
Abstract- The locomotory controller for walking, running,
swimming and flying animals is based on a Central
Pattern Generator (CPG). Models of CPGs have been
proposed and roboticists have adapted these models for
the control of robots. These CPGs are modeled as systems
of coupled non-linear oscillators. In this paper we
describe the implementation of an adaptive CPG model in
a compact, custom analog VLSI circuit. These circuits are
very small, power efficient and inexpensive to
manufacture in volume.

We demonstrate the function of the chip by
controlling an underactuated, running robotics leg. This
circuit has adaptive properties which allow it to tune its
behavior based on sensory feedback. To our knowledge
this is the first instance of an adaptive CPG chip.

This approach supports the construction of extremely
inexpensive, low power and compact controllers for
walking, flying and swimming machines.

1.0 Introduction

1.1 Motivation
Challenges for robotics in the future include the
miniaturization of walking, running, and flying robots,
increasing the real-time adaptability of robots to the
environment, and the creation of mass-market consumer
devices (e.g. Sony Dog [1]). These new technologies will
require small, low-cost, power-efficient, and adaptive
controllers, and may therefore benefit greatly from
computational support, i.e. neuromorphic engineering,
that is radically different than current microprocessor-
based technology.

The basic principle of neuromorphic engineering is to
use principles of biological information processing to
address real-world problems. Using a neuromorphic
approach, complete nervous systems can be built to
control robots. These artificial nervous systems can be
realized in very low cost, low power and low weight
units.

It is well recognized that the physics of silicon is in
many ways analogous to the biophysics of the nervous
system [9]. Therefore, neuromorphic systems are often
implemented in silicon using as much of the properties of
device physics as possible. However the vast majority of

work in neuromorphic engineering to date has
concentrated on sensory processing (for example, the
construction of silicon retinas [8] or silicon cochleas
[10]).

In this paper we present a chip, based on established
principles of the locomotor-control circuits in the nervous
system, that mimics many of the features of a biological
Central Pattern Generator (CPG). We show that the
circuit, consuming less than one microwatt of power and
occupying less than 0.4 square millimeters of chip area1

can generate the basic competence needed to control a
robotics leg running on a circular treadmill. Furthermore,
the circuit can use sensory feedback to stabilize in real
time the rhythmic movements of the leg.

This technology can potentially provide inexpensive
circuits that are adaptable, controllable and able to
generate complex, coordinated movements. Secondly,
such circuits could be used in miniature systems to
modulate repetitive cyclical movements based on
appropriate sensory feedback. These systems include
miniature walking and running machines, and could also
include miniature flapping and swimming machines
currently under development.

1.2 CPG Theory
The basic notion of an autonomous neural circuit
generating sustained oscillations was first articulated by
Brown in the early part of this century [2]. The key idea is
that an autonomous system of neurons can generate a
rhythmic pattern of neuronal discharge that can drive
muscles in a fashion similar to that seen during normal
locomotion.  Locomotor CPGs are autonomous in the
sense that they can operate without input from higher
centers or from sensors. Under normal conditions,
however, these CPGs make extensive use of sensory
feedback from the muscles and skin, as well as
descending input [5]. Furthermore, the CPG transmits
information upward to higher centers as well as to the
periphery to modulate incoming sensory information.

                                                            
1 The actual real estate used by a circuit is dependent

on the manufacturing technology. This circuit used 1.2-
micron technology.  State of the art is currently 0.18
micron. Far smaller chips are possible
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The CPG is most often thought of as a collection of
distributed elements. For example in the lamprey, a
relatively simple fish-like animal, a small, isolated portion
of the spinal cord can generate sustained oscillations.
When the spinal cord is intact, these small elements
coordinate their patterns of activity with their neighbors
and over long distances ([3][7]).

It is well known that sensory input can modulate the
activity of CPGs. Modulation of the CPG by sensory
input can be seen quite clearly in the resetting of the
phase of the CPG.  For example, as a walking cat pushes
its leg back, sensors in the leg muscles detect stretching.
These sensors (called stretch receptors) signal this stretch
to the nervous system. Their firing initiates the next phase
of the CPG causing the leg to transition from stance to
swing phase.

In the early 1980s Cohen and colleagues [4]
introduced a model of the lamprey CPG using a system of
phase-coupled oscillators. Later, a model called Adaptive
Ring Rules (ARR), based on ideas in this earlier work
was extended for use in robot control [11][12].

