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Abstract

This report documents the integration of machine vision into the minifactory environment. Minifactory

is an automated factory system being developed at the Microdynamic Systems Laboratory at Carnegie

Mellon University and is aimed toward the assembly of small mechatronic devices. Machine vision can

aid assembly systems by eliminating the need for complicated part holding jigs, end effectors, and part

feeding equipment. In addition, the positionaccuracy of a visually servoed robot can be made relatively

insensitive to robot calibration errors. By using the visual control and communications systems described

in this report, two high-precision 2-DOF robotic agents were visually guided to precisely align parts of a

sub-assembly. Test results show that open-loop look-and-move alignment of parts took an average of 3.7

iterations and 3.6 seconds while visual servoing alignment took an average of 1.3 seconds. The standard

deviation of the visual servoing alignment errors for theu andv axes were 4.6�m and 5�m respectively.

However, they were limited by tracker noise which was approximately 10�m peak to peak with a standard

deviation of 2�m in theu axis of the image plane and 20�m peak to peak with a standard deviation of 6

�m in thev axis. Overall, the vision project’s greatest success was making two 2-DOF agents transiently

cooperate to function as a single 4-DOF robot to perform visual servoing tasks.
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1 INTRODUCTION 1

1 Introduction

1.1 Motivation for the Agile Assembly Architecture and Minifactory

Advancements in technology have recently caused a massive growth of new electro-mechanical products.

For example, every few months companies that manufacture hard disk drives develop new models with

larger capacities and fasteraccess times. However, as the product life cycle decreases, the cost of setting

up an assembly line becomes a more significant portion of the product cost [1]. While many production

facilities today use a complex assortment of robots, conveyors, and computers to assemble products, they

are often difficult to configure, modify, and update. Robots will often require special cabling or calibration

making them expensive to integrate. Many production facilities also face problems when handling small

and fragile parts which often means they must still rely on manual labor. Even if their robotic systems are

able to handle delicate parts, the precision alignment of small parts often remains a difficult problem.

platen

bridge

courier

sub-assembly

part

base unit

bulk parts
feeder

tether

modular fixture

coordination
sensor

manipulator
brain box

platen
sensor

courier
brain box

manipulator

end effector

Figure 1: The major components of a minifactory system.

A promising solution to the complex problem of precision automated assembly for small mechatronic

devices involves creating a flexible, modular, and reconfigurable system. At the Microdynamic Systems

Laboratory at Carnegie Mellon University, we are developing an Architecture for Agile Assembly (AAA)

which fulfills these roles, and it is being implemented in the minifactory project shown in Fig. 1. By

making the minifactory physically, computationally, and algorithmically modular, it can be designed and

deployed in a fraction of the time needed by traditional factory systems [2]. By giving the robots high-

quality sensing capabilities, production lines which were previously hard to automate due to the small part

sizes and tolerances, can now be automated. In addition to being more efficient, reducing the number of

people working in an assembly area reduces contamination which becomes more important with smaller

devices [3].
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1.2 Minifactory Components

Minifactory is composed of robotic entities known as agents which are physically, computationally, and

algorithmically modular. Agents are two-degree-of-freedom (DOF) robots which can cooperatively work

together to perform 4-DOF tasks. Currently, each agent has a motherboard with a PowerPC 604r 300 MHz

microprocessor and Industry Pack modules which provide mechanisms for analog-to-digital conversion,

digital-to-analog conversion, and digital input and output. In addition, agents may have other specialized

components such as sensors or frame grabbers.

Figure 2: A courier agent.

For the experiments conducted in this paper, two types of agents were used: the courier agent and

the overhead manipulator agent. The courier, as shown in Fig. 2, is based on a planar linear motor

which has 3 DOF:x, y translational and� rotational movement. It moves on an air bearing over specially

designed metal sheets, known as platens, which comprise the factory floor. A specially designed 3-DOF

magnetic sensor has previously been designed to provide position and angle measurements, with a1�

motion resolution of 200 nm [4]. The sensor allows the courier to be controlled in closed-loop mode [5].

The courier also contains an optical sensor which is used for calibration when the courier explores its

workspace [6], [7]. This sensor detects beacon LEDs located on overhead manipulators agents hanging on

bridges above the couriers.

The second type of agent used in the experiments described in this paper is the overhead manipulator

designed by Ben Brown, as shown in Fig. 3. The manipulator has 2 DOF:z translational and� rotational

movement . Thez range of motion is approximately 125 mm with a resolution of 2�m, and the� range of

motion is�270� with a resolution of 0.0005�. The manipulator also contains a frame grabber, as described

in Sec. 3.1, for image processing. A modular quick connection mechanism has also been developed by

Patrick Muir which allows different types of end effectors to quickly attach to the manipulator.

In addition to the modular agents described above, the minifactory also contains a simulation and

monitoring software program, theinterface tool, which greatly speeds the development and deployment

of a minifactory [8]. An example simulation screen is shown in Fig. 4. The same program is used to set

up and simulate a factory as well as monitor the real instantiation of the factory. However, the real factory

does not need to exactly match the simulation since the factory self-calibrates during its initialization [9].

The calibration information allows the behavior of the real factory to match the behavior of the simulation

even though the agents may not be placed at exactly the same positions. This aids in the quick design and
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Figure 3: An overhead manipulator agent.

set up of the minifactory.

Another essential component of the minifactory is the communication infrastructure between agents.

There are two network structures located in the minifactory. A global network allows factory wide com-

munication, such as between the monitoring program and the agents, while the local network provides high

speed communications between local agents working cooperatively to perform a task. The local network’s

protocols can provide guaranteed and non-guaranteed data transmission to facilitate a wide variety of in-

teractions between local agents [10]. Section 4.5 describes how this network was used in the cooperative

task performed by a courier and manipulator.

An agent has computer processes running at two levels. The higher-level processes are currently

composed of Python scripts which are used to manage high level factory decisions, such as resource

negotiation and product flow decisions [11]. Python is a portable, object-oriented scripting language with

the ability to be extended by C and C++ code [12]. Lower-level factory code is written in C and C++ and

is used to execute real-time control laws, such as the visual servo controller.

1.3 Motivation for Computer Vision in the Minifactory

Robots can be made fast and precise, but they are still at a disadvantage without computer vision in certain

situations compared with people performing the same task. A common problem encountered in systems

without computer vision is the need to precisely know the location of the robot’s end effector in a robotic

assembly system. While this can be determined through kinematics, these equations are usually based on
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Figure 4: A minifactory development and monitoring tool [8].

robot models which may not match the real robot very well [13]. One solution to this problem includes

using tools such as teaching pendants, but teaching a robot where to move can be an expensive and time

consuming operation.

Another problem robotic assembly systems without vision must contend with is the imprecise pre-

sentation of parts. Without vision, the system must assume that the parts will always appear at the same

position within a certain tolerance. This often requires the creation of complicated part holding jigs, end

effectors, and part feeding equipment. These solutions can be expensive and time consuming and are not

considered agile solutions in the minifactory system, where the goal is to set up a factory in the span of a

few weeks.

Once computer vision is incorporated into a robotic assembly system, the above problems become

more manageable in terms of the time required to set up a system. Parts no longer need to be precisely

presented to the robot since the vision system can determine where the robot needs to move in order

to correctly pick or place a part. For example, parts feeding equipment can present rotated parts while

the vision system determines the position and rotation before appropriately moving to grasp the part. In

addition, special jig and end effectors would not need to be developed, decreasing cost and setup time.

Another gain from computer vision is the ability to use it as a sensor in closed-loop mode. The positioning

accuracy of a visually servoed robot can be made relatively insensitive to calibration errors of the robots

[14].

While there are many benefits to using computer vision, there are also additional costs. Factors such

as special image processing hardware and software must be taken into account. Additional hardware

components include frame grabbers, cameras, lenses, and special lighting components. Until recent years,

using a standard desktop PC to perform all the software chores necessary for a vision system was not very

practical. Proprietary hardware and software vision systems could be purchased from companies such as

Adept and Cognex, but these were generally expensive. However, with the incredible growth in computing

power during the last few years, desktop computer speeds have reached a point where they can perform
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the same vision tasks previously only possible on proprietary vision systems.

Although there are additional costs related to vision hardware and software, the competitive nature

of the vision industry helps to continually improve the technologies while lowering the costs. The recent

growth in the computer vision industry can also be attributed to a trend toward the adoption of common

hardware and software for vision processing [15]. Vision integrators and end users have been pushing for

vision systems which can run on desktop PC’s and provide a Windows-like graphical user interface (GUI).

This has lead to the development of many new vision software packages, such as the Matrox Imaging

Library, as well as PC frame grabbers with various levels of sophistication. However, real-time vision

tasks are difficult to implement with the standard frame grabber used with a Windows operating system

due to the lack of determinism. Instead of switching to a real-time operating system, many choose to buy

a frame grabber with an on-board processor to perform much of the vision computation. As discussed

later in this report, the minifactory system has a real-time operating system running at the core of every

agent. The challenge therefore becomes finding a frame grabber and software vision library supported by

the operating system.

