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Abstract

We propose a novel approach to dynamic simulation
of grasps that overcomes di�culties due to inconsisten-
cies in the forward dynamics problem. The key idea
in the paper is a minimalist model of the contact com-
pliance and the use of this model in situations when
the performance of the rigid body model is not satis-
factory. Our general framework allows for on-line di-
agnostics that enable the automatic switching between
models to maximize e�ciency while avoiding ambiguous
situations. We illustrate the basic ideas by simulating
the dynamics of several whole arm grasps.

1 Introduction

The ability to predict the dynamic behavior of a
grasp with a given dynamic model and the control algo-
rithms is critical to the design and analysis of multi�n-
gered grippers, legged locomotion systems, multi-arm
systems, and other constrained robot systems [6, 11].
The dynamic analysis and the simulation (the predic-
tion of motion given the external forces and moments
on the system) of such systems is central to the design
of such systems and the development of control algo-
rithms [3, 16]. In the forward dynamics problem, it
is well-known that in the frictionless case there is al-
ways a unique solution for the accelerations. When the
constraints are not all independent, the system is stati-
cally indeterminate and the constraint forces cannot be
uniquely determined [7, 15, 13]. In the frictional case, if
the Coulomb frictional model is adopted, then the dy-
namics are more complicated. If all contacts are known
to be rolling (sticking), then the relative tangential ve-
locity is zero at each contact, and the existence of a
solution can be shown if the constraints are indepen-
dent [13]. In all other cases, the initial value problem
can be shown to have no solution or multiple solutions
for special choices of initial conditions [7, 8].

Recently, there has been some attention in the
robotics community on overcoming these shortcomings
by using rigid body models to predict the gross motion
while using compliant contact models to predict the con-
tact forces and the local deformations [5]. For example,
a continuum model for modeling the deformations at
each contact is described in [15]. Each contact is mod-
eled as frictional elastic or viscoelastic, and the contact

force distribution across the contact patch is calculated
using a �nite-element mesh [4, 14, 15]. Existence and
uniqueness can be shown for the special case in which
the maximum tangential force at each point is a priori
known [4]. In contrast, Mirtich et al. [10] propose ef-
�cient, approximate algorithms for \impulsive dynamic
simulation" that incorporate approximate impact mod-
els for collisions, thus trading o� accuracy for e�ciency.
An explicit model of the contact compliance [2, 5] also
allows the analysis of statically indeterminate grasps.
Of course such contact models tend to be more com-
plex and the parameters are more di�cult to identify.
Further, it is harder to simulate systems in which the
time scale for the dynamics of contact interactions is
signi�cantly di�erent from the time scale of rigid body
dynamics [9, 12].

The compliant contact model, while resolving the dif-
�culties with the forward dynamics problem, can result
in a high-dimensional, sti� system of equations and a
run time that is unacceptable for real-time simulation.
The simplicity and e�ciency of rigid body models, on
the other hand, provide strong motivation for their use
during those portions of a simulation when the rigid
body solution is unique and stable [12]. In this paper,
we combine the positive aspects of both models and de-
velop an integrated approach to dynamic simulation.
We use a rigid body dynamic model whenever appro-
priate guarantees of accuracy are available, and switch
to a compliant contact model in other cases. This is
illustrated through examples of whole arm grasps.

2 Models

2.1 Rigid body dynamics

We consider a system of multiple rigid e�ectors op-
erating on rigid objects subject to Coulomb's friction as
shown in Figure 1. The dynamic equations of motion
can be written as

M (q)�q + h(q; _q) = u+W� (1)

where q 2 <n is the vector of generalized coordinates,
M(q) is an n�n positive-de�nite symmetric inertia ma-
trix, h(q; _q) is a n�1 vector of nonlinear inertial forces,
u is the vector of applied (external) forces and torques,
and � is the vector of constraint forces. The system is
subject to k unilateral constraints:

�(q) = [�1(q); � � � ; �k(q)]T � 0 (2)
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andW in Eq.(1) is the k�n Jacobian matrix, (
@�
@q )

T . We

will assume, without loss of generality, that this does not
include bilateral, holonomic constraints. Further, for
the sake of simplicity, we will assume that nonholonomic
constraints are not present.

Figure 1: A general whole arm grasp.

