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Abstract -

For extended autonomous operation, rovers must iden-

ti_y potential faults to determine whether its execution

needs to be halted or not. At the same time, rovers

present particular challenges for state estimation tech-

niques: they are subject to environmental influences

that affect sensor readings during normal and anoma-

lous operation, and the sensors fluctuate rapidly both

because of noise and because of the dynamics of the

rover's interaction with its environment. This paper

presents MAKSI, an on-board method for state esti-

mation and fault diagnosis that is particularly appro-

priate for rovers. The method is based on a combi-

nation of continuous state estimation, using Kalman

filters, and discrete state estimation, using a Markov-

model representation.

1 Introduction

Rovers that operate autonomously for extended pe-

riods of time must be able to detect and diagnose
anomalous situationsand recover from faultsthat

do not require ground-operator intervention.Rovers

present characteristicsthat make thisproblem chal-

lenging. They receivestreams of continuous-valued

sensor data that fluctuatewith noiseand environmen-

tal interactions.From thisdata they must inferthe

presence of nominal and off-nominalstates,but these

states depend on the situation. The boundaries of

states can change depending on the context: for ex-

ample, a high currentdrivinguphillor over an obsta-

cle may be normal, but a high currenton smooth, flat

ground may indicatean anomaly. In addition,the set

of anomalous statescan change: forexample, the set

of possibleanomalies willbe differentfordrivingand
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taking pictures. Moreover, rovers are limited in power

and weight, which in turn limits processor speed and

memory. They must therefore use computationally ef-

ficient procedures for state estimation.

The rover state can be thought of as transitioning

among a set of possible, qualitatively different states.
These states may correspond to operational modes of

the rover (e.g., driving) or fault modes (e.g., broken

wheel gear) 1. Transitions may be explicit, based on

actions taken by the rover executive (e.g., stopped to

driving), or implicit, based on sensor information (e.g.,

wheel encoder nominal to broken).

Sensor failures may be inferred from the diagno-

sis, and a failure should then influence future state

estimation and diagnosis. For example, driving with

a broken encoder will give rise to different "normal"

sensor readings for the broken encoder.

Two major branches of work for state estimation

and fault diagnosis are Kalman filters from control

theory and qualitative model-based diagnosis from ar-

tificial intelligence. State estimation for rovers exceeds

the capabilities of the current approaches.

Qualitative model-based techniques for diagnosis

[2, 6] rely on the system transitioning occasionally
from one steady state to another. Rovers receive

rapidly-changing streams of continuous-valued sensor
data. In addition, the model-based techniques often

rely on a snapshot of the system, disregarding his-

tory. But in fact the history may be critical to reach a

correct diagnosis; the probability of a particular fail-

ure may be significantly different based on the prior

rover state. In addition, the qualitative approaches

relyon globalconsistency,which can be expensive to

compute, to compensate for the localinaccuracy of a

qualitativemodel.

Techniques for stateestimation of continuous val-

ues,such as Kalman filters[3],can track multiplehy-

tlnfact,thecompletesetofstatesisthecrossproductof
the operational modes with the powerset of the po_ible fault
modes. For modeling reMons mome ataces are often combined
with equivalent or similar states.



potheses [7, 10], but they lack methods for automa-

tially choosing which states to track. Tracking all pos-
sible states is infeasible.

In this paper, we present MAKSI (Markov And

Kalman State Identification), which combines continu-

ous probabilistic state estimation using Kalman filters

(KFs) with discrete qualitative state estimation us-

ing a Markov-model representation [4]. The discrete

states correspond to qualitatively different modes of

the rover (driving nominally, idle, stuck wheel, etc),

to each of which is associated a model of operation

represented as KF parameters. The development of

MAKSI arose from our experience with model-based

techniques in the NASA Ames 1999 Marskohod field

test, and it borrows some ideas from the model-based

techniques. Differences include the addition of quanti-

tative information through KFs, context-specific prob-

abilities of state transitions, and guarantees on com-

putational efficiency.

On-board techniques must work within constraints

on computation and memory. MAKSI builds on our

own and others' work on efficiently tracking belief

states [9, 1] and continuous variables [7].

2 Combining discrete and con-

tinuous state estimation

The MAKSI approach to state estimation is built from

Kalman filtering and Markov-model representations.

Before discussing the complete approach, we briefly
introduce the components from which it is built.

2.1 Kalman filtering

The Kalman filter (KF) is designed to estimate the

state of a process given observations. Here we con-
sider the standard, discrete KF, which is sufficient for

our initial experiments. More complex KFs can be for-

mulated for nonlinear processes and observations and
for continuous time. In the standard, discrete KF, the

process is assumed to evolve linearly given the previ-

ous state and a control input:

zt+l = Atzt + But + wt (I)

where zt is the state (vector) at time t, ut is the con-

trol input, and wt is white, normally-distributed noise.