1.4 Background Information On Visual Control

1.4.1 Open-Loop Look-and-Move

Before discussing various visual servo architectures, it will be helpful to first distinguish between open-

loop look-and-move procedures and visual servoing. Open-loop look-and-move is an iterative procedure

first involving image acquisition and analysis. Next, the robotic system is adjusted to correct for the error

information provided by the image analysis. Once the robot has moved and settled, another image is taken

and analyzed. This procedure iterates until the error is acceptable. When compared to visual servoing

control, open-loop look-and-move accuracy is more dependent on calibration and accuracy of the robot

movement [13].

Within the minifactory environment, open-loop look-and-move may be fine for placing one part into

another while there is not much disturbance in the system. However, at higher magnifactions, the move-

ment of other couriers or manipulators produce vibrations in the system which cannot be accounted for by

the look-and-move method. In these cases, visual servoing will be more effective to compensate for the

noise in real-time.

1.4.2 Visual Servoing Architectures

In contrast to open-loop look-and-move techniques, visual servoing uses vision as a sensor in a feedback

loop and suffers less from calibration errors and mechanical inaccuracies [13]. However, feedback at

field/frame rate may require significant computing power and system stability also becomes a factor.

As described in [14], a visual servo system can be classified based on two major features:

1. Does the system use dynamic look-and-move control or direct visual servo control?
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2. Is the feedback error of the system considered to be position-based or image-based?

Dynamic look-and-move control (not to be confused with open-loop look-and-move defined in Sec.

1.4.1) is defined as a controller which provides set point inputs into a joint level controller. For instance, the

visual servo controller described in this report sends a velocity command into the manipulator’s velocity

controller which then actuates the manipulator. In contrast, the output of a direct visual servo controller

would be used to actuate the manipulator without using its velocity controller. This would be a challenging

task since the vision feedback rate (60 Hz or less) is much slower than the internal feedback rate of the

velocity controller (2 kHz). Robots generally have an interface for velocity or position input commands,

making dynamic look-and-move a more attractive control scheme [14].

Position-based visual servoing uses features from the image to estimate the pose of the target with

respect to the camera. This allows tasks to be written in terms of Cartesian pose, making it somewhat

more straightforward than image-based methods. However, the feedback control is based on values which

are a function of calibration parameters, making it more sensitive to calibration errors [14]. Another

disadvantage of pose-based methods is the computation needed for image interpretation.

Image-based (also known as feature-based) visual servo control uses an error signal computed directly

from features in the image plane. To relate image plane corrections with manipulator and courier adjust-

ments, the image Jacobian is used. As described in Sec. 4.6, the image Jacobian relates motion of features

in the image plane to motion of the courier and manipulator. The main advantage of image-based visual

servoing is that the system is less sensitive to errors in calibration. Comparisons performed by Hashimoto

et al. [16] have shown that image-based servoing is also more robust in the presence of quantization error

and noise. However, one disadvantage is that the control law may have more unstable points than the

equivalent position-based controller [14].

In the remainder of this report, visual servoing will refer to an image-based, dynamic look-and-move

control system.

2 Objectives

2.1 Hardware and Software Goals

Since the vision software development depended on having the hardware infrastructure in place, the first

objective of this project was to obtain and configure the hardware needed to capture images using the

overhead manipulator described in Sec. 1.2. A precision frame grabber which could plug into a PCI slot

on the PowerPC motherboard was required. As described in Sec. 3.1, specifications included having pixel

jitter less than�5 ns, ability to perform direct memoryaccess (DMA) data transfers, and gray-scale noise

less than 0.7 times the least significant bit (using an 8-bit digitizer).

The next hardware component required was the camera and lens system, which needed the ability to

properly view small components up to3:7 � 3:7 mm in size. The parts being analyzed belonged to a

hearing aid device supplied by Knowles Electronics and are shown in Fig. 5.
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diaphragm

electret

cup

Figure 5: Parts of a hearing aid device with a maximum size of3:7� 3:7 mm.

The first software goal of this vision project was to develop a device driver for the frame grabber. At

the time the board was chosen, there were no frame grabbers with LynxOS drivers. The second software

goal was to investigate camera and lens calibration methods so that points on the image plane could be

related to real world coordinates. The next objective was to develop a vision library in C++ which was

accessible to the Python code providing upper-level management of the minifactory. Specifically, the code

should be able to identify the center of the diaphragm and electret parts to subpixel accuracy and up to a

20� rotation. In addition, the library should include functions which would allow tracking of the diaphragm

at field rate (60 Hz) for the visual servoing system. Another software objective would involve developing

the minifactory infrastructure to support the transfer of vision data at 60 Hz between various processes and

agents. Finally, the controller software used for visual servoing would require development.

2.2 Vision Integration and Tests

The remaining objectives of the project included using the frame grabber, camera and lens setup, and vision

library to perform visually guided coordination between a courier and manipulator to precisely align an

electret with a diaphragm. First, vision would be used to align an electret2:5 � 2:5 mm in size with a

diaphragm3:3� 3:3 mm in size using the open-loop look-and-move method discussed in Sec. 1.4.1. The

next goal would be to use vision in a feedback loop and to visually servo the diaphragm with the electret’s

position and orientation. Tests would include first servoing only thex andy position of a diaphragm and

then servoing itsx, y, and� position with an electret. Finally, comparisons would be made between the

open-loop look-and-move alignment and the visual servoing alignment.
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3 Vision Related Hardware

3.1 Frame Grabber Hardware

There are many varieties of frame grabbers available, some which are more suitable for precision image

acquisition. Listed below are a few of the criteria used to pick a frame grabber and their importance to this

project.

1. Color vs. gray-scale: Gray-scale cameras have higher resolutions, better signal-to-noise ratios,

increased light sensitivity, and greater contrast than color cameras in the same price range [17].

In minifactory applications, gray-scale images will generally contain all the image features needed

(edges, shapes, textures) in a more compact form than color.

2. Pixel jitter: A frame grabber samples an analog waveform produced by a camera at uniform intervals

in time to recover each pixel value. If the timing accuracy of the frame grabber’s pixel clock is not

accurate with respect to the horizontal sync pulse, pixels for a particular line of the image may be

digitized a little early or late. For instance, pixels are sampled about every 80 ns in an image with

640 pixels per line. A pixel jitter specification of 5 ns means a 12.5% error in pixel position. Good

frame grabbers generally have< �5 ns pixel jitter [18].

3. Gray-scale noise: When constantly sampling the same analog signal representing an image, frame

grabber circuitry causes a pixel to have a slightly different digitized value from image to image,

even though the value should actually remain constant. The gray-scale noise level is measured as

the standard deviation of these different values. If a specification says the noise level is .7 LSB, that

means the standard deviation for the noise is .7 times the least significant bit. For example, an 8-bit

binary number provides 256 gray-scale values, and .7 LSB means the noise level varies over:7
256

of

the entire gray-scale range. Low gray-scale noise is important for images with low contrast. It is

also needed when searching an image for surface irregularities or edges. A precision frame grabber

generally has a noise level of .7 LSB or less [18].

4. Progressive scan support: Progressive scan is a non-standard video format in which all the pixels in

a picture are exposed simultaneously, instead of one field at a time. In the past, most video cameras

were interlaced, meaning that first the elements on the even lines of the image were exposed and

sent out followed by the elements on the odd lines. This is normally acceptable unless an object

is moving quickly relative to the video camera since it would cause the object to be shifted in one

field relative to the other. This can cause problems when performing image processing because the

picture would be blurred. One solution is to use a progressive scan camera. Another solution is to

simply process one field at a time at 60 Hz, as long as it is acceptable to use only half they resolution

(one field) during each processing cycle.

5. Onboard memory: Onboard memory refers to extra memory placed on the frame grabber board to

hold full size images before transferring them through the PCI bus to the main memory. Frame

grabbers without onboard memory use a small FIFO buffer to store one line of an image, and when
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the frame grabber has access to the PCI bus, the buffer is emptied. If a frame grabber has DMA

abilities, then data can also be sent to main memory without using CPU cycles. For the overhead

manipulator agents, a frame grabber without onboard memory but with DMA abilities will suffice.

6. RS-170 is the North American monochrome video standard using a 525 interlaced line system and

a frame rate of 30 Hz. Pictures are640 � 480 in size, since some of the horizontal lines are used

during the vertical blanking interval. CCIR is the monochrome standard used in Europe with a 25

Hz frame rate. Most gray-scale frame grabbers support both formats.

7. Bus design. There are frame grabbers for many types of buses including ISA, embedded PC/104-

Plus, and standard PCI. For our purposes, the manipulator computer has an ATX motherboard with

standard PCI slots.