Suppose there are nC contacts, consisting of nR
rolling contacts and nS sliding contacts. Let the sub-
scripts N and T denote quantities in the normal and
tangential contact directions and S and R denote sliding
and rolling contacts respectively. The Jacobian matrix
and constraint forces in Eq.(1) are given by:

W = [WNR W TR W � ] ; (3)

W � = [WNS+W TS�s] ;

� =
h
�TNS �TNR �TTR

iT
; (4)

where �s=�diag(�sign( _�TS)), � is a nS�nS diagonal
matrix that contains all the coe�cients of friction at
the sliding contacts, W � is a n�nS matrix, WNR and
W TR are both n�nR matrices, and the total number
of constraints k=2nR+nS. �NS is the nS-dimensional
vector of normal forces at sliding contacts, while �NR

and �TR are the nR�1 vectors of normal and tangential
forces at rolling contacts, respectively.

Contacts between rigid bodies generate complemen-
tary constraints on the position (or velocity or acceler-
ation) variables and the corresponding force variables.
The question of whether there exists a unique solution
for �q that is consistent with these constraints and Equa-
tions (1 - 4) and has been studied using complementarity
formulations [7, 13]. The problem of determining con-
tact forces can be reduced to a linear complementarity
problem (LCP) that has the form [13]:

x � 0; y = Ax+ b � 0; yTx = 0: (5)

The LCP has a unique solution for all vectors b if and
only if the matrix A is a P -matrix [1]. However, even if
A is not a P -matrix, the LCP may have unique solution
for special choices of b. For other choices of b, Eq.(5)
may have no solution or multiple solutions.

2.2 Compliant contact models

The basic idea of the compliant contact model is
shown in Figure 2, where the rigid body is shown sur-
rounded by a very thin deformable layer the inertia of
which is considered to be negligible. In the planar case,
the actual relative displacement of the contact point is
given by (�T + �T ;�N + �N ), which is the summation
of the relative rigid body displacement at the contact

point, (�T , �N ), and the normal and tangential de-
formations of the deformable layer, (�N ; �T ). The con-
tact forces are related to the deformations (�N ; �T ), and

their derivatives ( _�N ; _�T ). Because the deformations
can be determined by the knowledge of the material
properties of the deformable layer, the contact forces
can be related to the original state variables (q; _q).
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Figure 2: A simple model of contact compliance.

A general viscoelastic model for contact compliance
is shown in Figure 2. At contact i, the normal and
tangential contact forces (�N;i and �T;i) between the
two contacting bodies may be modeled as:

�N;i=fN;i(�N;i) + gN;i(�N;i; _�N;i); i=1;: : : ;nC ; (6)

�T;i=fT;i(�T;i) + gT;i(�T;i; _�T;i); i=1;: : : ;nC ; (7)

where the functions fN;i and fT;i are the elastic sti�-
ness terms and gN;i and gT;i are the damping terms in
the normal and tangential directions respectively. These
functions depend on the geometry and material proper-
ties of the two bodies in contact and may be nonlinear.
It is also necessary to model the frictional behavior of
the contact. The details and variations on the com-
pliant contact model and a range of frictional laws are
discussed in [5, 12].

The disadvantage of the compliant contact model is
that there is a need to extend the dimension of the state
space from 2n�2(nC+nR) to 2n+nC . The three main
advantages are: (a) The normal and tangential forces
are now uniquely determined and there is no question
of static indeterminacy; (b) The di�culties with unique-
ness and existence no longer arise; and (c) A model with
tangential contact compliance is more realistic and can
better explain physical observations [5].

3 Planar whole arm manipulation

3.1 Dynamic model
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Figure 3: A planar whole arm grasp.

Consider the planar whole arm manipulation system
shown in Figure 3. We assume that each link of each arm



(�nger) has one contact point with the object. These
links are called e�ectors. Each joint has one degree of
freedom. �B is the base frame and �i is the coordinate
frame attached to the ith contact point. Let T axis of
�i be aligned with the tangent to the object's surface,
while the N axis is in the direction of the inward normal.

