when the friction coefficients are below some
bound. In general, this bound is difficult to find, but in some
special cases, it can be computed easily. Returning to Fig-
ure 8, all external forces Iying strictly outside the cone idert-

tified by Theorem 1 are strongly and weakly unstable as long
as both friction coefficients are less than 1.4966.

Theorem 3 indicates that if for some external loading
and friction coefficients, the workpiece has a solution with
a nonzero acceleration with all contacts rolling or breaking,
then the workpiece is guamrtteed to have a solution with the
same contact mode if the friction coefficients are increased.

Figure 8 shows external loads corresponding to Theorem 3 as
two convex cones bounding the Theorem 1 cone. The cones
as drawn correspond approximately to fiction coefficients.

PI = fJ-5 and 1.L2 = 0.8 ~fith m fricticm, the cones degert-
erate to the edges of the cone of Theorem 1. As the friction
coefficients go to infinitv, the edges of the cones move mono-
tonically to the dashed lines (these are the edges of the normal
cone of the SS(0)).

The resuits presented here leave several open questions for
future study. Perhaps the most important questions relate to
the computation of the friction bound appearing in Theorem 2

and the use of all the results in this paper in an effective tix-

F@re 8: Summary of the stabiiity sets for disk example.

ture design and analysis system. We intend to address these

questions in future work.
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