8. Device drivers. Most frame grabbers used today support various Windows and Unix platforms.

During the time vision hardware was being sought, a frame grabber could not be found which would

support LynxOS. Therefore, it was decided that device drivers would have to be written for a frame

grabber.

The precision frame grabber chosen in the minifactory project was the Imagenation PX6101. Table 1

lists its specifications.

Video format RS-170 or CCIR

Pixel jitter � �3 nm

Gray-scale noise �0.7 LSB

Progressive scan support yes

Onboard memory no

Bus type PCI

Cropping and scaling supportyes

Gain and offset adjustment yes

Lookup table yes

Table 1: Imagenation PX610 specifications

The actual location of the frame grabber board and the manipulator’s motherboard is in the brain box

as shown in Fig. 3.

1Imagenation Corp., 10220 SW Nimbus Ave., Suite K-5, Portland, OR 97223
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3.2 Camera and Lens System

A small board level camera2 was purchased from Edmund Scientific3 with a CCD size format of1
3

inches,

an active sensor area of4:8 � 3:6 mm, and512 � 494 pixels. The video format is RS-170, properly

matching the monochrome frame grabber. Automatic gain control as well as automatic shutter control was

also built into the camera.

The lens system, end effector casing, and quick connector were designed by Patrick F. Muir. A simple

compound lens setup was used to achieve approximately 0.75 magnification with one pixel equalling

approximately 10�m at a working distance of 33 mm. Figure 6 shows the locations of the camera, lens,

lighting, gripper, and quick connector on the end effector.

Figure 6: The location of the camera and lens parts in the end effector.

4 Vision Related Software

4.1 Frame Grabber Software

Due to the lack of frame grabber support for LynxOS, software had to be developed in order to use the

hardware. As shown in Fig. 7, the software development was split into three main levels. The top level

includes the user program which needs access to the frame grabber. The second level is the application

programming interface (API) which allows the user application easy access to the frame grabber functions.

The bottom level is the frame grabber device driver, which is actually a part of the operating system kernel.

The application programming interface provides the user application with a simple interface to the

device driver and frame grabber. It is a library of functions, some of which communicate directly to

configuration registers on the frame grabber through memory mapping. These functions include setting

the frame grabber gains and offset, setting the image size to acquire, setting the acquisition to grab in

field or frame mode, and setting the acquisition to grab in continuous or single image mode. Other API

functions used to start and stop the image acquisition required interactions with the device driver because

the interrupt service routine was needed.

A device driver is an interface between an operating system and a piece of hardware. In LynxOS,

drivers are a part of the kernel and are composed of functions, known as entry point routines [19], which

provide an interface between the kernel and the application using the device driver. Entry point routine

2Edmund Scientific, Part #H53306
3Edmund Scientific Company, Industrial Optics Division, 101 East Gloucester Pike, Barrington, NJ 08007
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Figure 7: Illustration of how a user application accesses the device driver.

types includeinstall, uninstall, open, close, read, write, and ioctl. For example, when an application

wishes to use the frame grabber device driver, the C code involves using an open entry point:

fd=open("px610",READ);

This statement calls the open entry point which allows this application to use the frame grabber through

variousreadandioctl calls.

Another important part of a device driver is the interrupt service routine (ISR). Interrupts are generated

by external hardware to indicate the occurrence of an event, such as data availability. For example, the

PX610 frame grabber generates an interrupt every time a field has been acquired and sent to the computer’s

main memory. In LynxOS, an ISR runs at the highest priority and all other interrupts are disabled while it

is running [19]. This means the length of an ISR must be short so other real-time processes are not starved

of CPU cycles.

The frame grabber interrupt service routine was developed and trimmed to be as efficient as possible

while providing enough functionality to support continuous and single frame/field mode pictures. After

each interrupt, the frame grabber must look at the current state of the system to determine which DMA

addresses need to be reset and whether or not any processes waiting for an image need to be awaken.

Depending on whether a single snapshot or continuous images are being acquired and whether or not

images are being captured as fields or frames, the ISR can become difficult to manage. After putting much

of the overhead management into the API about whether the image acquisition was in field or frame mode

and continuous or snapshot mode, the ISR operated more efficiently. Figure 8 shows the flowchart for the

final frame grabber ISR implementation.

In order to test the device driver and API functions, a command line test program written in C was

developed. To make the command line program more user friendly, a Tcl/Tk GUI wrapper program was

also created. As seen in Fig. 9, the program can be used to quickly test the frame grabber or to simply

take an image. The parametersX Start andY Start allow the user to choose how soon the frame

grabber should start digitizing after the vsync and hsync signals since not all cameras start sending out a

valid picture signal at the same times. In addition, theX Size andY Size parameters allow the user to
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Figure 8: Interrupt service routine flowchart.

choose the size of the image. The test program is currently limited to testing single image acquisitions.

4.2 Camera Calibration

Camera calibration is a procedure used to obtain camera system parameters which allow us to relate image

points, as seen by the camera, to real world coordinates. Parameters which are normally determined

include intrinsic parameters such as focal length and lens distortion, and extrinsic parameters which relate

the camera coordinate frame to the world coordinate frame. Without these data, a robot would not be able

to properly determine the distance it would need to move in order to properly align its end effector with a

target. The experiments performed in this report required camera calibration to determine where to move

the end effector so that the manipulator and courier could align an electret, held by the gripper, with a

diaphragm sitting on the courier.
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Figure 9: Graphical User Interface to test some of the frame grabber’s functions.

4.2.1 Tsai’s Camera Calibration Technique

Tsai has developed an efficient and widely used camera calibration technique [20]. To use his camera

calibration method, an understanding of the relationship between various camera, lens, and frame grab-

ber parameters is required. Tsai determined what parameters would be calibrated and what parameters

were needed to perform the calibration by describing a four-step transformation of a point in 3D world

coordinates into pixel coordinates [20]. The first step transforms a point in world coordinates to camera

coordinates. This involves the finding the associated rotation matrixR and translation vectorT .

The second step of the transformation uses perspective projection to map the point’s 3D camera coor-

dinates(x; y; z) onto the image plane (Xu, Yu) of a simple pin hole camera model as seen in Fig. 10. This

requires finding the effective focal length of the camera.

The third step of the transformation accounts for radial lens distortion componentsDx andDy. As

seen in Fig. 11, (Xu,Yu) are the undistorted image plane points and (Xd,Yd) are the distorted image plane

points after accounting for lens distortion. The lens distortion model requires two coefficients,k1 andk2.

The fourth step of the transformation maps the distorted point (Xd,Yd) into pixel coordinates (Xf ,Yf ).

This requires knowledge about the distance between adjacent sensor elements in the camera (dx anddy),

the number of sensor elements in thex direction of the camera (Ncx), the number of pixels sampled in

thex direction by the frame grabber (Nfx), and the computer image coordinate of the image plane origin

(Cx,Cy). Figure 12 illustrates some of these parameters.
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Figure 10: Perspective Projection using a pin hole camera model.

Undistorted
coordinates

(mm)

Distorted
coordinates

(mm)

Sensor
coordinates

(mm)

Pixel
coordinates

(pixels)

(X ,Y )u u(X ,Y )d d(X ,Y )f f

(0,0)(0,0)(0,0)

(0,0)

Figure 11: Relationship between a point on the image plane and its corresponding pixel location.

The pixel coordinates (Xf ,Yf ) are given by

Xf = sx �
Xd

dx
�
Nfx

Ncx

+ Cx; (1)

and Yf =
Yd

dy
+ Cy: (2)

Equations (1) and (2) represent the final pixel location after accounting for the offset of the image

plane’s origin in pixel coordinates.

From the above equations, Tsai determined that the parameters needed in advance to perform camera

calibration were the distance between sensor elements in the CCD (dx,dy), the number of pixels sampled

by the frame grabber per line (Nfx), and the number of sensor elements in thex direction (Ncx). The

values calculated by calibration include the transform from the camera coordinate frame to the world

coordinate frame (R andT ), the focal length of the camera system (f ), radial lens distortion coefficients

(k1,k2), and the timing inaccuracies in the camera and frame grabber (sx).

Tsai described his calibration method as a two-stage calibration technique. This first stage involved

computing the 3D orientation andx andy position of the camera coordinate frame with respect to world

coordinates. The second stage involves computing the effective focal length, lens distortion coefficients,
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Figure 12: Various measurements needed for camera calibration.

and thez position of the camera coordinate frame with respect to the world coordinates frame using an

optimization scheme such as steepest descent. The full derivation of the algorithm can be found in [20].

4.2.2 Camera Calibration and the Minifactory

Camera calibration is required in the minifactory to provide information which will ultimately allow 2D

image plane points to be transformed into 3D world coordinates.

Courier
base

Manipulator
base

Effector

Courier

Camera

z

z

z

z

z

Figure 13: Coordinate transforms in the minifactory.