The generalized coordinates can be chosen as q =
[xT �T ]T 2 <7, where x 2 <3 describes the posi-
tion and orientation of object and � 2 <4 be the
joint angle of the robot manipulator. We de�ne GN;i

and GT;i 2 <3 as the unit wrenches associated with

contact forces �N;i and �T;i respectively. Let JTN and

JTT 2 <4�4 be the arm Jacobians which map the nor-
mal and tangential contact wrenches to the joint torque
� 2 <4. If Coulomb's friction law is assumed, the dy-
namics of the system in Figure 3 can be written in the
form of Eqs.(1-4) as:�
Mo 0
0 Ma

� �
�x
��

�
+

�
0
ha

�
=

�
go

��ga

�
+W

"
�NR

�TR
�NS

#
(8)

where W 2 <7�(2nR+nS) is given by Eq.(3) with

W T
N = [GT

N �JN ] 2 <4�7;

W T
T = [GT

T �JT ] 2 <4�7:

Mo is the mass matrix of the object. Ma 2 <4�4 is
inertia matrix of the arm. The vector go denotes the
external wrench acting on the object. ha 2 <4 is the
vector of Coriolis and centrifugal forces, and ga 2 <3

represents the vector of generalized forces that accounts
for external forces acting on the arm. The kinematic
constraints on velocities and accelerations are given by

_�N =W T
N _q; _�T =W T

T _q: (9)2
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3.2 Contact analysis

In this example, the following constraints are im-
posed: nR + nS = 4

2nR + nS < 7 (11)

rank(W ) = 2nR + nS

The �rst constraint says that the total number of con-
tacts is four. The next two constraints essentially make
the problem determinate. In other words, a unique solu-
tion for the contact forces is directly available. Clearly,
these conditions are satis�ed for the following three
cases: (a) nR = 2, nS = 2; (b) nR = 1, nS = 3; and
(c)nR = 0, nS = 4.

The LCP model for any of the three cases can be
derived by combining Eq.(8) and Eq.(10). This yields a
(2nR + nS)� (2nR + nS) system given by:2

4 ��NR

��TR
��NS

3
5 = ARS

"
�NR

�TR
�NS

#
+ bRS ; (12)

where
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2
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As discussed in Section 2, there are three di�erent
scenarios for the simulation of the whole arm grasp. In
the �rst scenario, Eq.(11) is satis�ed and ARS is a P -
matrix. In this case the rigid body dynamic model is
valid and solvable. The frictionless case, with nR = 0,
nS = 4, is a special case in whichARS is positive de�nite
and both conditions are met. In the second scenario,
Eq.(11) is satis�ed, but there are no guarantees onARS .
In this case there is no unique solution for the contact
forces and accelerations. This may happen for any of the
three cases (a-c) above. Finally, in the third scenario,
Eq.(11) is not satis�ed. In this case, it is impossible to
know what the contact forces are and therefore it is not
possible to check for constraints on the contact forces.
The nR = 4, nS = 0 case falls into this category. In
the second and third scenarios, it is necessary to pursue
a more complex model and as we argued before, the
compliant contact model is the model of our choice. The
next section illustrates our approach to integrating the
two models.

4 Simulation approach and results

4.1 Approach to simulation

In Section 2, we discussed the advantages and disad-
vantages of both the LCP formulation and the compliant
contact model. We propose an integrated approach to
simulation that combines the strength of both models.
The main idea is shown in Figure 4. The key step in
this approach is to build the compliant contact state
from the rigid body state variables when rigid body dy-
namics does not have a unique and stable solution for
the contact forces [12]. However, during the switch from
the LCP formulation to the compliant contact model, it
is necessary to ensure that the state of the system and
the dynamic model are continuous. This is done in the
following way.

1. Use the gross motion of the rigid body system
to compute the relative velocities at each contact
point. In the case of grasping and manipulation
tasks, for example, this can be given by Eq.(9).

2. Use the contact forces, �N and �T , from the initial
conditon or obtained by solving the LCP formula-
tion from the previous time step, t0, to construct
the initial compliant contact state in both normal
and tangential directions. For the ith contact in
the normal direction,

_�N;i = � _�N;i(q)

�N;i = max
n
0; ��1N;i(

_�N;i)
o



where ��1N;i(
_�N;i) is the inverse of the function

�N;i(�N;i; _�N;i) in Eq.(6) for a given _�N;i. In the
tangential direction, if the ith contact is sliding at
t0, we assume that the the tangential deformation
remains constant for the period of one time step of
the integration process, which gives

_�T;i=0:

at t = t0. If the contact is rolling,
_�T;i=� _�T;i(q):

