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Abstract

Probabilistic roadmap planners have been very successful in
path planning for a wide variety of problems, especially ap-
plications involving robots with many degrees of freedom.
These planners randomly sample the configuration space,
building up a roadmap that connects the samples. A major
problem is finding valid configurations in tight areas, and
many methods have been proposed to more effectively sam-
ple these regions. By constructing a skeleton-like subset of
the free regions of the workspace, these heuristics can be
strengthened. The skeleton provides a concise description
of the workspace topology and an efficient means of finding
points with maximal clearance from the obstacles. We ex-
amine the medial axis as a skeleton, including a method to
compute an approximation to it. The medial axis is a two-
equidistant surface in the workspace. We form a heuristic
for finding difficult configurations using the medial axis, and
demonstrate its effectiveness in a planner for rigid objects in
a three dimensional workspace.

1 Introduction

Robot motion planning is an important tool in a wide vari-
ety of settings ranging from computational pharmacology to
computer aided industrial design [7, 9, 11, 19]. We present a
framework which can be applied to a range of variations on
the general path planning problem stated in [21]. The prob-
lem is to find a path for a robot from an initial configuration to
a final configuration without colliding with the environment.
In the most common case, the robot is a single rigid object
for which motions are defined by rigid-body transformations.
Since our method processes workspace geometry, it can be
applied to problems where configuration space methods are
no longer feasible due to the increased dimension of the con-
figuration space (such as flexible and articulated robots).

The probabilistic roadmap planner (PRM) [16, 17, 18, 22,
23] is a common method for planning in potentially high di-
mensional configuration spaces. PRM planners begin by gen-
erating a large number of configurations randomly throughout
the free part of the configuration space (the freespace) and
then making local connections in an attempt to create a con-
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Figure 1: The medial axis approximation of a sample
workspace

nected graph which spans the freespace. Unfortunately, PRM
planners tend to fail when crucial configurations lie in very
narrow regions of the configuration space, an issue some-
times referred to as the narrow passage problem [14]. The
probability of randomly guessing such a configuration is pro-
hibitively small, and the planner may populate the rest of the
freespace with many superfluous configurations before find-
ing the necessary difficult configurations. The goal of our
planner is to address the narrow passage problem for a cer-
tain class of robots with a sampling heuristic based on the
workspace geometry. Additionally, we aim to find configura-
tions with maximal clearance from the surrounding obstacles.
This increases the success rate of the local planner and ulti-
mately generates a more fault-tolerant path.

We choose to deal with workspace geometry because in
general it is not feasible to work with the geometry of the con-
figuration space. (Algorithms have been proposed which ap-
proximate configurations on the medial axis of the freespace
[24], but these approaches do not scale beyond single rigid
body robots and even in this case rotations are difficult to han-



dle. ) The workspace geometry in and of itself is too com-
plicated to use directly. We condense the description of the
obstacles into a simpler geometric structure which can be uti-
lized more directly in finding good configurations. We want
to find configurations of maximal clearance, which suggests
using a geometric structure which encodes points of maximal
clearance. We choose to use the medial axis (also referred
to as the generalized voronoi diagram) of the workspace as
a guide for choosing configurations. The medial axis is the
set of points in the free regions of the workspace for which at
least two points on the boundary of the obstacles are equally
close, and all other points on the boundary of the obstacles are
farther away. We describe methods for computing a polyg-
onal approximation to the medial axis given the workspace
geometry and heuristics for using this approximation to gen-
erate favorable configurations.

2 Related Work

Planning for robots with many dof has been extensively
treated in recent literature ([1, 2, 11, 12, 20, 21]). The proba-
bilistic roadmap approach to planning (PRM) [16, 17, 18, 22,
23] has gained wide acceptance because the method is easy
to implement and use and provides good performance results.
We provide references both to other approaches for dealing
with the narrow passage problem and to geometric work re-
lated to our construction of the medial axis.

An important issue in PRM planners is the method for
choosing the random configurations for the construction of
the roadmaps. Recent works have considered many alterna-
tives to a uniform random distribution of configurations as
means for dealing with the narrow passage problem. A re-
sampling step, creating additional nodes in the vicinity of
nodes that are connected with few others, is shown in [17, 18].
Nodes close to the surface of obstacles are added in [2], and in
[6] a probabilistic method for choosing configurations close
to the obstacles is presented. A dilation of the configura-
tion space has been suggested in [14], as well as an in depth
analysis of the narrow passage problem. In [24] a procedure
for retracting configurations onto the freespace medial axis
is presented. In this paper, we treat rigid objects and we at-
tempt to generate configurations close to the medial axis of
the workspace. A similar method, from which this paper has
evolved, is presented in [10].