Figure 13 illustrates the various coordinate frames needed by a minifactory with an overhead manipu-

lator and courier. During initialization of the minifactory, self-calibration is performed providing transfor-

mations between various coordinate frames such as the the courier in the courier base frame of reference
cbHcour , the courier base in the manipulator base frame of referencembHcb , and the manipulator base in

the end effector frame of referencee�Hmb . However, the camera in the end effector frame of reference
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e�Hcam is also needed so that ultimately we can transform points from the camera coordinate frame to

points in the courier coordinate frame. By performing camera calibration, the extrinsic parameters of the

camera are calculated providing the camera coordinate frame in the courier frame of referencecourHcam .

We can therefore derivee�Hcam from

e�Hcam =e� Hmb �
mb Hcb �

cb Hcour �
cour Hcam : (3)

After obtaining all the above transforms, image plane coordinates can be transformed into camera

coordinates. Once the camera coordinates for a feature are found, they can be transformed into any of the

coordinate frames shown in Fig. 13.

To actually perform Tsai’s camera calibration in the minifactory environment, three major steps were

taken. In the first step, the end effector camera took multiple images of a target sitting at a known location

on the courier at different heights. The calibration algorithm required multiple images to differentiate

between the effects of focal length andz distance to the target. The target used in our experiments was a

micrometer scale target4 with 200� 200 �m squares. A Python script was written to automate the image

acquisition.

In the second step, MatlabTM routines were developed to automatically extract the centroids of the

square features from each image, as shown in Fig. 14. For each image, the pixel locations of the features

were matched with their respective positions in courier coordinates and the data was saved to a file.

Figure 14: Micrometer scale target used in camera calibration. Centroids found on the target are marked

with crosshairs.

The third step used Wilson’s [21] C implementation of Tsai’s camera calibration routine. The feature

locations from step two as well as camera and frame grabber parameters, as previously discussed in Sec.

4.2.1, were passed into this routine. The camera’s intrinsic and extrinsic parameters were returned.

4Edmund Scientific, Part #H53713
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courHcam could then be determined from the extrinsic parameters of step three, and implementation of

Eq.(3) in MatlabTM allowede�Hcam to be quickly calculated afterwards.

4.3 Vision Library

The vision library was designed in C++ to be accessible by Python code which provides the upper-level

management of an agent. For the experiments described in this paper, the library also required the ability

to find the corners of electrets and diaphragms which were shown in Fig. 5. The parts were not expected

to be rotated more that20� on the image plane. It should also be noted that much of this code was being

written because no commercial computer vision packages were available for LynxOS at the time.

Vision Library

Look & Move Tracking

Frame grabber

Take
picture

Load
picture

Save
picture

Subtract
pictures

Analysis

Diaphragm Electret

Edge
Detection

Hough
Transform

Linear
Regression

SSD
Template
Matching

Xvision

Frame
grabber

Corner
Tracker

Figure 15: The vision library layout.

4.3.1 Look-and-Move Related Functions

Figure 15 shows the vision library divided into two main sections: look-and-move and tracking. The look-

and-move section of the tree is composed of functions which do not need to operate in real time. Using

these functions, an image can be acquired and analyzed, and then the Python script can decide where to

move the courier and manipulator. Note that this type of look-and-move was referred to as open-loop

look-and-move in Sec. 1.4.1.

The frame grabber section of the look-and-move branch incorporates the application programming

interface as described in Sec. 4.1, allowing images to be taken, saved, and loaded. The vision library

provides three buffers where images may be stored and analyzed. For example, one buffer can contain an

image recently taken by the frame grabber, another buffer can contain a picture read from disk, and the

third buffer can contain the subtraction of one picture from the other.

Once a picture is in a buffer, it can be analyzed by the functions in the analysis branch of the look-

and-move section as shown in Fig. 15. This branch currently has two main types of analyses, one to find

the position of an electret, and the other to find the position of a diaphragm. Before discussing how both
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analyses work, a brief description will be given about a software program called X Vision, which has been

incorporated into the vision library,

X Vision was designed to perform real-time tracking using a desktop computer with a frame grabber

[22]. Other software tracking systems have been developed previously, but they were all specific to a task

and generally not easily portable to a new application. X Vision aims at providing a fast, portable, and

reconfigurable software platform for real-time vision. The philosophy behind the software is that although

there are many types of tracking applications, the features used in any single application are variations on a

small set of primitives such as lines and textures. X Vision provides speed by looking for these primitives

in a small region of interest, also known as a window.

Objects which are tracked using X Vision are actually composed of less complex objects. This hi-

erarchical form continues until the object has been broken down entirely into primitives. An object is

described by a state vector which may impose constraints on the features that compose it. For example, a

square tracker could be considered a complex object composed of four corner features, and each of these

corners is composed of two line primitives. Corner trackers may be constrained so the corners they find

represent a square shape, while the line trackers composing a corner are constrained so they always inter-

sect to form a corner. X Vision provides line trackers, corner trackers, and sum of the squared differences

(SSD) trackers. The SSD trackers perform a template matching function similar to normalized correlation

with rotation [22].

4.3.2 Electret Analysis

When analyzing an electret to find its center and orientation, one general solution would include finding

all four corners of the object. A line connecting the midpoints of the top and bottom sides would then

intersect a line connecting the midpoints of the left and right sides, and this intersection could be used as

the centroid of the part. However, as shown in Fig. 16, one of the problems of the eye-in-hand robotic

configuration is that the gripper, in this case a vacuum suction device, occludes a significant portion of the

part as seen by the camera. Therefore, an alternative approach of finding only the top two corners was

devised. This approach uses the fact that the lengths of each side of the electret part are equal. By finding

the top two corners, the length of the top side could be found, and the angle made by the line connecting

the corners would give the orientation of the part. The length, angle, and geometry of the electret could

then be used to locate the center of the part.

The first step in locating the corners of an electret was to approximately find the centroid of the image.

Since the electret is the only object in the image, the centroid will belong to it. However, it should be noted

that the centroid will be biased slightly towards the upper right since the gripper blackens out part of the

electret.

The second step in locating the corners involved using the approximate centroid as a starting point

to guess the location of the two corners of the electret. Finding a corner on the electret is not trivial

since the sides cannot be approximated by a single line. Unlike a diaphragm, the corners of an electret

extend slightly outside the main body. If enough prior information was given, such as the approximate

orientation and position of the electret, then local searches aroundeach corner could be performed and
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the proper lines extracted. However, the goal of this routine was to find the electret in orientations up to

�20� without any initial approximations of its orientation. Therefore, normalized correlation with rotation,

which is essentially pattern matching, was chosen to find the top two corners of the electret.

This black area
is actually occlusion

from the gripper.

Figure 16: An electret being held by a vacuum pickup device which causes an occlusion.

left corner template right corner template

Figure 17: Magnified view of the left and right corner templates used with the SSD tracker.

SSD trackers, provided by the X Vision package, were used to find each corner. However, for this

electret finding routine, the SSD trackers were applied to a static image (instead of tracking a moving

object through multiple images). As seen in Fig. 17, templates were developed from real parts beforehand.

As depicted in Fig. 18, four SSD trackers were applied to each corner and allowed to converge to the corner

for a specified number of iterations. Depending on where a tracker was initially located, it may or may not

converge at all. However, if the electret is not severely rotated, at least one of the trackers would converge

reasonably well. Therefore, for each corner, the tracker with the lowest residual after the iterations was

considered the best guess for the location of that corner.

Once both corners were found, the orientation and position of the electret could be determined given

the geometry of the part.

4.3.3 Diaphragm Analysis

Determining the center of a diaphragm has the same problems as determining the center of an electret

since the lower two corners may be occluded. The problem is actually worse for a diaphragm because both
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Figure 18: An SSD tracker converging to an electret corner. The square represents the current tracker

position while the four surrounding dots represent the initial locations for 4 trackers.

the gripper and the electret being held by the gripper are occluding it. Significant amounts of diaphragm

edge information may be lost if the initial alignment, before using vision, is poor. This will prove to be a

problem as described later in this section.

The first step in finding a diaphragm requires finding its approximate center in an image. When the

gripper is lowered toward the diaphragm, only one diaphragm will be in view. Therefore, one could simply

find the centroid of the image. However, if the gripper is already carrying an electret, then the electret will

interfere with finding the centroid of the diaphragm. One way to eliminate the effects of the electret is to

subtract the electret image from the combined electret and diaphragm image as shown in Fig. 19. The

remaining pixels are only related to the diaphragm and can be used to find its approximate centroid. Note

that the centroid will be biased in a certain direction depending on where and how much of the diaphragm

was occluded.

Once the approximate centroid of the diaphragm is found, edge finding is required to find the left, right,

and top sides of the diaphragm. Therefore, code was written which analyzes sections of the diaphragm at

a time, as seen by the white grids in Fig. 20. Within each grid, the edge is calculated by averaging the

columns or rows of the grid and then using linear interpolation to find its location to sub-pixel accuracy.