Here we demonstrate the implementation of an ARR
in a silicon neural circuit. We will show it in autonomous
operation and with sensory feedback from stretch
receptors used to reset the CPG. We also demonstrate a
property of our biomorphic leg: we show that our limb
and its control circuit can not only produce stable
rhythmic motion, but it can also compensate for
intentional biases in the chip as well as mechanical
complexity of an active hip and passive knee.

1.3 Modeling CPGs on a Neuromorphic
Chip

CPGs are most often modeled as distributed systems of
non-linear oscillators. In our implementation the basic
coordination in the leg is achieved by phasically coupling
two neurons together to achieve oscillations. When
coupled together they are alternatively active. This
alternating activity is the basic coordination needed to
drive the hip of the robot. A phase control circuit governs
the phase difference between the neurons.

These neurons drive two integrate-and-fire spiking
motor neurons. These neurons are used to drive an
actuator. The spiking neuron could also drive biological
muscle or it could also be used to drive a pneumatic
cylinder, a McKibben actuator or biomuscle directly.

In our experimental setup, the robot under control
uses electric motors. To be compatible with this
technology, it was necessary to low-pass filter the spiking
neurons output to create a smooth graded signal

1.4 Previous Work
CPG chips and circuits have been created before. For
example, Still reports on a VLSI implementation similar
to a CPG circuit used to drive a small robot in [16][17].
This circuit captured some of the basic ideas of a CPG but
did not incorporate a motor neuron output stage, and the
system did not provide for adaptation via sensory input.
However, she did demonstrate rudimentary control of a
walking machine.

The work of DeWeerth and colleagues [13] captures
the neural dynamics on a much more detailed level than
has been achieved here. There are great difficulties in
applying such a system to the control of a robot.
Primarily, parameter sensitivity makes such circuits
difficult to tune. To address this issue, DeWeerth et al.
have implemented neurons that self-adapt their firing-rate
[15]. The adaptation, however, is independent of external
inputs from sensors. While detailed neural models are
difficult to work with in silicon, we will undoubtedly
learn a great deal from these efforts in the future.

Ryckebusch and colleagues [14] created a VLSI CPG
chip based on observations in the thoracic circuits
controlling locomotion in locusts. The resulting VLSI
chip was used as a fast simulation tool to explore
understanding of the biological system. Their system did
not use feedback from sensors, nor was it connected to a
robotic system. However, again their objective, of
modeling a particular biological circuit, was different than
the objective described in this paper.

Our work differs from the previous work in several
respects. Firstly, we allow adaptation based on sensory
input. Adaptation is shown as a phase resetting of the
CPG based on certain sensory triggers (see section 3.0).
Secondly, our chip has short-term memory devices that
allow adaptation of the output parameters. In addition, we
make use of integrate-and-fire neurons for the output
motor neurons. Our abstraction is at a higher level than
other reported work ([13][15]). We believe that by using a
higher level of abstraction we will be able to more easily
implement on-chip learning. In systems based on
numerous inter-related parameters, it is not apparent how
learning at the level of behavior can be coupled to low
level parameter changes.

2.0 The CPG Chip
The CPG chip is designed to provide biologically
plausible circuits for controlling motor systems. The chip
contains electronic analogues of biological neurons,
synapses and time-constants. In addition, the chip also
contains dynamic analog memories, and phase
modulators. Using these components, non-linear
oscillators, based on the central pattern generators of
biological organisms, can be constructed.

The dynamical properties of the neural circuits can
also be adapted using direct sensory information. In this
first version of the chip, shown in Fig. 1, all the
components are individually accessible such that they can
be connected with off-chip wiring to realize any desired
circuit. In future versions, tested neural CPG circuits will
be integrated with completely hardwired or programmable
circuits.

2.1 Hardware Components

2.1.1  The Neuron

Our neuron uses an integrate-and-fire model. A capacitor,
representing the membrane capacitance of biological
neurons, integrates impinging charge. When the
"membrane-potential" exceeds the threshold of a



hysteretic comparator, the neuron outputs high. This logic
high triggers a strong discharge current that resets the
membrane potential to below the threshold of the
comparator, thus causing the neuron output to reset. The
process then starts anew. Fig. 2 shows a schematic of the
neuron circuit.