The process is observed through measurements related

linearly to the process state:

zt = H, xt + vt (2)

where zt is the measurement (vector) and vt is white,

normally-distributed noise.

At each time step, the estimate of the state is first

updated using information about the state model, the

control input, and the process noise. This estimate

(the a priori state estimate, _-) is then fed through
the observation model. The observation model is used

to predict what observations should be seen. These

are compared against the actual observations, and the

difference is used to modify the a priori state estimate,

arriving at the new, a posteriori state estimate, 2 +.

The observation noise, in the form of a covariance

matrix, is used to update the Kalman gain matrix,

which is the weighting factor used to combine the a

priori state estimate and the observation differences.

The gain matrix also depends on the state error co-
variance matrix, which is defined as:

Pt -" E[(2_t - :_t)(xt - _,)T] (3)

The error covariance matrices are updated over time.

The KF finds the optimal estimate of the process

state (under the assumptions of the model), in that
it minimizes the expected least-squares error. Briefly,

the filter operates by first predicting the state using

the state update equations, then correcting the pre-

diction using an observation. Error covariances of the
state and the observation contribute to "weight" the

model, balancing the state model (the prediction) and
the observation.

Details of KFs can be found in [5, 3], among others.

2.2 Markov-model representation

While Kalman filters handle the problem of state es-

timation in a continuous space, they do not offer any
assistance when the state branches into two or more

qualitativelydifferentstates. In contrast,the stan-

dard model for Markov decisionprocesses (MDPs) is

a set of discretestateswith probabilistictransitions

among the states.In the case of partially-observable

MDPs (POMDPs), the estimationof the currentsys-

tem stateisrepresentedby a probabilitydistribution

over the setof discretestates.

A standard POMPD model consists of a set of

states,S, a set of actions A, and a set of observa-

tionsO. The model alsocontains a transitionmatrix

T, of size IS[ x IS[ x ]A], where t_it is the probability
of transitioning from state si to state s# when action

at is chosen. In a standard POMDP model, there

is an observation matrix Q of size IS[ x [OI, where

q_j is the probability of seeing observation oj when in
state s_. In MAKSI, we do not have this direct in-

formation, but we use an indirect calculation via the

Kalman state estimate.



Finally, the probability distribution over states at

time t is denoted as 7r(t), where _',(t) is the probabil-

ity that the true state is s, given information about
actions and observations.

Given an observation oj and an action ak, the state

distribution is updated according to the following for-
mula:

_(t) = q_J _'_z<-Z<-ISlPl_k_q(t) (4)

As mentioned earlier, we modify this (see the following

subsection) to use an indirect computation of qij.

Since the goal of state identification is to find the

best estimation of the current state as a passive op-

eration, the parts of the POMDP model for control

(rewards and policies) are not applicable to this prob-
lem.

2.3 Combining discrete and continu-

ous models

The basic idea behind MAKSI is to consider the sys-

tem as a set of discrete states, but rather than treat-

ing each as a static situation, the dynamics within

the state are represented using a Kalman filter. We

start from the POMDP model and augment it with el-
ements from the KF model. We use the term d_crete

state to represent the qualitatively distinct, POMDP-

level discrete state of the system, and the term system

state to represent the state vector of the actual system
parameters at the KF level.

As in the POMDP model, MAKSI represents the

system as a set of discrete states S and a set of discrete
actions A. We define a set of transition actions 0 as:

O=[_?A{start(a),end(a)}lU{null}.

These correspond to starting action a, ending action

a, and the null action (an implicit, data-driven transi-

tion). Similar to the POMDP model, we have a tran-

sition matrix T of size IS I x iSI x [el, where t_jt is

the probability of transitioning from discrete state si

to state sj when transition action 8k is taken 2. Since
there is a difference between transitioning from sl to si

and remaining in state s_ (see below), we consider the

probability of remaining in state s_ given transition

action Ob to be 1 - _"]l<i<lsl tijh.
Each discrete state s h-as associated with it a KF

model and a set of constraints describing the value

3Note that the implicit transitiorm are thus dependent on the
time step. See Section 4 for pc_ible remedies for this.

space V(s) of possible system state values. In gen-
eral the value space can be any subset of the possible

system state values; for efficiency, we restrict the con-

straints to be univariate and linear, defining a (poten-

tially infinite) hypercube value space. The KF model

has a state and observation vector of the same length,

where state element _[i] is the best estimate of the

value observed as observation element o[i].

