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Abstract

We present techniques for building models of complex
environments from range data gathered at multiple view-
points. The challenges in this problem are the matching of
unregistered views without prior knowledge of pose, the
use of very large data sets, and the manipulation of data
sets of different resolutions and from different sensors. Our
approach is unique in that no prior knowledge of the rela-
tive viewpoints is needed in order to register the data. We
show results in building maps of interior environment from
range finder data, building large terrain maps from
ground-based and from aerial data, and from an opera-
tional for mapping from stereo data for hazardous envi-
ronment characterization. The paper summarizes the
major results obtained so far in this area. Details of the
algorithms can be found in earlier papers as referenced in
the text.

1.0 Introduction

The problem of building models from multiple views is

critical in various applications, including remote opera-
tion, virtual environment building, and construction of
object libraries for recognition. In this paper, we consider
the problem of registering range data sets from multiple
locations in order to build a complete model of an environ-
ment. A typical scenario involves many viewpoints over a
large area with poor or nonexistent initial estimation of the
relative positions of the views. Eventually, our goal is to
build maps that cover hundreds of square meters at very
high (e.g., sub-centimeter) resolution.

This problem has many facets, including computing the
transformations between views, correcting the transforma-
tions to compensate for drift and error accumulation,
merging the views into a single model once the transfor-
mations are computed, and incorporating color and texture
information into the final model. Here, we focus on the
first problem: reliable registration of large point sets from
range data. Examples of view merging are shown only to
illustrate the results of registration.

The method described here is based on a general approach
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to surface matching [13], which has been applied success-
fully to object recognition [14] and three-dimensional
object modeling. This method has two critical features
which address the shortcomings of previous techniques.
First, it does not require surface segmentation or feature
extraction. Second, it does not require knowledge of the
transformation between surfaces prior to registration.
Owing to these two features, this surface matching algo-
rithm can be applied to problems of large-scale model
building.

The goal of this paper is to show how our matching algo-
rithm can be used in the context of mapping large, clut-
tered environments. The paper summarizes the major
results obtained in this field. More technical details can be
found in earlier publications [2][11].

2.0 Point Matching Using Local Signatures

In [9], Johnson introduces the spin-image, a two-dimen-
sional signature describing the local shape of a free-form
three-dimensional surface at a point p on that surface.
Spin-images encode the positions of points near p in terms
of distance along and distance from the approximated nor-
mal to the surface at p. By comparing this coordinate
information from the spin-images of two different points,
we arrive at a measure of local shape similarity between
the surfaces surrounding those two points.

To construct the spin-image for an arbitrary point p, we
first find the best-fit plane to the nearest neighbors of p and
approximate the normal to p as the normal to this plane.
We then define a 2-D basis using the normal n and the
plane Pperpendicular to n and passing through p. For each
point x in the vicinity of p we compute its coordinates
(o1,B) with respect to this basis; o is the distance from p to
x measured in the plane 2 while f is the perpendicular dis-
tance from x to P (Figure 1.)

The (a.,B) values are then discretized and accumulated into
a 2-D array of bins called a spin-image; each bin in the
spin-image corresponds to some range of a and f3 values.



Figure 1: The signature at point p is computed by recording
the distance of all nearby points x from the surface normal n
() and the distance from x to p along n ($). Corresponding
points from different views have similar signatures.

These spin-images are compact signatures describing the
local shape of a surface around a particular point; if two
points have similar signatures, they are considered to have
similar local shape (Figure 1).

F

¥
Figure 2: Signatures from points on surface meshes from two
views. Corresponding points have similar signatures.

Spin-image similarity is determined by simple linear cor-
relation of bin values, supplemented with a confidence
metric to take into account the number of empty bins in.
Bins containing no points are not considered in the corre-
lation calculation to help minimize the effects of clutter

and occlusion on shape similarity by only considering bins
in the spin images that have been filled. The final similar-
ity measure between two points takes into account the
number of bins used to compute correlation, so that signa-
tures with the highest amounts of overlap are considered
the most similar.

- Johnson shows in [9] that through determining the similar-
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ity between spin-images of points from two different sur-
faces, it is possible to recover the transformation that
registers the surfaces even though no initial estimate of
this transformation is known at the time of registration.