Our neurons carry activation information in the
frequency of spikes. The rate at which the membrane
potential charges up controls the firing frequency of the
neuron. This rate is given by the sum of the total charge
flowing in and out of the membrane capacitance. The
strength of the reset current source determines the width
of each neural spike. The discharge current is usually set
to a large value so that each spike is narrow and is not
influenced by the charge injected onto the membrane
capacitor. Typically, the neuron is set such that it fires at a
nominal rate at rest; additional inputs increase or decrease
the firing rate. Shunting inhibition can also silence the
neuron. Equation 1 gives the dynamic equation for the
neuron, where Sj are the spike trains of input neurons, Ij

are the weights and VT are the thresholds of the
comparator. The terms Ispon and Idis set the spontaneous
spike rate and spike duration of the neuron, respectively.
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2.1.2 The Synapse

The synapse is simply implemented with current
sources that charge or discharge the membrane capacitor.
The spike trains impinging on a neuron activate switches
that allow charge quanta to flow into or off the membrane
capacitor. The amount of charge transferred per spike is

the synaptic weight and is controlled by an applied
voltage. Modulation of this voltage allows the adaptation
of the neural firing rate and is used during learning. Fig. 2
shows the schematic of the synapse, while equation 1
shows how the neuron is affected by the synaptic weight.

2.1.3 The Phase Controller

To change the walking gait produced by a CPG, it is
necessary to change the phase relationship between the
two oscillators without affecting their frequency and burst
duration. Typically this is realized by changing the
coupling weights between the two oscillators. However
this approach can affect the dynamics of the integrate-
and-fire neurons. Consequently, a special circuit is
designed to accept the CPG signals and reproduce them
with a controlled relative phase change. The phase
controller circuit allows us to vary the phase relationship
between the two sides of the CPG from 0 to 180 degrees
by changing a control voltage. This mechanism also
allows us to learn a particular phase relationship by
adapting the control voltage in a closed loop fashion.

2.2 The CPG Neural Circuit
The neural circuits for creating the CPG are

constructed using a cross-coupled square-wave oscillator
and bursting motor neurons. Fig. 3 shows a schematic of
this circuit. A master-slave configuration of the neurons
allows us to construct an oscillator with a constant phase
relationship. By setting the excitatory and inhibitory
weights to equal values, a square-wave with a duty-cycle
of 50% is obtained. The phase relationship between the
two sides can be varied. The frequency of oscillation is
set by the magnitude of the weights. This asymmetrically
cross-coupled oscillator serves as the basic CPG unit that
can be modified according to the application. By injecting
or removing charge from the membrane capacitors of the
oscillator neurons, the properties of the CPG can be
altered. Alternatively, the phase controller can be used to
modify the phase relationship between the two oscillators.
For the experiments described in this paper, a strict 180
degrees phase relationship is required. Hence an inverted
version of one of the oscillators is used, as shown in Fig.

Figure 1. Layout of the CPG chip. Each component is
wired to pins to facilitate the prototyping of oscillator
circuits.

Figure 2. Schematic of the integrate-and-fire neuron
and synapse.



3. Sensory inputs to the oscillators are used to stop or start
the basic CPG unit.

The output of the basic CPG unit is used to inhibit the
firing of the spiking (representing the motor) neurons.
When the oscillator output is high, the motor neuron is
not allowed to fire. This produces two streams of 180
degrees out of phase spike trains. These trains can be low-
pass filtered to get a voltage which can be interpreted as a
motor velocity. Consequently, the oscillator controls the
length of the motor spike train, while the spike frequency
indicates the motor velocity. These two attributes of the
signal can be controlled independently to adjust the
amplitude and speed of the swing of a limb, for example.

2.3 CPG with Sensory Adaptation and
Learning

As shown in Fig. 3, the CPG neurons can be stopped or
started with direct inhibitory and excitatory sensory
inputs, respectively. When the inputs are received as
strong inhibition, the membrane capacitor will be shunted
and discharged completely. It will remain in this state
until the inhibition is released, then the normal dynamics
of the oscillator will continue from the inactive state. On
the other hand, if the sensory input is received as a strong
excitation, the oscillator will be driven into an active
state. When the excitation is released, the oscillator will
continue from the active state. Clearly, the charge-up or
discharge of the membrane capacitor will be influenced
by any direct sensory input. If the sensory inputs are
periodic, the oscillator outputs can be driven such that
they are phase locked to the inputs.