After points are found on the left, right, and top sides of the diaphragm, linear regression is used to find

a line representing each side of the diaphragm. The intersection of the three lines provides the locations

of the top two corners of the part. Then, using the same method described in the electret analysis section,

the corner positions can be used to determine the center and orientation of the diaphragm as marked by the

crosshairs in Fig. 19.

After using the above diaphragm finding routine in the minifactory experiments, it was seen that the

pallets holding the diaphragm pieces were often scratched, appearing as bright lines or patches in the

image. This often interfered with the edge finding routine. In addition, depending on the amount of

occlusion of the diaphragm by the gripper and electret, too much of one side of the diaphragm may have

been missing for the routine to succeed. Therefore, a new method involving the use of the Hough transform

to eliminate outliers was developed. While the old edge finding routine tried to find only a minimal number
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Figure 19: Subtracting the electret image from the diaphragm image. The small crosshairs on the resulting

image are the corners which were found. The large crosshair is the centroid.

of points on each side of the diaphragm to minimize the probability of finding a bad point, the new edge

finding routine searches for as many points on a side as possible and then uses the Hough transform to find

the line that fits the most points.

The Hough transform is a parameter estimation technique which uses a voting mechanism [23]. Using

the equation for a straight liney = mx + b , the Hough transform works by mapping each point inx-y

space to it’s equivalent representation inm-b parameter space, as seen in Fig. 21. The parameter space

plot shows all the possible slope(m) andy-intercept(b) values for lines which pass through a given(x; y)

coordinate. The parameter space must be quantized into accumulators, and then an accumulator must be

incremented by one for each line that passes through it. The accumulator with the largest value corresponds

to the slope andy-intercept value of the line which fits the most points.

Since the parameter space is quantized, the resulting best fit line is actually not very precise. While it

is possible to make the quantization very small, this increases the number of accumulators which must be

accounted for, thereby increasing the computational load. Therefore, the next step of the diaphragm edge

finding algorithm determines which points inx-y space contributed to the winning accumulator. As seen
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Edge point

Figure 20: The diaphragm edge finding method first subtracts out the electret image and then finds points

along the left, right, and top edges of the device.
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Figure 21: Mapping of image plane points into parameter space.

in Fig. 22, this effectively eliminates most outliers and allows linear regression to be successfully applied

to the remaining points.

By applying this new edge finding algorithm to the left, right, and top sides of the diaphragm, the

corners and the centroid of the diaphragm can be found as previously discussed. Figure 23 shows an

example of how robust the technique is to noise. The electret image and the combination electret and

diaphragm image were previously taken, and then the combination image was manually modified (lines

were drawn in and parts of the image were blackened out). The images were then processed by the

new diaphragm finding routine, and as can be seen by the location of the crosshairs, the diaphragm was

successfully located.

4.3.4 Trackers

The second main branch of the vision library, as seen in Fig. 15 is the tracking branch. This branch cur-

rently uses X Vision corner trackers (composed of line primitives) to track the corners of the diaphragm

during visual servoing. Since trackers work within small windows of the image, they initially need refer-
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Figure 22: Elimination of outliers fromeach side of the diaphragm. The outer three pictures have false

edges detected while the center image shows that the outliers where rejected.

ence points to find the corners. This can be done using the diaphragm finding methods described above.

Once the global search for the corners are complete, they are used as the initial tracking positions for the

corner trackers. Since the bottom two corners might be occluded by the electret and gripper, only the top

two corners are tracked. Given the diaphragm’s geometry and the orientation of one corner tracker, the

position of the other corner tracker can be estimated in case that tracker becomes lost.

The diaphragm trackers operate on image fields rather than frames because of the blurring seen in

frames when capturing images of moving targets, as described in Sec. 3.1. Besides eliminating the blur,

the positive side of analyzing fields includes a faster sampling frequency for closed-loop visual servo

control (60 Hz instead of 30 Hz). The downside is that the vertical resolution of the resulting images is

only 240 pixels instead of 480 pixels. This decrease in resolution makes it more difficult to accurately

determine where a point is in world coordinates given the pixel coordinates.

4.4 Look-and-Move Communications Infrastructure

Figure 24 shows the communications infrastructure needed for an open-loop look-and-move task. The top

portion of the figure contains all the processes running on the overhead manipulator agent while the bottom

portion shows the processes running on the courier agent. Circular and oval shapes represent processes.

As discussed in Sec. 1.2, Python is the scripting language used to manage high-level factory opera-

tions. The manipulator head and a courier head processes (created by Jay Gowdy) run the Python code

on the agents. Each head process communicates directly with the executor program running the low-level

controllers for the given agent (the courier executor was created by Arthur Quaid and the manipulator
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Subtract electret
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Figure 23: Robustness of the new diaphragm finding algorithm. A previous set of data images was manu-

ally modified and then processed by the function.
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Figure 24: The communications infrastructure used for open-loop look-and-move.

executor was created by Alfred A. Rizzi). Whenever the manipulator head wishes to have an image an-

alyzed, it contacts the vision server which then processes the image and returns the results. The vision

server process contains the vision library and has wrappers which allow Python to call its C++ member

functions.

There are essentially two levels of communication infrastructure needed, inter-agent and intra-agent.

Intra-agent communications occurs between processes within an agent. Inter-agent communications oc-

curs between the manipulator and courier heads using the global IP network. Both levels of communication

are more complicated for visual servoing, as described in Sec. 4.5.

For the open-loop look-and-move setup, information related to vision processing and the camera setup

has been isolated as much as possible from the manipulator head process to enforce modularity. For

example, the vision server is only concerned with what is occurring on the image plane. It does not handle

real world 3D coordinates since its primary function is to analyze images. However, the manipulator head

process overseas the manipulator by using the appropriate 3D coordinate frames, not by using 2D image

plane information. If the manipulator head process needed to determine how a point on the image plane

mapped into 3D coordinates, it would require the focal length of the camera as well as thez distance from

the camera coordinate frame to the object being measured (using similar triangles). However, the focal
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length is stored on the vision server while thez distance from the camera coordinate frame to the object is

stored in the manipulator head process. Therefore, the 3D coordinate can be recovered by either sending

the focal length from the vision server to the manipulator head process, or sending thez distance from the

manipulator head process to the vision server. However, it would be preferable not to pass either piece

of information between processes, and to keep information related to the vision system cleanly separated

from the rest of the system.
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Figure 25: Information is passed between the vision server and the manipulator head process through the

use of solid angles.

One solution to the above problem is depicted in Fig. 25 which shows the relationship between a point

on the courier in camera coordinatescamP , the same point in image coordinates(u; v), the z distance

from the camera coordinate frame to the point on the courier, and the focal length of the camera. When

information about the image plane point is transferred from the vision server to the manipulator head

process, it is first changed to solid angle representations:

�u = tan�1 (
u

f
) ; (4)

and �v = tan�1 (
v

f
) : (5)

The manipulator head process receives the position of the point as solid angles. Now it can use its

knowledge about thez distance between the part on the courier and the camera coordinate frame’s origin:

X = Zcam tan �u ; (6)

and Y = Zcam tan �v : (7)
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Therefore,camP = [X; Y; Zcam ]T and using the transforms described in Sec. 4.2,camP can be trans-

formed into any minifactory coordinate system. Using solid angles to transfer information between the

vision server and the manipulator head provides a clean interface, allowing camera calibration information

to stay within the vision server and factory state information to stay inside the manipulator head process.

4.5 Visual Servoing Communications Infrastructure

To coordinate the overhead manipulator and courier movements during a visual servoing task, a com-

munications infrastructure had to be properly designed and implemented in addition to what was already

implemented for the open-loop look-and-move tasks. Figure 26 shows the additional structures needed for

visual servoing tasks.
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Figure 26: The communications infrastructure used for visual servoing.

The inter-agent communications between the the courier and manipulator occur using two networks:

the global IP network and the AAA network. Both networks use 100 Mb Ethernet hardware, but the global

IP network is used for non-critical information such as monitoring information being passed to the factory

interface tool shown in Fig. 4. Using standard protocols such as TCP and UDP, this network is useful for

non-real time information. However, the AAA network (designed and implemented by Shinji Kume) is

a semi-custom network designed to carry real-time information in the minifactory environment. Using a

low-overhead protocol called AAA-net, low-latency and high bandwidth communication is achieved even

though the visual servoing routines only transmit data at 60 Hz. The AAA network provides the inter-

agent communications needed for the manipulator and courier to behave in a master-slave fashion during

a servoing task. It should be noted that while the visual servoing requires the AAA-net, the open-loop

look-and-move does not.
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Comparisons between Fig. 24 and Fig. 26 show that the new infrastructure in the manipulator includes

communications between the vision server and a visual servo controller running in the manipulator ex-

ecutor. This was required in order to transfer 60 Hz field rate data since the communication between the

manipulator head and the manipulator executor was limited to about 10 Hz. The communication of data

between the vision server and executor utilized shared memory structures, providing faster data sharing

than possible with alternative methods such as pipes or sockets. Another new communications structure in

the manipulator is a connection between the visual servo controller and a message queue used by the AAA

network server. The AAA network server manages the flow of information to and from processes on the

manipulator and the AAA network.