3.0 View Registration

The matching approach described above provides a power-
ful tool for building large-scale models from sensor scans
taken at unspecified locations. In this section we describe
the process of using spin-images to register range data
taken from a variety of locations. We assume that regard-
less of the sensor used, range data from it consists of 3-D
points in some fixed coordinate frame. Given these points,
a triangular mesh is formed by connecting nearest neigh-
bors, and noisy points and edges in this mesh are removed
through cleaning and smoothing operations. At this point,
we have a high-resolution 3-D representation of the model
as seen from a particular viewpoint; for reasons to be
explained below, we then simplify this surface using the
algorithm found in [12] to obtain a low-resolution version
of the surface.

Given two low-resolution meshes, we register them using
signature matching as follows. First, a fixed fraction of
points is selected at from both surfaces. The signatures are
produced for these points, and all the signatures from one
surface are compared to all the signatures from the other
using the similarity measure described above. When a pair
of signatures are found to have high similarity, the points
that produced them are considered to correspond to each
other (Figure 2); after all signature comparisons have
taken place, we are left with a set of point matches
between the two surfaces. Finally, an estimate of the trans-
formation that aligns the two surfaces is computed from
the point matches.

Based on this estimate an ICP algorithm is applied to the
approximately-aligned high-density surfaces. The resuit-
ing transformation aligns the full range data sets with
acceptable accuracy.

One feature of this procedure is that the only step in the
process which depends on the user’s choice of range sen-
sor is the acquisition of range data; the manipulation of
meshes, registration of surfaces, ICP, and merging are
completely independent of the range sensor used. In fact,
this technique has been used with eleven different range



sensors to data; examples with three sensors are included
at the end of the paper.

4.0 Surface Matching with Large Data Sets

The basic procedure outlined above is sufficient for data
sets of moderate size, for example, individual objects.
When dealing with data sets that cover a large area, two
issues must be addressed carefully. First, the large varia-
tion of data resolution across the area scanned complicates
surface matching. Second, the size of the data may render
the matching procedure computationally unpractical.

4.1 Variable Data Resolution

In the representation described thus far, the signature
images are computed by histogramming the vertices of the
model or scene meshes. As a result, the distribution of the
vertices on the mesh directly affects the signatures. In fact,
two meshes with different vertex distributions may gener-
ate very different signatures at the same basis point. There-
fore, in order for the surface matching algorithm to work
properly, some constraint has to be enforced on the distri-
bution of vertices on the meshes. Specifically, it can be
shown that the signatures remain stable as long as the ver-
tices are uniformly distributed on the surface.

Although this approach works well in practice, it has sev-
eral problems. First of all, there are cases in which the data
simply cannot be made uniform without loosing a great
deal of information because the variation of resolution in
the input sensor data is too large. A typical example is ter-
rain data taken from a forward-looking sensor. The sensor
data varies from high-resolution at close range to quadrati-
cally decreasing resolution as the range from the sensor
increases. Variations in data point spacing of as much as
1:10 are routinely observed on terrain data. The second
problem is that the uniform decimation requires on the
same order of computation time as the matching itself,
even though much faster decimation and filtering algo-
rithms do exist.

The solution to those problems is to compute the signa-
tures by integrating over the entire surface rather than by
computing ¢ and f values at the vertices only. Essentially,
this requires interpolating the spin-image values “in
between” the mesh vertices. The simplest way of achiev-
ing this is to raster scan each triangle of the mesh
(Figure 3) and to compute the (c.,B) coordinates of each
point inside the face. The corresponding location in the
signature is incremented by a constant amount for each
new point. This algorithm can be made efficient by using a
fast geometric test in order to determine whether a face is
inside the region of influence of the basis point and is
within the boundary of the spin-image space.
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This approach is still an approximation because it uses a
discrete sampling of the surface. In particular, although the
signatures are less sensitive to the distribution of vertices,
they are still sensitive to the choice of the sampling rate
used for interpolation.
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‘Figure 3: Discrete vertex interpolation: each face is
raster-scanned before mapping to spin-image. The

sample points used for the scanning are shown in green
in the neighborhood of the basis point shown in red.