If learning is required, the chip provides a short-term
(on the order of seconds) analog memory to store a
learned weight. Clearly, this architecture favors
continuous learning rule. Spikes from the motor neurons
are used to increase or decrease a voltage on a capacitor;
the voltage is used to set the connection weight of another
neuron. In the absence of the training inputs, the stored
weights decay at approximately 0.1V/s. Fig. 3 shows a
schematic for adapting the spiking frequency of the motor
neurons based on the swing amplitude of the limb.

In Fig. 3, the limb is driven back and forth with a
velocity signal that is obtained by low-pass filtering the

activity of the motor neurons. Since the duration and
frequency of the spike train is fixed by the CPG oscillator,
changing the spiking frequency of the motor neuron alters
the amplitude of the velocity signals, which in turn varies
the swing amplitude of the limb. If the amplitude of swing
does not reach the maximum positions, the motor neuron
spike rate is increased. An increase in spike rate is kept
bounded by negative feedback to the learning circuit.
When the swing amplitude reaches maximum, the
positive input to the learning circuit is reduced, thus
allowing the spiking rate to settle to a constant value. The
continuous negative feedback of the spike rate and the
input from the position detectors maintain the learned
spiking rate. The duration of the burst component of the
spike train can be further controlled by feeding the
position signals directly to the CPG oscillators to reverse
the trajectory of motion at the end points. This allows
very asymmetric forward and backward velocity signals
to be adaptively re-centered, as shown in section 5.

3.0 Experimental Setup
The experimental setup consists of a small robotic leg, the
CPG chip, necessary components to interface the chip to
the robotic leg, and data collection facility.

The robotic leg is a small (4” in height) two-joint
mechanism. In our setup, only the top link is driven. The
bottom link (the knee) is completely passive. The knee
swings freely, rotating on a low friction ball-bearing joint.
A hard mechanical stop prevents the knee from
hyperextending.

The neurons of the CPG chip were interfaced to a
servo motor using a rudimentary muscle model. The
muscle dynamics are simulated as a low pass filter to
smooth the output of the spiking neurons. This is followed
by a pure integrator implemented in software. A bias was
intentionally introduced into the chip to cause an
asymmetry in the backward and forward swing of the leg.
This bias might be typical of uncompensated parameters
in a chip.

The robotic leg has three sensors on it. Two LVDT
sensors monitor the position of the knee and hip joints.
LVDT sensors are used because they introduced minimal
friction and had infinite resolution. Additionally, the robot
has a foot sensor to monitor ground contact forces.

 The output of the hip LVDT is sampled digitally.
The signal is interval coded. Two intervals are selected as
representing the extremes of movement of the hip (called
virtual sensors position in Fig 3.). When these extremes
are reached, the corresponding interval is active. This
interval then sends a signal to the CPG chip causing an
appropriate reset.

4.0 Experiments

4.1 Running with a passive knee
In this experimental setup, the CPG circuit drives the
actuator in the hip joint. The knee joint is passive and
rotates with very little friction.

The assembly is suspended above a rotating drum.
The CPG circuit is started and the bursting rate is adjusted

Figure 3. Adaptive control of a limb's dynamics
using a neural CPG with learning capabilities.



to approximately  2-3 Hz. This rate had previously been
found to produce a good running movement.

Data is collected for three sensors: Foot pressure,
knee and hip. “Stretch receptor” sensory feedback from
the hip is used as feedback to the CPG.

4.2 Sensory feedback lesioning
This experimental setup is similar to the first experiment.
The difference is that sensor feedback is lesioned (turned
off) periodically. We collect data as before.

5.0 Results

5.1 Running Results with a Passive Knee
A remarkable feature of this system is that the knee joint
adapts the correct dynamics to enable running (!). As the
upper limb swings forward, the lower limb rotates so that
the foot comes off the ground. When the upper limb is
suddenly accelerated backward, the momentum in the
lower limb forces the knee to lock in place. At just the
correct moment, the foot contacts the ground and the
subsequent loading keeps the knee joint locked in place.
As the foot travels backward it eventually begins to
unload. Stored energy in the elastic foot causes it to ‘kick
up’ and smartly snap off the ground, an effect most
noticeable at higher velocities.