The intra-agent communications are slightly different between the courier and manipulator. In the

visual servo system, the courier has only one new structure because it does not have a vision server process.

The new structure is a communications channel between the controller, running in the courier executor

program, and the courier’s AAA network server.

To understand how the various communications facilities within an agent and between agents are used,

the general flow of information in a minifactory visual servoing program will now be described. The

first step involves the self-calibration of the factory where the manipulator head and the courier head

communicate with their executor programs to coordinate the agents’ movements. The global IP network

allows the user to monitor the individual states of each agent while this is occurring. After calibration,

the courier and the manipulator heads continue to coordinate activities until the gripper has picked up

an electret and is holding it 1 mm above a diaphragm on the courier. The manipulator head instructs the

vision server to determine the electret’s position and orientation and then to begin tracking the diaphragm’s

position and orientation. It also instructs the manipulator executor to run the visual controller and the

courier executor to run a closed-loop velocity controller. The vision server then directly updates position

information at 60 Hz through shared memory to the visual servo controller in the manipulator executor. As

the controller processes the information, it issues commands to update the overhead manipulatorz and�

positions. It also updates the courier position by sending velocity information through the AAA network.

The courier executor, which is running the velocity controller, is constantly monitoring the AAA network

for new courier velocity information.

4.6 Visual Servoing Control

As described in Sec. 1.4.2, the visual servoing controller is an image-based controller, relating movement

of features on the image plane to movement of the courier and manipulator. The control strategy will rely

on the image Jacobian to determine how the courier and manipulator should be moved to correct for image

plane errors. To develop the image Jacobian, the forward kinematic relationship between the camera frame

of reference and the courier frame of referencecamHcour must first be determined:

camHcour = camHe�
e�Hmb

mbHcour : (8)

Therefore, the equation relating a point in the camera coordinate frame to a point in the courier coor-



4 VISION RELATED SOFTWARE 28

dinate frame is:

camP = camHcour
courP : (9)

However, we are interested in points on the image plane, not in the camera frame of reference, and we

can switch from 3D camera coordinates into 2D image plane coordinates using perspective projection:

camP =

0
BBB@

camPz
f

u
camPz

f
v

camPz

1

1
CCCA ; (10)

wheref is the focal length of the camera system.

After substituting Eq.(10) into Eq.(9) and solving foru andv, we can represent the mapping of a point

in the courier frame of reference onto the image plane:

r = g(x) ; (11)

wherer = [u; v]T andx = [mbtxcour ;
mb tycour ; �]

T , wheremb txcour andmbtycour are thex and

y translations of the courier frame of reference to the manipulator base frame of reference and� is the

manipulator’s� axis. Now the image Jacobian can be found by taking the derivative of Eq.(11)

_r = J(x) _x ; (12)

where _r = [ _u; _v]T , _x = [mp _txcour ;
mp _tycour ; !]

T , and

J(x) =

 
@ u

@ mbtxcour

@ u
@ mbtycour

@ u
@ �

@ v
@ mbtxcour

@ v
@ mbtycour

@ v
@ �

!
: (13)

Using the above derivation, some of the Jacobian elements will be in terms ofmb txcour andmbtycour .

Updating these values during every iteration of the control loop would require the courier executor, the

only process which knows the exact courier position during the servoing loop, to communicate back to

the manipulator executor. However, it would be more convenient if the courier executor only needed to

receive information and not send it. Themb txcour andmb tycour terms can be replaced by the image plane

u andv terms which are already available from the vision server. These substitutions can be found by first

obtainingmbP from camP :

mbP =mb He�
e�Hcam

camP : (14)

UsingmbP , we can find the translational components between the courier coordinate frame and the

manipulator coordinate framembtcour :
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mb tcour =

0
B@

mbtxcour
mb tycour
mb tzcour

1
CA =mb P �mb Rcour

courP : (15)

Substituting thex andy components ofmbtcour back into Eq.(13), all the elements of the Jacobian are

now in terms ofcamPz , cam te� , u, v, f , and the rotational values between coordinate frames which we

have. Most importantly, the image Jacobian can now be reevaluated every cycle by only providing updated

values forcamPz , u, andv.

The above derivation of the image Jacobian actually only uses one(u; v) coordinate. However, in order

to determine how the manipulator’s� axis needs to be adjusted, at least one more image-plane coordinate

is required. A new Jacobian can therefore be constructed by stacking two single feature Jacobians together:

J(x) =

0
BBB@
a11 a12 a13

a21 a22 a23

b11 b12 b13

b21 b22 b23

1
CCCA : (16)

Relating back to Eq.(12), we now have_r = [ _u0; _v0; _u1; _v1]
T and _x = [ _mptxcour ; _mptycour ; !]

T . While

this equation calculates image plane velocities given courier and manipulator velocities, visual servoing

requires finding courier and manipulator velocities given the desired image plane velocities. Therefore,

we take the pseudo-inverse of Eq.(12) and obtain:

0
B@

_mptxcour
_mptycour

!

1
CA = J+

0
BBB@

_u0

_v0

_u1

_v1

1
CCCA : (17)

Equation 17 is the basic control law used in the implementation of the visual servo controller. Note

the desired image plane velocity is generated in the controller code by subtracting the current image plane

positions from the desired positions and then multiplying by a gain. The basic block diagram of the visual

servo controller used to control the courier’sx andy axes and the manipulator’s� axis is shown in Fig. 27.

Gc represents a proportional and integral gain for the image plane errors,J+ is the inverse Jacobian

derived above, andGp represents the courier and manipulator agents which take velocity input commands.

After _r is calculated, it is multiplied by the inverse Jacobian and then, in order to change the velocity

commands to bias one axis more than the other axes, it is multiplied by another gainGb. This additional

flexibility allows the controller to try to correct for the� error slightly faster or slower thanu and v

errors. However,Gb must be a diagonal matrix with positive values to guarantee convergence. These final

velocity commands are then sent into the velocity controllers for the courier and manipulator. After the

agents move, the vision systemH captures the movement on the image plane by finding the diaphragm’s

current corner positions.
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Figure 27: A block diagram of the visual servo controller.

5 Experimental Tests and Results

5.1 Open-Loop Look-and-Move

The open-loop look-and-move experiment was composed of 4 major steps: automatic calibration of the

factory, acquisition of an electret by the gripper, presentation of a diaphragm on the courier to 1 mm

below the electret, and the look-and-move alignment of the parts. Calibrating the factory provided precise

coordinate transforms between various parts of the minifactory as shown in Fig. 13. These transforms

were needed to properly move the agents to align the parts as described in Sec. 4.2.2.

After self-calibration, the courier moved to present an electret (2:5�2:5mm), sitting in a3:3�3:3mm

cavity, to the manipulator’s end effector. The electrets were not firmly seated and were found in different

positions and orientations, although generally the orientation was less than20�. In a true assembly system,

electrets would be seated in cavities which more closely matched their size, but for this experiment we

wanted to test the capabilities of the vision system. Therefore, after the courier presented the electret, the

vision server took a picture of the electret and analyzed its position and orientation. This information was

used to adjust the agents’ positions so that the vacuum suction gripper could pick up the electret by its

lower left corner. Another picture was taken to determine the electret’s position again since the electret

may have shifted when it came into contact with the gripper.

The next step involved the courier moving to present a diaphragm to the manipulator. The manipulator

head process had enough knowledge about the positions and orientations of the electret and diaphragm so

it could instruct the manipulator and courier to move and provide an initial alignment of the parts. The

electret was not placed into the diaphragm but was held 1 mm above it.

The fourth step of the open-loop look-and-move task utilized an iterative method to align the two parts.

After the initial alignment, a picture was taken containing both the electret and diaphragm, as shown in

Fig. 19. Using the diaphragm finding routine described in Sec. 4.3.3, the position and orientation of the

diaphragm was found. Note that the position of the electret never moved in the image since it was being

held by the gripper, and therefore its position and orientation were the same for every iteration. After

finding the differences between the diaphragm’s and the electret’s center and orientation, the manipulator
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head process calculated where the agents needed to move to correct for the error. After the agents moved,

the vision server waited a short period of time for the agents to stop oscillating5 before acquiring another

image. The system iterated until the manipulator head process decided that the errors were acceptable.

Note that the reason the parts were not initially perfectly aligned is due to the slight miscalibration of

various factory parameters.