Unlike the standard POMDP model, the observa-

tion probability matrix Q cannot be statically pre-

dicted from the discrete state. Instead, we approxi-

mate this by an indirect computation via the KF state:

qii _ Prob(oilK)" Prob(Klsi) (5)

The element Prob(ojlK ) is itself approximated as the
volume of the multidimensional normal distribution

function, described by the Kalman estimated state

and state error covariance, beyond oi (more precisely,

1- the volume of the minimum error ellipse enclosing

oj). In the multivariate case this is further approxi-
mated as a product over individual dimensions:

Pr°b(°Jlg) "_ H f(°i[i]'x(g)[i]'P(K)[i'i]) (6)
l<_i<,

where n is the length of any observation vector, oj[i]

is the ith element of the observation vector oj, _(K)

is the KF estimated state, P(K) is the KF state er-

ror covariance matrix, and f0 is the probability that

an individual observation element is predicted by the
state estimate and standard deviation in that dimen-

sion 3. The element Prob(K]si) is the volume of the
Kalman-described normal distribution function that

falls within the value space of si; this is approximated

for computational efficiency as a product of the indi-
vidual dimensions:

Prob(glsi) _ H Prob(_(g)[i] e V(si)[k]). (7)
l<i<_

The normal distribution computations are performed

efficiently by table lookup and interpolation.

Using the approximation to the observation prob-

ability q_J, we then plug that back into the POMDP
state distribution update function (Eq. 4) and use

that to arrive at the new probability distribution over

possible states.

The update function can be seen intuitively as

combining context-specific probability (the transition

matrix), data-model compatibility (Prab(K[si)), and

model predictiveness (Prob(o# IK)). So a discrete state
with a high probability in the state distribution will

3This Lssumee independence of the observation vectors,
which is a simplifying, but not necessarily accurate usumption.



beappropriateforthecontext, its model will produce

a state estimate that is highly compatible with the

value space constraints, and the observations will be

highly consistent with the state estimate.

One complication of using dynamic state models

is that the KF system state depends on the initial

conditions of the model. As the system predicts a

transition from one discrete state to another, the sys-
tem state in the new discrete state must inherit the

system state from the previous state. Thus not all

instances of a discrete state are equivalent. For ex-

ample, consider two discrete states, one with wheel

current rising, a second with steady wheel current. A

later transition from the rising to steady will imply

a higher steady wheel current than an earlier transi-

tion. This is an important difference from standard

POMDP-model representations, introducing the dan-

ger of model explosion.

MAKSI limits the explosion by maintaining a
constant-size distribution over discrete states. This

makes the POMDP state distribution update constant

with respect to the number of states [9]4. The KF up-

dates involve matrix multiplications and inverses, so

they are of order O(n3), where n is the size of the KF
system state vector 5. If the system state vector can be

decomposed into independent subsets, the KF update

depends on the size of the largest subset.

The danger of limiting the discrete state distribu-
tion to a constant size is that the state distribution

update formula may produce a null distribution, with

all elements 0. We have shown in [8] methods for over-

coming this problem; these are not in our current pro-

totype implementation, but they will be incorporated

into the final implementation.

We thus have a way of trading off computational

complexity for model accuracy. The size of the dis-

crete state distribution can be tailored to the compu-

tationai constraints of the application; in planetary

rovers, with their relatively impoverished computa-

tionai power, this may be essential.

3 Experimental validation

We have constructed a prototype implementation of

MAKSI and tested it on telemetry data gathered from

4This depends both on a constant bound on the set of tran-
sitions from any state and on the fact that each instance of a
discrete state is in general distinct from other instances, so that
state transitions are treated as a chain without loope (except
seif-looIm).

SThe theoretical complexity for matrix multiplication and
inverse is O(n_'S°r), but for the small matrix sizes we use,
straightforward methods are more appropriate.

the Marsokhod rover. The Marsokhod is a medium-

sized planetary rover built on a Russian chassis; it
has been demonstrated at field tests from 1993-99 in

Russia, Hawaii, and deserts of Arizona and Califor-

nia. The rover has six wheels, independently driven.

For the experiments, the right rear wheel had a bro-

ken gear, so it rolled passively. The Marsokhod is
instrumented with sensors that measure body, arm,

and pan/tilt geometry, wheel odometry and currents,

and battery currents.

The data used in this paper were collected in an

outdoor "sandbox," which is a gravel and sand area

about 20m x 20m, with assorted rocks and small hills.

This space is used to perform small-scale tests in a rea-

sonable approximation of a planetary (Martian) envi-

ronment. The only actions for this preliminary exper-

iment were driving commands, in arbitrary directions

and with varying topography.

For the prototype system, we used wheel current

and wheel speed (differences between successive en-

coder values), along with the variation for current and

speed (absolute value of differences between successive

values). We ran 6 independent state identification pro-

cesses, one per wheel. Each state identification process

had identical starting conditions, so the only difference
was in the data each received.