The second approach is exact in that it computes the spin-
images by integration over the whole surface without addi-
tional sampling. In this approach, the boundary of each tri-
angle is mapped into of3-space, as shown in Figure 4 (a).
Each edge of the face maps to a segment of hyperbola. The
hyperbolic segments computed in the projection are then
used for determining which cells of the spin-image may
contain some portion of the triangle. Figure 4 (b) shows
the portion of the spin-image that contains a portion of the
triangle based on the segments of Figure 4 (a). Finally,
each cell in the spin-image is incremented by the area of
the part of the triangular face that is mapped to that cell in
of3-space.

Figure 4: Continuous interpolation: each face is mapped to
of} space by mapping its edges (a); cells inside the mapped
region are incremented by the area of the intersection of the
face and the volume in space corresponding to the cell (b).

This last step is illustrated geometrically in Figure 4 (b).

The region of 3D corresponding to the cell (o,8) is an
annulus of height AB and thickness Aa.. The cell is incre-
mented by the surface area of the intersection between the
triangle and this annulus.

Because it uses the actual surface area for incrementing



the signature cells, this algorithm computes an “exact”
mapping of the surface to the signatures, given a mesh dis-
cretization of the surface. Figure 5 shows the difference
between a signature computed with and without interpola-
tion.
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Figure 5: The vertex-based signature for the basis point of
Figure 3 (left) is degraded when compared with the
corresponding face-based signature (right.

4.2 Fast Access Data Structures

This part of the work addresses the practical use of the
matching techniques, in particular using the more
advanced surface integration, for the very large data sets
that one expects to encounter in applications such as build-
ing terrain models, or virtual models of large interior envi-
ronments.

The main potential obstacle to the practical use of signa-
ture techniques is that the computation of the signatures
may become prohibitively expensive if the data set is very
large. In particular, the amount of computation needed
from each face in order to compute the signature at a given
basis point is much more substantial than in the standard
method. Therefore, it becomes especially important that
only the points that are inside the region of influence of a
basis point be used for computing the corresponding sig-
nature.

The standard approach to this type of problem is the use of
variants of the K-D tree structure designed for fast access
in multidimensional spaces. After evaluation of several
implementation of similar geometric data structures, the
best design turned out to be a regular hierarchical data
which is similar to octrees, except that, because we are
working with 2-D surfaces, the tree is sparse and access
can be efficiently implemented by a fast hashing method.
The graphs below illustrate the improvement in signature
computation speed obtained using this technique.

Because of the overhead involved in computing the data
structure, and in computing the hashing function and
retrieving points from the data structure, this technique is
really beneficial only for large data sets. In fact, the com-
putation is slower for data size of moderate size. The
graphs show that the crossover point is at approximately
8000 points (Figure 6.) This technique should not be used
for smaller data sets.
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Figure 6: Computation time as a function of the number of
points without indexing data structure (red), and with

indexing data structure (green).
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5.0 Indoor Environment Reconstruction

As a first example, the surface registration technique has

been used for building a model of a large warehouse space

composed of two adjacent rooms. The building measured

roughly 60 meters long by 20 meters wide by 10 meters

high, and was filled with an assortment of clutter and

debris as shown in Figure 7. We used a K2T/Z+F laser
View A:

warehouse area. Only part of the panoramic scan is shown
for each image.

range finder [5][6] mounted atop a minivan to collect
range data at 32 different points in the warehouse; each
scan of the sensor covered a 360-degree field of view with
20 degree depression and a maximum range of about 40
meters. The resolution of the sensor is rated in the milli-
meter region.

Each scan of the range finder returned 1.8 million 3-D
points; through naive subsampling this set was reduced to
65000 points. The resulting point cloud was converted into
a mesh and resampled to roughly 5000 points for registra-
tion.

Surface meshes produced from each of the 32 data sets
were successfully registered to the meshes of adjacent



scans. Figure 8 shows the registration results for two of the
meshes. With the transformations between neighboring
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Figure 8: (Top) Registered range data

acquired from two separate sensor locations. One data set
is displayed in black wireframe, the other in solid grey.
(Bottom) Boxed section enlarged to show detail.

meshes known, it was then possible to align all meshes in
a common coordinate system so that they could be unified
into a single mesh that covered the entire warehouse space.
Because of limitations in our implementation of the merg-
ing algorithm, only 20 of the views were merged into the
final model, although all 32 data sets were registered. The
complete mesh of the warehouse contained 138000 points
at full resolution, while a low-resolution version of the
model contained 25000 points. The resolution of the final
mesh was low compared to that of the constituent high-
resolution views due to limitations of the mesh merging
implementation; otherwise, it would have been possible to
produce a final mesh with no resolution loss. Statistics for
each of the different types of surface mesh-- high-resolu-
tion single-viewpoint, low-resolution single-viewpoint,
high-resolution complete, and low-resolution complete--
are summarized in Table 1. Resolution is measured as the
average length of edges in the mesh, in millimeters.