The tangential deformations for both rolling and
sliding contacts are given by

�T;i=�
�1
T;i(

_�T;i):

Once the compliant contact state is built, as ex-
plained [5, 12], the compliant contact model allows the
explicit calculation of the contact forces according to
Eqs.(6,7) and the frictional constraints.
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Figure 4: An integrated dynamic simulation approach
for rigid body manipulations with frictional contacts

4.2 Simulation results

In this subsection, we will use the simulations of two
frictional whole arm manipulation tasks to illustrate the
use of the LCP model, the compliant contact model, and
the integrated approach given above. In both tasks,
the �ngers of a two 2-DOF �ngered hand is used to
manipulate an elliptical object in the horizontal plane
with sliding contacts. The con�guration of the system
is depicted in Figure 3. This is the nS = 4; nR = 0
scenario discussed in Section 3. The object has a major
axis of 0:30m and its minor axis is 0:22m. The mass of
the object is 1:69kg, and the moment of inertia about
the center of mass is 1.46�10�2kg�m2. The �xed palm
of the hand is 0:10m long. The length of each �nger
link is 0:20m. The mass of the �nger link is 0.5kg with
a centroidal moment of inertia of 1.67�10�3kg�m2.

The joints of the hand are driven by torque motors via
a simple computed torque feedback law designed to ma-
nipulate the object along a desired trajectory. The de-
tails of the feedback law are explained in [16]. Although

the grasp itself is statically indeterminate (four forces
in the plane), because the torques are speci�ed, the sys-
tem is statically determinate. The rank of W � 2 <7�4

remains four at all times. Since the system has three
independent degrees of freedom, it is easy to verify that
the grasped object can be manipulated in three inde-
pendent directions.

For a frictionless task, the matrix WNS 2 <7�4 is
full rank and W T

NSM
�1WNS is symmetric and posi-

tive de�nite. Therefore the A matrix in the LCP formu-
lation given by Eq.(5) is always a P-matrix, and hence
the LCP formulation always has an unique solution for
the contact forces. However, in the frictional case A,
expressed by W T

NSM
�1W �, is no longer a guaranteed

P-matrix. Whether A is a P-matrix or not depends on
the con�guration of the system, q, as well as the coe�-
cient of friction, �, at the contact points.

We �rst consider the situation when the rigid body
model has a unique solution throughout the duration
of the simulation. We use this example to demonstrate
and compare the performance of the rigid body model
and the compliant contact model. In the second exam-
ple, we show simulations for the case when di�culties
of uniqueness and existence arise during a simulation by
using the integrated approach.

The compliant contact model used in both exam-
ples is Kelvin-Voigt model with the following nondimen-
sional form:

�N;T =
�KN;T

�
t20
m0

�N;T +
�CN;Tp
� t0
m0

_�N;T (13)

where �KN;T and �CN;T denote the dimensionless sti�ness
and damping ratio in the normal and tangential direc-
tions, respectively. m0 is the characteristic mass and t0
is the characteristic time. � is a dimensionless scalar that
represents the contact deformation scale [12]. In both
examples �KN;T = �CN;T = 1; t0 = 1sec, and m0 =mo

where mo is the mass of the object.
Example 1: LCP has a unique solution The ma-
nipulation task is to rotate the object while keep its
center of mass stationary. A �fth order polynomial is
used to interpolate the orientation of the object. It can
be shown that for this plan, if we choose � = 0:1 at all
four contact points, the A matrix in the LCP formula-
tion is always a P-matrix. The desired rotation of the
object and the corresponding input joint torque history
are shown in Figure 5.

The simulation results are provided for the rigid body
LCP solution and for the compliant contact model for
di�erent values of � (1�10�3; 5�10�4). The main point
to be observed here is that the solution of the compliant
contact model is seen to approach the LCP solution with
decreasing values of �. Figure 6 shows the snap shots
of the simulation results for system con�gurations. Fig-
ure 7 shows the variation of the normal and tangential
contact forces at each contact point. The manipulation
task, which is to rotate the object from 70 degree to 110
degree in 1 second, can be simulated by either compli-
ant model or the rigid body LCP model as depicted in



Figure 8(a). Figure 8(b) shows that the two models are
in agreement within 1mm.
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Figure 5: An elliptical object being rotated counter
clockwise with four sliding contacts.
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Figure 7: The contact force history by using both the
rigid body LCP model and the compliant contact model
(CP{Contact Point).

