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Abstract 
The electromyographic (EMG) signal is used to 

discriminate eight hand motions: power grasp, hook grasp, 
wrist flexion, lateral pinch, flattened hand, centralized grip, 
three-jaw chuck and cylindrical grasp. From the analysis of 
the PC-based control system, a three-channel EMG signal 
is used to distinguish eight hand motions for the short 
below elbow amputee. Pattern recognition is used in this 
discriminative system. Three surface electrodes are placed 
on palmaris longus, entensor digitorum and flexor carpi 
ulnaris. Due to the complexity of the EMG signal and the 
portable consideration of the controller, a controller based 
on digital signal processor (DSP) is designed and 
implemented in this discriminative system. The DSP 
integrates the signal preprocessing module, the digital filter 
module and pattern recognition module into the controller. 
The on-line DSP controller can provide 87.5% correct rate 
for the discrimination of eight hand motions. 
Keywords: EMG prosthetic hand, digital signal processor, 
pattern recognition 

I. Introduction 
The myoelectrically controlled prostheses provide 

amputees extra prosthetic options. However, most 
commercial prosthetic hands (e.g. Steeper Electric Hand, 
Otto Bock System Electric Hand, Swedish Systemteknik 
Hand) [2] are one degree of freedom grippers that are 
controlled by one or two channel of electromyographic 
(EMG) signals. Their surface electrodes were placed on the 
antagonist muscles. When the muscle tension reaches a 
threshold value, the prosthetic hands generate a digital 
odof f  switch to control a motor to direct the hand in one 
direction or another. An alternate way is simple 
proportional controi in terms of EMG signal [14]. The 
proportional control provides the user less sensitive and 
more fast control of the hand, depending on the strength of 
muscle contraction. Proportional myoelectric control has 
been used in the Utah artificial arm [SI. Those EMG 
controlled systems mentioned above limit the ability of 
manipulation. Recently a number of advanced dexterous 
robot hands have been successfully developed. A few of 
them can be used in prosthetics [7,11]. A modular 
prosthetic hand was developed by [5 ] .  They are multi- 
fingered prosthetic hand capable of performing a variety of 
prehensile postures, including different grasp modes (e.g. 
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power grasp, hook grasp cylindrical grasp, three-jaw chuck 
etc.). Nevertheless, how to control a multi-functional 
prosthetic hand using EMG signal is the most difficult 
problem. 

The human hand is a complex and amazingly versatile 
system. For performing dexterous tasks, the hand depends 
on control inputs fiom the central nervous system (CNS) 
and numerous sensors that provide feedback. If a specific 
task is defined, the hand is preshaped into a posture 
suitable to grasp the object, and then encloses the object 
[6]. The dexterous hand control has complex interaction 
between the hand and the object. Task level planning 
simplifies the process of controlling the dexterous hand 
[12]. The grasp planning involves in selecting a grasp 
posture for the dexterous hand and determining a trajectory 
planning so that the hand contacts and approaches the 
object. A grasp posture is in terms of a grasp mode. If the 
grasp mode is defined, the preshaping controller 
determines the preshaping posture for the prosthetic hand 
and the enclosure controller closes the hand until the 
desired grasp forces are achieved. Once EMG signal can 
be recognized as one of the eight hand motions, the 
relevant preshaping motion of the prosthetic hand can be 
determined. The complex discriminative system will be 
discussed in this paper. For consideration of real-time 
performance, the complex algorithms of the discriminative 
system will be implemented in a DSP (digital signal 
processor) system. 

11. EMG Discriminative System 
1. EMG Signal Processing 

The upper extremity has two main functional parts: the 
terminal prehension device (hand/wrist) and a crane system 
(andshoulder). The basic function of the terminal device is 
to provide the proper grip for functional activities. 
Prehension is one of the primary functions. In this paper, 
eight types of prehensile postures are selected from [3] for 
study. 

In order to choose meaningful EMG signals for eight 
kinds of prehensile postures, the location of electrodes is 
important. According to the relations between the muscle 
locations and the prehensile postures [9], three channel 
electrodes are placed on palmaris longus, entensor 
digitorum and flexor carpi ulnaris. In other words, we 
focus on short below elbow disarticulation. 