The generalized voronoi graph, which is related to the me-
dial axis, is addressed in detail in [8]. While the medial axis is
the set of 2-equidistant points, the generalized voronoi graph
is the set of n-equidistant points in R™. The GVG is useful in
constructing a roadmap of a space. We draw heavily from [8],
extending their methods from the generalized voronoi graph
to the medial axis (aka the generalized voronoi diagram). [4]
presents a method for computing an optimal reconstruction of
a surface from a set of points. A modification to this method,
briefly mentioned in [4] and implemented for two dimensions

ACCESSMA(POINT pg, TOLERANCE €)
1. Find C(po)

2. Define m(t) = po + t * (po — ¢(po)). Find the minimal
value of « such that, given u = m(a —¢) and v =
m(a +€), [|e(u) = c(v)[| > [lu—v]|.

3. Define m’(t) = po +t * (¢(v) — ¢(u)). Find the minimal
value of o' such that, given ' = m/(a' —€) and v’ =
m'(e +€), [le(u’) = c(v)][ > ||u" = ']

4. Return m/'(a')

Figure 2: Algorithm for obtaining a point on the medial axis

in [10], provides for the computation of the medial axis of a
surface implied by a set of points. This method is best suited
for well sampled curved surfaces, but has been difficult to im-
plement for typical CAD models with sharp edges. Amenta
([3]) recently has shown promising results in this direction.

3 Background and Notation

Let B = {By,..., By} beaset of obstacles in the workspace
W. Let 0B; be the boundary of the obstacle B;, and 0B =
U; 0B;. d(p) is the distance from a point p to the closest point
on the boundary of the obstacles, dB. ¢(p) denotes the point
in 0B closest to p, i.e. d(p) = ||p — ¢(p)||.

The medial axis is then defined as MA(W) =
p:3a,be IB,||p—al| =|lp—b|| =d(p). In this defini-
tion the plane of the medial axis at p is characterized by the
normal vector a — b.

4 Main Algorithm Description

The description of the algorithm is divided into three parts:
computation of a polygonal approximation to the medial axis,
generation of configurations and planning.

4.1 Computation of the Medial Axis

The basic step of the algorithm is a method for moving a
point in the workspace to a nearby point on the medial axis.
This method is a simplified version of the method for find-
ing points on the GVG in [8] — for the GVG one must find
an n-equidistant point for an n-dimensional workspace while
for the medial axis we must only find a 2-equidistant point. It
is sufficient merely to approximate the medial axis since we
employ it only in rough heuristics.

Obtaining a point on the medial axis The algorithm de-
scribed in Figure 2 takes a point pg in the workspace and at-
tempts to find a nearby point which is on the medial axis.
After finding the closest point to py on the boundary of the
obstacle (step 1), we move directly away from the obstacle;



Figure 3: lllustration of the access method

this path is denoted by the parametric function m(t). « de-
notes the value of ¢ for which ¢(m(t)) is discontinuous. At
this discontinuity m(«) is equidistant from two points on the
obstacles, and is thus on the medial axis. m(a) is on the me-
dial axis but is not the closest point to py on the medial axis.
m(«) may be quite far from the closest point to py on the me-
dial axis. Figure 3 shows a simple scenario in which m(«)
drifts up along the medial axis. m(t) is the dashed line, and
the medial axis is the solid vertical line. This stems from the
fact that we limit our search for medial axis points to the line
m(t) which is not perpendicular to the medial axis. We define
a new search direction along a line m'(¢) normal to the me-
dial axis (as approximated by the normal of the medial axis at
m(a)). In Figure 3 m’(t) is shown as a dotted line. We then
search for a value of o' such that c¢(m’(t)) is discontinuous
att = «'. The resulting point, m'(c'), is on the medial axis
and approximately the closest point to pg on the medial axis.
The accuracy and even success of this method depend on the
medial axis being approximately planar locally. In practice
this is not a problem since, with the exception of branches,
which are handled specially, the curvature of the medial axis
is bounded by the inverse of the clearance. The algorithm may
fail to find a point on the medial axis in a region of minimal
clearance, but such points are of little use anyway.