0 0.2 0.4 0.6 0.8 1
65

70

75

80

85

90

95

100

105

110

115

Θ
ob

j (
de

g)

time (sec)

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
109.3

109.4

109.5

109.6

109.7

109.8

109.9

110

110.1

110.2

110.3

Θ
ob

j (
de

gr
ee

)

time (sec)

ε=5e-4
ε=1e-3

LCP

zoom

(a) Object orientation.
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Figure 8: Trajectory of the object orientation, and vari-
ation of object position in the horizontal direction

Example 2: LCP does not always predict a
unique solution In general, there is no guarantee the
LCP formulation will have a unique solution for a fric-
tional manipulation task. For example, consider the
translation of the object from 0.12m to 0.18m in the
vertical direction as depicted in Figure 9(a). The input
torque history shown in Figure 9(b) is obtained through
the same approach as in Example 1. If we set the co-
e�cient of friction between the object and arm links 1
and 3 as �1 = 0:8, and �2 = 0:6 for links 2 and 4, we
can show [17] that the P-matrix condition is not always
satis�ed during the task. For example, Figure 10 shows
that at t = 0:2sec the chosen coe�cient of friction falls
into the P-matrix region while at t = 0:5sec it does not.
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Figure 9: An elliptical object being translated in the
positive y-direction with four sliding contacts.
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Figure 10: �-space plots for the manipulation task given
by Figure 9 at di�erent times.
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Figure 11: Snap shots of the system con�guration.
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Figure 12: The contact force history.
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Figure 13: Variations of (a) the object displacement in
y-direction and (b) relative tangential velocities at the
contact points.

The integrated approach proposed in the previous
subsection is used to automatically switch the simula-
tion 
ow between the rigid body LCP model and the
CC (compliant contact) model based on the P-matrix
criterion and the stability conditions. The results are



illustrated in Figures 11-13. The small circles on the
plots indicate the switching points during the simula-
tion. There are two points worth noting. First, the
integrated approach enables a continuous transition for
the system dynamics when switching between models.
There are two switches in the simulation. The �rst one,
at t = 0:420sec, is a switch from LCP to CC model.
The second one, at t = 0:643sec, switches the simula-
tion back to using the LCP model. Second, directions of
the relative tangential velocities at contact points 2 and
4 change as shown in Figure 13(b). Since Coulomb's
friction law is used, this change in direction causes a
discontinuity in both the input joint torque trajectory
and the contact force history.

5 Concluding remarks

It is well-known that there are di�culties in using
rigid body dynamic models for the dynamic simulation
of systems with frictional contacts. In particular, when
rigid body models are used in conjunction with Coulomb
friction for dynamic simulation of systems with fric-
tional contacts, there may be situations in which there
are no solutions or multiple solutions for the contact
forces and the accelerations. On the other hand, a
simple compliant contact model, when used with the
rigid body dynamic equations of motion, always yields
a unique solution for the accelerations and the forces.
While this model is superior to the traditional rigid body
model in terms of accuracy and robustness, it is also
more complex and requires a larger number of parame-
ters. Therefore, it is appealing to use rigid body models
whenever concerns of uniqueness and existence do not
arise.

In this paper, we proposed an approach to simula-
tion that integrates the compliant contact model and
the rigid body LCP model to maximize computational
e�ciency without compromising accuracy. This is done
by using the rigid body model whenever possible and
by switching to a compliant contact model when the
equations show a potential problem with existence or
uniqueness. We presented a range of examples to show
that this method can be used to simulate any planar
enveloping or whole arm grasps.

There are some obvious issues to consider in future
research. First, the extension to three-dimensions, al-
though straightforward from a conceptual standpoint,
is di�cult from a practical view point because of the
frictional model and the tangential constraints. Second,
the process of developing the state for the compliant
contact model before a transition is based on the as-
sumption that _�T;i = 0 at each contact. Although this
ensures a continuous transition between the two mod-
els, there is no physical basis for this assumption. If the
rigid body dynamic model solution is stable [12], this
erroneous assumption simply introduces a perturbation
that gets damped out very quickly. Understanding the
e�ect of such perturbations on the simulation results is
a central focus of our ongoing work.
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