The surface electrodes used for EMG signals are 
manufactured by B & L Engineering in U.S.A. The B & L 
Active Electrode is available with an integrated ground. 
Though the surface EMG signal has been magnified in the 
electrode system, the output EMG signal is only about -0.2 
to 0.2 V (peak-to-peak). In order to avoid the distortion of 
converting from the analog EMG signal to digital signal, 
the EMG signal is further amplified about twenty times 
using an operational amplifier. The signal-preprocessing 
module is composed of the amplifier and analog filter 
circuit in a PC-based system [3]. In the DSP-based 
controller, the module only needs the amplifier circuit. For 
reducing the weight of a myoelectric controller, the digital 
filter will be implemented in a TMS32OC3 1 DSP to replace 
the analog filter circuit. 
2. Pattern Recognition 
(1) Feature Extraction 

Surface EMG signals are nonlinear and stochastic. 
They are contributed by the summation of triggered motor 
units with respect to the measuring electrode location. 
Thus, different motions create different myoelectric signals 
with different characteristics. In this paper, the features of 
myoelectric signals are calculated from time series and 
spectral parameters. Several kinds of features are used to 
represent the myoelectric signal patterns. They are given 
below. 

Integral of EMG (IEMG): This is an estimate of the 
summation of absolute value of the EMG signal. It is given 
bY 

where x is the k th sample data which has N samples 
raw data. 

Waveform Length (WL): This is a cumulative 
variation of the EMG signal that can indicate the degree of 
variation about the EMG signal. It is given by 

K - I  

Variance (VAR): This is a measure of the power 
density of the EMG signal, and is given by 

Zero Crossings (ZC): This parameter counts the 
number of times that the signal crosses zero. A threshold 
needs to be introduced to reduce the noise induced at zero 
crossings. Given two continuous data xk and the zero 
crossing can be calculated as 

zc = 2 [’@(- xk xk+]) IXk - xk+d ‘ “021 
r - l  

if x > o  
’@! ) = { i’, otherwise 

(4) 

Slope Sign Changes: This parameter counts the 
number of times the slope of the signal changes sign. 
Similarly, it needs to include a threshold to reduce noise 

induced at slope sign changes. Given three continuous data 
x,-,, x k  and x,,,, the number of slope sign change 
increases if 

k, - xt-I)x &, - xk+,) 2 0  03 for R = 1. ..., N (5)  

Willison Amplitude (WAMP): It is the number of 
counts for each change of the EMG signal amplitude that 
exceeds a pre-defined threshold. It can indicate the muscle 
contraction level, and is given by 

(6) HXMp = f f ( l x  t - x t + 1 0  
1 . 1  

If x > 0 . 3  
( x ) = [ i; otherwise 

The above six parameters are extracted according to Eqns. 
(1) to (6). The first three parameters are time-domain 
calculation and all floating-point type. The last three 
parameters are rough frequency measure and all integer 
type. Hence, six parameters are divided into two groups: 
three floating point Parameters and three integer 
parameters. 

Autoregressive (AR) Model: It is difficult to analyze 
the EMG signal for its nonlinear and nonstationary nature. 
But in a short time interval the EMG signal can be 
regarded as a stationary Gaussian process. Graupe et al. [4] 
addressed a linear model for a Gaussian process. They used 
a pure autoregressive (AR) model to identi@ the EMG 
time-series as 

Y & =  - f  , - I  a I~ t - l + a  k 

where y ,  is the EMG time series, and k is the interval. 
N is the order of AR model, a ,  are the estimate of the 
AR parameters, and CO, is the white noise. A least squares 
method that minimizes the sum of squared CO, is used to 
obtain the parameters of the signal model. 

Cepstrum Analysis (c(t)): Cepstrum analysis is 
concerned with the deconvolution of two signal types that 
are the basic wavelet and the impulse signal. It can be 
defined as the inverse Fourier transform of the logarithm of 
the magnitude of the power spectrum of the signal data [l]. 
It can be represented as 

(7) 

1 “  (8) 
c ( r )  = 2n j In [X ( e l *  ) ] e ~ * a  d o  -. 