TABLE 1. Mesh Statistics
Mesh Type # Points # Edges Resolution
High Res. 65000 160000 70
Low Res. 5000 12000 275
Complete 138000 400000 150
High Res.
Complete 25000 65000 320
Low Res.

Figure 9 shows a bird’s-eye view of the final model, while
Figure 10 shows the positions of the sensor at viewpoints
A, B, and C from Figure 4 along with views of the final
model from these vantage points. As mentioned above, we
did not attempt to refine the final merged model; more
sophisticated merging algorithms can certainly be used
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once the transformations are computed.
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Figure 9: Bird’s-eye view of the building model.
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Figure 10: Views of the final model from viewpoints A ans
B of Figure 4. The wireframe are shown using the low-
resolution data.

6.0 Large-Scale Terrain Mapping

A second example of map reconstruction is map building
from a ground-based range sensor and from an autono-
mous helicopter. The ground-based sensor is a K2T/Z+F
sensor [5] which was configured to generate range and
reflectance images of size 6000 x 300, corresponding to
angular resolutions of 0.06° and 0.1° in the horizontal and
vertical directions respectively. The initial data is subsam-
pled by a factor of 5 horizontally and 3 vertically and then
converted to a mesh.

The helicopter range data was preprocessed by the CMU
Autonomous Helicopter group, but we will briefly
describe the steps used. The combination of the line scan-
ning sensor, helicopter motion, and position uncertainty
causes sequential scan lines to overlap unpredictably.
Therefore it is not possible to simply connect the data
points as with the image based scanner. Instead, the points



from a series of scans are projected orthographically into a
grid, and the range is calculated using the closest point in
each bin. Then the bins are treated as a range image and
converted to a mesh using the same method as with the
ground-based sensor.

The registration algorithms were tested on several large
data sets, two of which are shown here. The first data set
was acquired with the sensor mounted on the roof of a van
at a slag heap located near CMU. The data is a sequence of
13 range images obtained at 3-5 meter intervals along a
road leading between two hills. After the 7™ data set, the
road curves to the left. The registered data sets were
merged into a single, global map shown in Figure 8.

The second data set was collected by the Autonomous
Helicopter group during field tests at Haughton crater in
the Canadian arctic as part of NASA’s Haughton-Mars
project. The integrated terrain map in Figure 11 was
formed from three passes of the helicopter along the
boundary of a 20-meter cliff and covers a 260 x 166-meter
area.

7.0 Conclusion

Building environment models from unregistered views is
challenging because of the difficulty in extracting and
matching surfaces, the size of the data sets, and the varia-
tion in resolution and accuracy among views and sensors.
The approach presented here addresses those challenges

87 meters

and was successfully demonstrated on large 3-D data sets.
Beyond the two examples presented here, the system has
been exercised with eleven different range sensors, from
active laser range finders to passive stereo systems.

Now that we have a reliable algorithm for building maps,
we are beginning to analyze the limitations of the
approach. The next step is to investigate how terrain shape
affects the algorithm’s performance. Two areas of investi-
gation are of particular interest: intelligent selection of
points and dynamic estimation of overlap between views.
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Figure 11: Top-view integrated map built using data from th«
autonomous helicopter (top) and perspective views of ths
map (bottom). Grid lines are 5 meters apart.
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Figure 8: Top view of the integrated terrain map for the eleven data sets in the mesa sequence (center). The numbered
insets illustrate individual data sets, and two sets (1 and 11) are overlaid on the top-view. The larger insets show
various perspective views of the map, and the white arrows indicate the location and direction of the viewpoint. Grid
lines are two-meters apart on the combined map and one meter apart on the individual data sets.
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