The discrete states corresponded to idle states,

driving states, and intermediate states (ramping up

current and speed at the beginning of an action, drop-

ping current and speed at the end of an action). These

states were replicated for a small set of fault modes,

including a stalled motor, a broken gear, and a broken

gear and a broken encoder (the latter of these was in

fact the case on the right rear wheel). The KF models
were constructed crudely and by hand to model the

approximate dynamics in each situation; more care-
ful and detailed models should lead to more accurate

state identification, but the hypothesis was that this

would be sufficient for the prototype test.

See Figure 1 for data from one such experiment,
which we will call Experiment I. States 0-2 are non-

commanded idle and transition states, states 3-8 are

normal driving states (state 6 in particular is the

steady-state driving condition), and states 9--22 are

error states (19-22 are the broken gear and broken

encoder condition). In general the highest-probability

state corresponds to the correct state. The broken

wheel is correctly diagnosed (because of the lack of
variation in the current); this requires a number of

data points to accumulate enough evidence to sway

the model (since the a priori probability of this event

is relatively small). There is one error: in the left rear
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Figure 1: State estimates and wheel currents for each

wheel, Experiment 1. The highest probability state

is in fact the correct one except for a momentary
misidentification in the left rear wheel.

wheel, an interval of non-varying motor current leads

to a momentary shift of belief towards a fault state, in

this case a broken wheel. When the data vary again,

the belief in the broken wheel disappears as well.

Although the preliminary results have been encour-

aging, a handful of cases cause problems. Figure 2

shows one test case (Experiment g) where, for an un-
known reason, the wheel currents flattened out for an

extended period. Of the 5 working wheels, 4 incor-

rectly identified a fault state during this interval. The

broken wheel correctly identified the fault, except for
one interval where its current showed some variation

(again, for an unknown reason). This could be avoided

by tweaking the probabilities of the transition to the
fault condition, but the purpose of the experiment was

to test intuitively reasonable models rather than tune
the models for a set of test data•
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Figure 2: State estimates and wheel currents for each

wheel, Experiment 2. Anomalies in the data give rise

to state identification errors. A broken gear is found

as the most likely state when the wheel currents flat-
ten out. The broken wheel is momentarily labeled as

working when the data vary unexpectedly.

Of the 50 test cases that we have gathered to date,

a few also produced null distributions. This can arise

from modeling errors; for example, we didn't have a
model for a dead motor controller, which occurred a
number of times. It can also be a result of the belief

state truncation, which demonstrates the need to add

mechanisms to avoid that, as discussed in Section 2.3.

The computational performance of the state iden-

tification program is promising• The prototype state

identification system is coded in Java for ease of visu-

alization and rapid development. The algorithms are

straightforward and not refined for efficiency purposes;

we would expect significantly higher performance fi'om
a careful C/C++ implementation. On the other hand,

the processor used for the prototype tests is & Sun
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Figure 3: Elapsed time to update belief state for all 6

wheels, Experiment 1.

Ultra-2 (266 MHz), which is greater than what we

can expect for near-term flight processors, but it is of

the same order as the prototype_rover platforms we

use for development and testing.

The time required for the state estimation process

in experiment 1 can be seen in Figure 3. This is the

elapsed time of the updates for all 6 wheels, for each

of which there is a belief state of size 16 (hence 16

KFs per wheel, for a total of 96 KFs updated at each

step). The update time is consistently just under a

second while the rover is active, and less when it is
idle.

4 Discussion

We have demonstrated an approach for computation-

ally efficient state and fault identification that is par-

ticularly appropriate for the dynamic environment and

noisy data encountered by an outdoor mobile robot.

We envision this approach as a prototype for future
planetary rovers, where accurate and efficient state

identification is a critical element of long-term au-
tonomous operation.

The approach presented here is a preliminary at-

tempt to model and represent the states encountered
by a rover. An obvious refinement of the work is to de-

velop more careful and complete models of rover oper-

ations. Although the crude models produce generally
reliable state identification, they are imperfect; more

precisemodels should lead to more accurate identifi-

cation. Also,the KF model used forthe prototype isa

standard, discrete-timeKF. This isa reasonablefirst

approximation, but a more sophisticatedKF model

would support the more accurate models needed of
the rover.

A KF model has a largenumber of parameters that

can be adjusted. In the prototype, these were set to
intuitively reasonable values by hand. These could

be inferred from a larger corpus of experimental data.

Additionally, the transition probabilities of the dis-

crete states were equally hand-set. Anomalies such as
the broken-wheel misidentification could be reduced

by tweaking parameters, but ideally this would be in-

formation gathered from long-term experience with a

platform (to gather reasonable fault probabilities).
As mentioned in Section 2.3, the approach needs

to be extended to handle the case where a null dis-

tribution may arise. This should be a straightforward

application of the work in [8].

Finally, the underlying probabilistic reasoning re-

lies on a number of approximations. Understanding

the relationship of the approximations to the com-

plete, accurate probabilities is an important piece of

understanding the quality of the approach as a whole.
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