(2) Feature Selection 
The success of any pattern recognition system depends 

on the choice of features used to represent the continuous 
time waveforms. In feature extraction stage, eight kinds of 
parameters of the EMG signal are extracted. The 
parameters are splitted into four groups: three integer 
parameters group, three floating-point parameters group, 
AR model parameters group and cepstrum parameters 
group. They are combined with each other in classification 
stage to find the highest classification rate in the PC-based 
discriminative system. A set of features that have the 
highest classification rate in the PC-based system is then 
implemented in the DSP-based controller. 
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(3) Classification by Neural Network 
The parameters extracted from the feature selection 

stage can be used to separate different input patterns into 
different output classes. It needs a powerful classifier to 
solve the nonlinear discriminative system of the EMG 
signal. We adopt the backpropagation neural nehvork 
(BPNN) as the classifier [13]. The classifier has one 
hidden layer and the entire system is a three-layer 
perceptron. The gradient steepest descent method is 
adopted to solve the minimization error of each input 
pattern. 

111. DSP-based Prosthetic Controller 
The pattern recognition is implemented in the DSP- 

based prosthetic controller system. To reduce the 
computation time, a high performance processor, Texas 
Instruments TMS320C31 DSP, is selected as the kernel of 
the entire prosthetic controller. For saving the time to 
develop the prosthetic controller system, a 'C3x DSP 
starter kit (DSK) is adopted. The DSK is a low-cost, easy- 
to-use, and expandable development platform. The DSK 
has a TMS320C3 1-60 on board to handle signal-processing 
applications. 
1. Hardware Architecture of the Controller 

The development of hardware architecture can be 
divided into two stages: the off-line stage and the on-line 
stage. In the off-line stage, the approximate initial weights 
of the neural network for each amputee are obtained. While 
in the on-line stage, the weights are finely tuned for the 
same amputee to gain high performance classification rate. 
(1) The Off-line Stage of the Prosthetic Controller 

Because every amputee has different characteristics of 
the muscle, the hand motions must be learned before the 
controlIer is used. In this stage, the most important thing is 
to train the amputee to perform eight prehensile motions. 
Initial weights can be obtained to represent the 
characteristics of the muscle for each amputee. The 
architecture of the off-line stage is given in Fig. 2. 

D$ugga- 
fcrmw 
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Fig. 2 Hardware structure of the off-line stage 

(2) The On-line Stage of the Prosthetic Controller 
This stage has on-line learning mode and on-line 

testing mode. A 4x4 keyboard is used to input the learning 
goal for on-line learning. After on-line learning, the 
controller changes to the on-line testing mode. The 
amputee can control the prosthetic hand directly in this 

mode. If the controller has bad recognition rate, it can 
change back to the on-line learning mode for another 
trainning. Fig. 3 is the hardware structure of the on-line 
stage. 

SlgnalS 10 al. Chz, 
Ch3 lue all ampkfied 

Fig. 3 Hardware structure of the on-line stage 
2. The Software System of the Controller 

The software development tools are TMS32OC3dC4x 
AssemblerLinker and 'C3x DSK Debugger supported 
fiom Texas Instruments. The entire software system is 
composed of four main parts: EMG signal collection, 
signal processing, feature extraction and BPNN 
classification. 
(I) Signal Collection 

After amplifying EMG signal twenty times using an 
operational amplifier, the controller is then developed by 
DSP code. First, when the ADC chip receives the amplified 
EMG signals, the EMG signals are converted into digital 
style. For getting the stable EMG signals, about 1000 
points within 300400 ms are collected. The sampling rate 
is about 0.4ms. However, it is difficult to detect the starting 
of the muscle contraction. The IEMG was applied well and 
confidently in many papers [3,10]. Thus, we select the 
average IEMG as the criterion to verify the muscle 
contraction for canceling the unstable noise. The average 
IEMG value of 25 ms raw window length is calculated to 
judge whether the muscle contracts or not. A bias is added 
to the threshold of the muscle contraction according to the 
surrounding environment noise. Because the computation 
time of DSP is faster than 25 ms raw EMG signal, the raw 
EMG window can be regarded as a continuous series of 25 
ms raw window. When the average IEMG value exceeds 
the pre-defined threshold, 1000 running EMG data are 
collected. It also can be illustrated by the following 
equation. 