Exploring the medial axis Our goal is to compute a polyg-
onal approximation to the medial axis, which we achieve by
a simple exploration technique that employs the method de-
scribed in Figure 2. This method, presented in Figure 4, is
similar to the method employed by [8] to trace the GVG.
Since the GVG is a set of curves and the medial axis (in R?)
is a set of surfaces, we extend the method of [8] to explore
in a plane rather than along a line. We first obtain a point
on the medial axis by attempting the ACCESSMA method on
points randomly chosen from the workspace, repeating until
it succeeds. We keep a queue of points which corresponds

1. Repeatedly sample a point p randomly from the
workspace until z = ACCESSMA(p) succeeds.

2. Initialize a queue @ with z, and add z to the graph M.
3. Repeat until empty[Q]:

(@) z = dequeue(Q).

(b) Generate a small set of points P = pg,---,pn
evenly about z, in the plane of the medial axis at
x, but not close to existing points in @ or M.

(c) Add an edge in M between z and any pointy in @
or M that is close to x.
If the normal of the medial axis at  is significantly
different than at y, add additional points to P in
the plane perpendicular to the medial axis at both x
and y and in the opposite direction of the common
closest point of z and y.

(d) For each p; € P if z;; = ACCESSMA(p;) suc-
ceeds, queue(Q, ;).

4. For all cycles in M of length 3, add a triangle to the
medial axis surface approximation.

Figure 4: Algorithm for exploring the medial axis

to the border of the already explored region of the medial
axis. To extend the explored region near a point = we gen-
erate points in the plane of the medial axis (step 2), taking
care not to generate points in previously explored areas. In
step 3 we add edges to connect the border point z to newly
discovered nearby points on the medial axis. When adding
edges, it is necessary to compare the normal of the medial
axis at both endpoints. If these normals differ substantially,
the edge crosses a “branch” in the medial axis. Figure 5 shows
an edge that crosses a branch in the medial axis. Branches in
the medial axis come in the form of three planes intersecting
in a line. In this case we generate points in the vicinity of the
third branch and add them to the set of points generated in
step 2. Without these points the algorithm will only explore
in one direction when crossing branches. Each of the points
generated in step 2 and 3 are then moved onto the medial axis
and added as new border points (discarding points for which
ACCESSMA fails).

In addition to the geometry of the medial axis, we also
have a fast evaluation of the clearance at any point on the
medial axis.

4.2 Generating Configurations with the Me-
dial Axis

General Framework The idea behind the framework for
generating configurations is to condense the robot’s geometry
to a small set of “handle” points and try to position these han-
dle points close to the medial axis. We first choose a configu-
ration randomly from the entire configuration space, and then
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Figure 5: Illustration of exploration method at a branch in the
medial axis

Given handles hg,...,h, and anchors aq,---,a;:
CM = %Zi h;
do
T0 = Zz (ai bl hz) X (CM bl hz)
rotate around C'M on the axis defined by 7, to minimize
T-T0
while 7 > €

Figure 6: Method for minimizing anchor-handle distance for
rigid objects

adjust the configuration according to a minimization proce-
dure. The minimization attempts to bring handle points (and
in more complex objects, only a subset of the handle points)
close to the medial axis. The choice of handle points is dis-
cussed below, but first we present the minimization method
for rigid objects.

Minimization for Rigid Robots For a rigid robot, we can
model the minimization of distances between handles and
their respective anchors as the solution to a physical model.
In our model a spring in extension exists between each han-
dle and anchor pair. The forces exerted by this collection of
springs can be decomposed into linear forces and rotational
forces. The linear force will be zero when the center of mass
of handles is coincident with the center of mass of anchors.
We find a zero-torque configuration with a gradient descent
method.

Choosing Handle Points The choice of handles depends
largely upon the type of robot. Their exact number and lo-
cation are not critical, but here we provide some intuitive
heuristics for choosing handle points. For three dimensional
robots with significant bulk the handles correspond to the cen-
ters of spheres of maximal radius, completely contained by
the boundary of the robot. There are two criteria which pro-
vide an intuitive guide for choosing the handle points. Handle
points should be chosen such that

e the radius of the sphere around each handle is maxi-

mized, and
o the distances between handles are maximized.