Figure 28 shows a histogram for 100 runs of the open-loop look-and-move experiment. The time

measured for each run started at the beginning of the first iteration and ended once the error was considered

acceptable. Depending on the initial alignment of the diaphragm and electret,each run took a certain

number of iterations before reaching an acceptable error. Error was measured on the image plane and was

considered acceptable if both theu andv errors for the centroid positions were less than 20�m and the

angular error was less than1�.
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Figure 28: 100 runs categorized by the length of time for a run.

The average iteration time needed for the 100 runs was 3.62 s, and the average number of iterations

was 3.69. Figure 29 shows the error between the centroid of the electret and diaphragm as well as the

orientation error. Theu and v errors are biased around 10 to 20�m instead of showing a symmetric

distribution. However, given the nature of the experimental setup, the majority of the electrets were picked

up slightly rotated clockwise. This caused the initial alignment of the electret to be slightly biased to the

lower right corner of the diaphragm (which may also be evidence that the initial alignment algorithm needs

further development). Therefore, during the iteration processes, the agents move in the same manner for

the majority of the runs. This caused most of theu andv errors to be similar, as the histograms show.

It should be noted that the above results measure the performance of the iterative look-and-move

procedure, not the performance of the electret and diaphragm finding functions. For example, the iteration

routine may believe that the error has reached an acceptable level, yet there might still be real absolute

error. This could occur if the electret was not properly detected, since the diaphragm would then be

5The manipulator has a small amount of structural vibration caused by the high acceleration and deceleration of the� axis.

Improved control of the acceleration and deceleration will allow the� axis to reach its goal more smoothly, and it will help
alleviate the oscillations. The settling time for the manipulator has already been reduced by utilizing a more rigid manipulator

brain box. Shortening and lowering the bridge the manipulator is mounted on will also decrease the oscillations. The settling
time for the courier has been improved through closed-loop control [5], but these experiments were still using open-loop control.
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Figure 29: The u and v centroid position error and the orientation error for 100 runs.

aligned to an incorrect location. For these experiments, only qualitative measurements were done in terms

of how well the parts were truly aligned. For example, Fig. 30 shows the parts for one run after the initial

alignment and after the iterative correction process. The parts seem reasonably aligned.

Figure 30: Alignment before the first iteration and after the last iteration of a run.

Note that various factors may make a final alignment appear unreasonable in an image. For example,

if the vacuum suction gripper on the end effector becomes slightly bent, it will pick the electret up at an

angle with respect to the image plane making a precise alignment difficult. Parts themselves may also be

slightly deformed, giving the impression of a poor alignment.

5.2 X-Y Visual Servoing Test

Thex-y visual servoing experiment was based on the model of the system shown in Fig. 31. Note that

this model differs from the one shown in Fig. 27 since this does not include� axis control, and instead

of explicitly using the diaphragm corner positions in the feedback control, the center of the diaphragm

(calculated from the corner positions) is used. In addition,Gp only represents the courier and its velocity

controller interface, and there is noGb gain since the manipulator’s� axis is not being controlled by the

servo loop but is instead acting as a disturbance input. The Jacobian used in this experiment was formed

by taking the partial derivative of the inverse kinematics of the robot instead of the forward kinematics.
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Therefore, this Jacobian did not need to be inverted because it was already in a form suitable for finding the

courier and manipulator velocities given image plane velocities. While thex-y visual servoing experiment

was performed using this form of the Jacobian, thex-y-� visual servoing experiment will use the form

derived in Sec. 4.6, which is actually the standard derivation for an image Jacobian.
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Figure 31:x-y visual servoing model.

Thex-y visual servoing experiment was composed of four major steps: automatic calibration of the

factory, presentation of a diaphragm to the manipulator, initialization of the visual servoing system, and

movement of the manipulator’s� axis as a disturbance input. The factory self-calibration was performed

in the same manner as for the look-and-move experiment. After the diaphragm was presented to the

manipulator, the vision server acquired an image and searched for the top two corners of the diaphragm

to initialize a pair of corner trackers. The third step of the experiment was the initialization of the visual

servoing system. To guarantee that the trackers had time to settle, both agents were prevented from moving

for 1 s after the vision system began tracking. Figure 32 shows that the desired and measured position of

the diaphragm’s centroid were different at this point, as measured by the vision system during a typical

experiment. While keeping the manipulator fixed, the courier was allowed to move att = 1 s, and as can

be seen, the initial error in the position of the diaphragm was quicklyaccommodated.
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Figure 32: Visual servoing results forKp = 7:0 andKi = 0:005, including measured image plane location

of the diaphragm (u andv), commanded courier velocities (_x and _y), and measured angular position of the

courier and manipulator.

After the vision system was initialized, the manipulator’s� axis was rotated clockwise at a constant

rate of 0.052 rad/s att = 2 s, while the servoing system attempted to keep the diaphragm’s center at the
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same location in the image. Table 2 shows mean and standard deviation of the visual error signals (both

u andv directions) for three different settings of the proportional and integral gains. Note that with the

integral term disabled (Ki = 0), the resultingu axis error was much greater than thev axis error (note

that 1 pixel corresponds to approximately 7�m on the image plane and 10�m in 3D camera coordinates

through perspective projection). The difference in error magnitude between the axes is a direct result of

the camera configuration in the end effector, where the� axis of the manipulator maps directly into au-

directed motion on the image plane. SettingKi = 0:005 significantly reduced the error during motion, as

shown in Fig. 32 and Table 2, at the cost of slightly slower transient performance.

GainsGc u error (mm) v error (mm)

Kp Ki mean � mean �

7.0 0.0 -0.286 0.012 0.007 0.013

7.0 0.005 0.000 0.013 0.001 0.014

12.0 0.0 -0.167 0.017 0.005 0.026

Table 2: Steady state image plane position error for the given visual servo controller proportional and

integral gains.

The overall results shown in Fig. 32 were encouraging. The manipulator’s� axis rotation caused

the courier’s tangential velocity to be approximately 5 mm/s, while image plane measurements showed a

standard deviation of less than 15�m in both axes of the vision system. However, the peak-to-peak error

was approximately 0.04 mm in theu axis and 0.05 mm in thev axis, corresponding to image movements

of nearly 5 pixels. The courier angle plot in Fig. 32 provides one possible cause for this problem. As

can be seen, the recorded peak-to-peak motion was approximately 0.002 rad, even though the courier was

commanded to hold its orientation throughout this experiment. This “wobbling” is believed to result from

miscalibration of the courier position sensor [4] and contributed to most of the error. However, another

source of error was from tracker noise, as discussed Sec. 5.3.

A simulation of thex-y visual servoing experiment was performed using the simplified, discrete model

of the system shown in Fig. 33.
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Figure 33: Discrete model of thex-y visual servo control system.

Figure 34 shows the root-locus plot based on the model in Fig. 33. It shows that instability occurs

when the proportional gain inGc is approximatelyKp = 19 while the actual experiment showed that a
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proportional gain ofKp = 13 caused marginal stability. The discrepancy can be linked to many simplifica-

tions in the system model, but it shows that the important characteristics of the system have been identified

(such as vision information delay).
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Figure 34: The root locus of the discrete model of thex-y visual servo control system showing marginal

stability aroundKp = 19. The root locus analysis was performed using the MatlabTM functionsrlocus

andrloc�nd .

5.3 Corner Tracker Noise Measurements

The next experiment involved measuring the noise produced by the diaphragm corner trackers, taken from

the X Vision library, described in Sec. 4.3.4. The goal was to determine how much noise seen during a

visual servoing experiment was actually due to the movement of the agents as opposed to fluctuations in

the trackers themselves. To perform the measurement, a similar visual servoing setup as described in the

x-y servo experiment was used. However, after the trackers initialized to the diaphragm corners, the agents

did not move as the trackers continued to track the corners (which were therefore not moving). Figure 35

shows theu andv positions for both corners.

As seen in Table 3, the noise in bothu axes are about 10�m peak to peak, whereas thev axes have

about 20�m noise peak to peak. One explanation for why thev axes are noisier is because the images are

being analyzed in field mode. A field contains either the even lines or odd lines of an image which can

cause the vertical starting point for an edge in one field to be different by a pixel in the other field. Given

the camera magnification for this setup, a pixel is approximately equal to 7�m in image plane coordinates

(or 10�m in 3D camera coordinates through perspective projection), which can partially explain the 10

�m noise level difference between the axes.

Another likely source of tracker noise is the pulse width modulation of the LED light source to control

the brightness level. This results in some images being more or less illuminated than others, which can

affect the edge detection scheme used by X Vision. One possible solution to this problem is to integrate
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Figure 35: The tracker positions for both non-moving corners.

SSD corner trackers for the diaphragm, which would be more immune to the lighting effects.