(9) 1 1.N 

'i, 

f 'EMG=N C l X , l >  T,, 
X ,  = collect EMG raw daia for analyzing I = 1 to lo00 

where N = windows lengih ; T,, : ihreshold wlue 

(2) Signal Processing 
After collecting 1000 points EMG data, the primary 

thing is to filter the uncertain signal. The bandwidth of the 
EMG signal is about 30-400 Hz in previous research and 
the environment noise are about 60 Hz. Thus; a bandpass 
filter with bandwidth from 30Hz to 400Hz and a 60 Hz 
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notch filter is designed using Butterworth type filter. Often 
the infinite impulse response (IIR) filters are more efficient 
in getting better magnitude response for a given filter order. 
In other words, IIR filter can run faster in lower filter order. 
The Matlab software is used to design the Butterworth IIR 
digital filter. The resultant filter is shown below. 
0 30Hz to 400Hz Butterworth bandpass filter 

The system transfer function of a sixth-order badpass 
filter is designed by 

0.0479466 -0.143838' + 0.143838' - 0.047946 
z6 -4.015503' +67835754 -6.3222" +3.50323F -1.090804+0.141%5 

- 

The sampling period is 0.4 ms. 
0 60Hz Butterworth notch filter 

filter is designed by 
The system transfer function of a fourth-order notch 

- z' - 3.962' + 5 9256 z 2  - 3.970296 z + 1.00520676 
z' - 3.92z3+ 5.8045 z2 - 3.847284 z + 0.963242 

The sampling period is also 0.4 ms. 
Because the bandpass and notch filter function are 

both linear systems, they can be combined to form a 
tenth-order filter that includes their characteristics. The 
transfer function of the augmented system can be written 
as 

The designed filters are coded in DSP algorithm. For 
reducing memory requirement and sensitivity of 
quantization coefficient, both bandpass filter and notch 
filter are used rather than the tenth-order filter. These two 
filters are configured in cascade structure. The connected 
canonical-form structure equation of the filter is given as 

sred. k =  1 
Ak- 5 nl = dnl 
4k,n] = q&c- Sn] + a;Mk,n -11 +%Hfk,n -21 + . . .+o&k,n-6] 
Y[k,n] =$4k, n] + 4kMk,n - 11 + &4k,n-2] +. ..+ b,w[k,n -61 
steji?.k=2 

4 k n l  = Q.k - Sn] +a;4k,n  - 11 + f&.[Sn - 21 +. . .+u,w&I - 41 
Ak,n] = 4 4 k , n ]  + 4*4k,n - 11 + b&k,n -21 +. . .+ b,Mk,n -41 
An1 = .k nl 

The fiequency response of the desired filter H ( Z )  is 
shown in Fig. 4. It posseses the combined characteristics of 
both the bandpass filter and the notch filter. 
(3) Feature Extraction 

The features of the EMG signal for each channel are 
extracted from the filtered EMG signals. For the controller 
design, the features are selected fiom the PC-based 
analysis [3]. Figure 5 shows the correct rate for different 
parameter groups. The 4th-order AR parameters group plus 
three integer parameters group and three floating-point 
parameters group can represent the meaningful features of 
the EMG signals for each case. 

(13) 

Line: MaUab simulated : Dashed line: DSP lmslemented 

Frequency (Ha 

Fig. 4 Frequency response comparison of H ( z )  

Fig. 5 Comparison of correct rate with different parameter 
group 

In this controller, those best-combined features are selected 
as the EMG signal features. It turns out that ten parameters 
for each channel signal and thirty parameters for each 
motion type are obtained. These thirty parameters are input 
vectors for BPNN. It is shown in Table 1. 
Table 1 Number of parameters in the controller 