By finding configurations for which these spheres are close
to the medial axis, and such that each sphere’s radius is no
greater than the medial axis clearance at the nearest point on
the medial axis (referred to as the handle’s anchor), we gen-
erate useful and difficult configurations. If a handle point is
on the medial axis, and the radius of the robot around it is
less than the clearance of the medial axis at that point, no
part of the robot inside the sphere will be in collision with the
workspace. We aim to cover as much volume of the robot as
possible with the least number of handles, so maximizing the
radii around each handle is important. The distance between
handles should be maximized in order to avoid overlapping
spheres and so that each handle captures as much geometry
as possible. Additionally, the probability of the extremities
of the robot being in collision is higher than the probability
of interior parts of the robot being in collision. As such, we
place handles closer to the extremities of the robot. More dis-
cussion follows in Section 6 in choosing handles, but here we
present specific examples. It should be noted that the choice
of handles is strengthened by redundancy, and we can get use-
ful results without a precise method of choosing these points.

4.3 Planning

Once we have generated free configurations, we attempt to
plan local paths between nearby configurations. In regions
where configurations from different connected components
are near each other, we attempt to join components with a
random walk. This enhancement step is particularly use-
ful for connecting configurations which are in narrow pas-
sages, but relies on the sampling step to create configurations
that are in or near narrow passages. The random walk also
provides additional random configurations which supplement
those found by minimization. A more complete description
of the architecture of the planner is given in [13]. We cur-
rently have only developed medial-axis based heuristics for
the sampling step. See section 6 for comments on using the
medial axis during the planning step.

5 Experimental Results

Our implementation is in C++, and all test cases were run on a
175MHz SGI O2. We rely on the RAPID library for collision
detection as well as computation of ¢(p) and d(p).

Example 1 This example, shown in Figure 7, comes from
a medical application involving a robotic hip operation [15].
The problem is to maneuver a boot-like robot into an oval
shaped cavity. The problem is complicated not only by the
small clearances involved but also by the twist in the cavity,
which is captured by the medial axis. In Figure 8 the medial



NN
KN
L

(initial) (goal) (handle points)

Figure 7: Example 1

axis is pictured with half of the obstacle cut away. The ribbon-
like medial axis has been trimmed such that only points with
sufficient clearance are shown. The handles for the robot are
shown in Figure 7. We spend 4 minutes computing the medial
axis and approximately 5 minutes to plan. By comparison,
the same planner fails to complete the problem (after 4 hours)
when configurations are chosen at random.

Example 2 For this example, shown in Figure 9, the me-
dial axis allows us to align necessary subparts of the robot in
the plane such that it can slip through the slot. Computing
the medial axis in this case takes about 50 seconds, and the
planning takes about 8 minutes. With random generation of
configurations, the planner takes approximately 32 minutes.
In 10 the handle points are shown with their radii doubled (in
order to make them visible).

6 Discussion

We presented a basic method for computing the medial axis
explicitly as well as a general framework for utilizing this
information in the context of a probabilistic roadmap planner.
We maodified and extended the methods presented in [8] to
generate a polygonal approximation to the medial axis of the
workspace. Given this surface, we presented a method for
generating useful and difficult configurations.

The selection of handle points in our current implementa-
tion requires manual interaction from the user before the plan-
ner may begin. The meet points of the generalized voronoi
graph [8] of the robot are good candidates for handle points.
The meet points of the GVG are points which have four (or
more) closest points on the surface of the robot. This property
makes for good handle points because the radius around such

Figure 8: Medial axis for the rigid test case showing the twist
of the obstacle (the pinch in the middle is actually a twist)

a point is locally maximized, and roughly speaking each con-
vex feature of the robot (i.e. an extremity of the robot) creates
one more meet point.

We only use a small portion of the information provided
by the medial axis. A semi-local planner could use connectiv-
ity information in the medial axis. During enhancement, we
can compare the distance between two configurations with the
distance between them following the medial axis, and give up
if there is too large a discrepancy. Random walks might be
weighted in the direction suggested by following the medial
axis.

We showed positive results for a difficult problem with a
rigid robot in three dimensions. There is a natural extension to
articulated and flexible robots. For flexible objects, as in [5],
we can integrate the energy function for deformations with
an energy term based on the spring model of the rigid case.
For articulated robots, handle points can be assigned for each
link and a similar minimization procedure moves the robot
onto the medial axis. The key to these methods is encoding
configuration information into an energy function which can
be evaluated in the context of the workspace. In the future we
hope to test this framework with a wider variety of planning
problems and to investigate additional uses for the geometric
information contained in the medial axis. Additional work is
also planned for choosing handle points in a more automatic
fashion. Also, our methods for computing the medial axis,
while effective, could be enhanced in terms of robustness and
efficiency.



Figure 9: Path for example 2
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Figure 10: Handle points for example 2
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