Figure 4 shows a phase plot of the knee, foot and hip
position and foot contact. The bulk of the trajectory
describes a tight ‘spinning top’ shaped trajectory while
the few outlying trajectories are caused by disturbances.
After a disturbance the trajectory quickly returns to its
nominal orbit and we can infer that that the system is
stable.

5.2 Lesion Results
Next we lesioned the sensory feedback to the leg
periodically. Figure 5 shows the effect of lesioning on the
position of the hip and knee joints as well as the tactile
input to the foot. After lesioning the leg drifts backward

significantly due to a bias built into the chip. When the
sensory input is restored, the leg returns to a stable gait.

5.3 Gait Stability
Perturbations to the leg cause momentary disturbances.
As seen above in Fig. 4, several of the trajectories are
clear “outlyers” to the typical orbit, and result from
environmental disturbances.

We found that sensory feedback could compensate
for both the bias of the chip and environmental
perturbations. Figure 6 shows restoration to a nominal
orbit after perturbation in intact and lesioned cases. In the
intact case, a perturbation at cycle ‘2’ leads to outlying
trajectories, but the trajectory is quickly restored to the
nominal orbit. In the lesioned case, removal of sensory
feedback causes the chip bias to destroy the trajectory of
the leg.  The gait quickly deteriorates.

6.0 Summary and Conclusions
In this paper we present the first experimental results of
an adaptive VLSI neural chip controlling a robotic leg.

Basic rhythmic movements in animals are generated
by a network of neurons in the spinal cord called the
Central Pattern Generator or CPG. CPGs have been
studied extensively and are beginning to be better
understood. A model of the CPG was proposed by Cohen
in the early 1980s and subsequently this CPG model was
then adapted for use in robotic work [11][12].

In this paper we present a hardware implementation
of this CPG model.  Our custom VLSI chip, having only 4
neurons and occupying less than 0.4 square mm has the
basic features needed to control a leg running on a
treadmill.

The second point made in this paper is that running is
a dynamic process. As has been noted by the biological

Figure 4. Hip, knee and foot-contact phase diagram.
Most of the trajectory is in a tight bundle, while the
outlying trajectories represent perturbations.

Figure 5.  This figure shows the effect of lesioning
sensory feedback. When the feedback is lesioned (Time
11-29 seconds and 31 to 42 seconds), the hip drives
backward significantly. As it does the foot begins to
lose contact with surface and the knee stops moving.
When the lesion is reversed at 29 and 43 seconds, the
regularity of the gait is restored.



community (for example in the work of Robert Full [6])
as well as in the robotics community, much of the
“intelligence” in running is actually in the dynamics. This
is clearly illustrated in the current work by the use of an
under-actuated robotic leg.  In the results presented here,
the energy injected into the hip is sufficient to excite an
orbital trajectory of the knee as well. The hip, knee, and
foot sensor orbit appears remarkably stable when the CPG
circuit is stabilized using sensory feedback.

We conclude that the control of a running leg using a
CPG chip is possible. We demonstrate that, at least in this
experimental setup, running is possible using an under-
actuated leg. Finally, we demonstrate a basic adaptive
property of phase resetting using a stretch receptor.

It should be emphasized that the system being
controlled is non-linear and the chip itself uses non-linear
elements to control it. We have a coupled system of non-
linear elements. We make no attempt to linearize the
system. Instead we take advantage of the non-linearities.

Because (1) we do not make use of models, or
linearization, (2) we adapt principles from biological
systems, and (3) these principles can easily be
implemented with low-power integrated circuits, we are

able to achieve a very compact solution.  Further
experimentation with this system will allow us to
determine if a robot can be made to walk by coupling
together circuits as presented here. The current results,
however, are promising.
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Figure 6.  Effect of perturbations on gait with intact and
lesioned sensory feedback. (A) Five sequential trajectories
(numbered) in intact and lesioned conditions are
represented as ranging between black and light gray.  A
perturbation at 2 in the intact case leads initially to worse
trajectories (3 and 4), but quickly stabilizes to the nominal
orbit (5). In the lesioned case, chip bias causes a
perturbation at 2 from which the gait can not recover; the
hip is forced backward (3,4, and 5). (B)The same ten
trajectories shown in A presented as hip position through
time, with knee position color-coded. Intact sensory
feedback permits recovery while lesioning causes drift of
both the hip and knee.
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