(4) BPNN Classification 
The BPNN algorithm mentioned before is coded in 

assembly language. The BPNN is three-layer architecture 
with input layer, hidden layer, and output layer. The 
number of the hidden layer node is determined according 
to PC-based analysis. Here, 15 nodes are used for the 
hidden layer. The input layer has 30 nodes for 
representative features of each motion. The output layer 
has 8 nodes for discriminating eight motions. The neural 
network off-line learns the initial weights and 
maximudminimum values of each input vector. Then, it is 
on-line implemented in DSP. 
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The on-line stage of the system consists of learning 
mode and testing mode. In the on-line learning mode, the 
user must perform the motion and go through the desired 
learning motion. After finishing the learning mode, the 
program is switched to the testing mode. In the testing 
mode, the user can perform any of eight motions to control 
the prosthetic hand directly. If the user has problems in 
controlling the prosthetic hand, it can be changed back to 
the learning mode to improve the classification rate of the 
controller in any time. 

IV. Implementation and Results of the 
DSP-based Controller 

The implementation of the DSP-based system is also 
divided into two stages: off-line learning stage and on-line 
testing stage. The off-line learning stage is used to get the 
initial weight, the initial bias values and extrema of input 
vectors for neural network classification. The types of 
input vector are defined in Table 1. They can be regarded 
as the EMG signal characteristics of the user. The on-line 
testing stage is used to control the prosthetic hand 
according to the neural network built in the off-line stage. 
Each hand motion is trained 20 times (off-line learning 
stage), and tested IO times (on-line testing stage). The 
Dicture of the controller is shown in Fig. 6. 

Fig. 6 DSP-based myoelectric controller box 
1. Off-line Stage Implementation 

The locations of the three-channel electrodes are 
shown in Figure 7. Each hand-motion is learned twenty 
times. The features of three-channel EMG signals are 
calculated by DSP chip and sent to PC to run BP neural 
network to get the initial weight, the initial bias values and 
extrema of the input vectors. Each feature is normalized so 
that each input vector have the same range for training in 
the neural network. The neural network has 30 input nodes, 
15 hidden layer nodes, and 8 output nodes. 

Upon finishing off-line learning stage, the initial 
weight, the bias values and extrema of the input vectors of 
the neural network are downloaded into SRAM, and the 
system is changed to the on-line testing stage. 
2. On-line Stage Implementation 

After the off-line learning stage, the system performs 
the on-line stage and serves as a prosthetic controller. In 

the on-line stage, the on-line learning feature can improve 
the controller correct rate. Different situation of the 
muscles and different noise of environment affect the 
variation of the EMG signals. The neural network must be 
adjusted to get better performance. In the on line stage, the 
controller is used to control the graphic NTU-hand [ l l ]  

Fig. 7 Locations of surface electrodes 

Fig. 8 On-line stage analysis of the DSP-based system 
3. On-line Analysis Results 

Each hand motion is tested IO times (on-line testing 
stage). The controller uses the best-combined features as 
EMC features. The correct rate of the entire system is 
shown in Table 2. Note that the three-jaw chuck motion is 
always classified as a lateral pinch. These two hand- 
motions do look like each other and imperceptible. 
Because the training times for the off-line stage is not long 
enough, we push key ‘L’ to run the on-line learning stage. 
Each motion is learned five more times. After the on-line 
learning stage, the correct rate of three-jaw chuck is 
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improved to 70%. The result is given in Table 3. 
Table2 Motion correct rates of DSP-based system 

Powergrasp I 90.0% 

Table 3 Motion correct rates after the on-line learning 

90.0% 

From Table 3, the correct rate is improved about 9%. It 
is clear that the on-line learning stage can update the 
weight and the bias values to improve the controller 
performance. The above results show that the DSP-based 
controller successfully discriminate eight hand motions. 

V. Conclusion 
In this paper, The DSP-based system integrates the 

signal preprocessing module, the digital filter module and 
pattem recognition module into the DSP. The DSP-based 
controller is portable and compact. Furthermore, the on- 
line learning hnction is capable of improving the 
classification rate. After on-line learning, the correct rate of 
the controller can be up to 87.5% in one-line testing. Note 
that the best-combined feature is selected as the input 
vector of the EMG signals and the BPNN as classifier in 
both the PC-based and DSP-based systems. 
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