5.4 X-Y-Theta Visual Servoing Test

The x-y-� servoing experiment, like the open-loop look-and-move experiment, attempted to align the

position and orientation of an electret with a diaphragm. The experiment was composed of five major

steps: automatic calibration of the factory, picking up an electret with the vacuum gripper, presentation of

a diaphragm on the courier to 1 mm below the electret, initialization of the visual servoing system, and

movement of the manipulator’s� axis and the courier’sx andy axes to align the electret and diaphragm.

The first three steps are identical to the open-loop look-and-move experiment, but instead of iterative

look-and-move corrections, the system uses the visual servo controller presented in Sec. 4.6.

corner axis Image plane (mm) 3D Camera Coordinate Frame (mm)

� peak-to-peak error � peak-to-peak error

left u 0.002 0.01 0.0028 0.014

left v 0.006 0.02 0.0084 0.028

right u 0.002 0.01 0.0028 0.014

right v 0.006 0.02 0.0084 0.028

Table 3: Standard deviation and peak-to-peak error of the corner trackers when measuring a non-moving

target. Image plane measurements are related to 3D camera coordinate measurements through perspective

projection.
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Figure 36 shows the corner positions, the commanded courier velocities, the commanded manipulator

� velocity, and the manipulator’s� orientation for a typical run. During the first 0.5 s, both the courier and

manipulator are prevented from moving to allow the corner trackers time to settle on the diaphragm. After

the servoing starts, the controller decides to stop servoing when theu andv image plane error for each

corner is less than 5�m. For the run shown in Fig. 36, the alignment was acceptable after 1.4 s. However,

the program was instructed to servo for approximately 5 s more so the additional data could be used to

filter out tracker noise while examining the final position errors after the experiment. The final error of a

corner was calculated as being the desired position minus the average position for 1 s after the controller

deemed the position to beacceptable.
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Figure 36: Tracker positions, courier and manipulator velocities, and manipulator� position during one

x-y-� visual servoing alignment run.

Figure 37 shows histograms of the resulting errors for 100 runs. Note that theu andv errors shown

do not represent the corners, but rather the centroid error found when combining information from both

corners. This facilitates easier comparison with the look-and-move experiments which were based on

centroid errors, not individual corner errors. Table 4 shows the mean and standard deviation of the errors

in Fig. 37.

The overall results of thex-y-� visual servoing experiment were encouraging. However, the system

initially tended to oscillate around its goal position when using higher proportional gains inGc due to the

fact that the tracker noise was being amplified. Therefore, a gain scheduler, which linearly adjusted the

proportional gain inGc depending on the size of the corner position errors, was implemented. This limited
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Figure 37: Theu andv centroid position error and the orientation error for 100 runs of thex-y-� visual

servoing experiment.

error (mm) u v �

mean -0.001 0.0017 0.0003

� 0.0046 0.005 .0014

Table 4: Mean and standard deviation of theu, v, and� visual servoing alignment errors.

the effects of the tracker noise when the system was near its goal while still allowing the system to move

quickly when far from its goal. Using the gain scheduler with a proportional gain range from 0.3 to 5.0,

the average time for the 100 runs was 1.3 s, which is almost three times faster than the average time in the

open-loop look-and-move experiment.

It should be noted that the above results measure the performance of the visual servo controller and

trackers, not the performance of the electret and diaphragm finding routines. As discussed in the open-

loop look-and-move section, there might still be some real absolute error if the electret was not properly

detected, since the diaphragm would then be servoed to an incorrect location. For these experiments, only

qualitative measurements were done in terms of how well the parts were truly aligned. Figure 38 shows a

reasonable alignment of the parts usingx-y-� visual servoing for one run.

Figure 38: Alignment before and after thex-y-� visual servoing.
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6 Summary and Conclusions

This report summarizes the details of integrating machine vision into the minifactory for use in open-loop

look-and-move and visual servoing applications. The major accomplishments are listed below.

� Software was developed to support the Imagenation PX610 frame grabber running on the LynxOS.

This included an application programming interface library and the device driver.

� Camera calibration was implemented using Tsai’s calibration routine. This required using the mini-

factory to determine various transforms between coordinate frames as well as acquiring images of a

calibration slide sitting on the courier. Routines were written to extract features from the images to

use in the Tsai algorithm.

� A vision library was written in C++ to support the analysis of electret and diaphragm parts. The

electret analysis used SSD trackers from the X Vision software library. Diaphragm analysis was

performed by detecting the edges of the part and using the Hough transform to filter out outlier

points. Diaphragm tracking was also supported by using X Vision corner trackers.

� The infrastructure required for visual servoing was implemented by adding additional inter-agent

and intra-agent communication channels. Intra-agents communications required setting up shared

memory structures between the vision server and manipulator executor. Fast and reliable inter-agent

communications were instantiated by accessing the semi-custom AAA network.

� The visual servoing controller was developed to align the position and orientation of a diaphragm

with an electret.

� Experiments were performed which utilized the vision library to perform look-and-move iterations

to align a diaphragm with an electret. The average time needed was 3.6 s and the average number of

iterations was 3.7.

� Visual servoing experiments were performed to align a diaphragm with an electret. Tracker noise

was discovered to be approximately 10�m peak to peak with a standard deviation of 2�m in theu

axis of the image plane and 20�m peak to peak with a standard deviation of 6�m in thev axis. The

average alignment time was approximately 1.3 s.

The vision project’s greatest success was making two 2-DOF agents, each with their own actuators,

sensing capabilities, and controllers, transiently cooperate to function as a single 4-DOF robot to perform

visual servoing tasks. These were also the first tasks to utilize the AAA network for cooperative behavior.

Although only utilizing non-guaranteed data transport, the success of these experiments provided a positive

first step toward proving the AAA network’s viability for high speed data communications between agents.

Another noteworthy success was the ability of the manipulator to simultaneously acquire and process

images at 60 Hz while running a manipulator head process, a vision server process, and a manipulator

executor process. This validated our belief that desktop computing power had reached a point where a

single computer could effectively run all of these processes at once.
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One slightly disappointing finding of this project was the amount of corner tracker noise measured.

This unanticipated behavior limited the accuracy of the visual servoing system. However, instead of low-

ering the overall gain of the system and consequently slowing the error correction, implementing a gain

scheduler allowed the alignment task to perform quickly while limiting the effects of the noise.

Although the open-loop look-and-move experiments yielded slower alignment times than the visual

servoing experiments, open-loop look-and-move still has its merits including its simplicity of implemen-

tation. For example, there is no complicated controller development, the communications infrastructure

is simpler, and closed-loop stability is not a concern. However, the open-loop look-and-move iteration

times are limited by the agent settling times as well as the efficiency of the diaphragm finding routine.

Although it may be possible to decrease the iteration time, movement of other agents may still produce

visible vibrations in the image, especially at higher magnifications. In this case, visual servoing will have

the advantage. Visual servoing also provides additional benefits over open-loop look-and-move such as

being more robust to calibration errors and mechanical inaccuracies.

7 Future Work

The immediate future goals for the integration of vision into the minifactory include decreasing the amount

of time needed for open-loop look-and-move iterations by reducing vibrations seen on an image imme-

diately after the agents move. Manipulator vibrations will be reduced by improving the control of its

acceleration and deceleration. To reduce courier vibrations, closed-loop control, which has already been

integrated into the courier executor process, will soon be accessible to the courier head process. It can then

be used by the open-loop look-and-move routines to decrease courier settling time.

Another near-term goal includes decreasing the diaphragm tracker noise. One option is to include

an SSD tracker into the current corner tracker routine. The current corner tracker (composed of line

primitives) has the advantage of computational speed while the SSD tracker has the advantage of being

less susceptible to changes in lighting intensity. When the current corner tracker finds a corner in an

image, it can pass its position as a starting point to an SSD tracker which could then quickly refine the

corner position. This would provide less of a computational burden on the system than using a purely

SSD tracker. A second option to decrease tracker noise is to find an alternative method of controlling

the intensity of the LEDs. Instead of PWM, the intensity could be controlled by only turning on a select

number of LEDs while being careful of potential shadowing effects.

Short-term experiments will also include tests for the real absolute placement error for both the open-

loop look-and-move and thex-y-� visual servoing experiments. One option for testing the electret and

diaphragm alignment tasks would be to first align the parts, and then make the manipulator move itsz

axis down to place an electret into a diaphragm and hold it there. A small drop of glue could be manually

applied to the sub-assembly to bond the parts. After the glue has dried, the manipulator would be raised and

the sub-assembly moved to a microscope for measurements. Another option for measuring the accuracy

of the system would be to place a diaphragm into a cup, similar to a peg-in-hole task.

Further tests should be performed on the visual servoing controller’s ability to cancel vibrations seen by
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the camera. For example, two manipulators could be mounted on a bridge with one manipulator exercising

its z and� axes while the other is engaged in visual servoing.

Long-term goals for the vision system must include research to eventually allow the vision server to

automatically determine which features of an object to analyze or track, freeing the factory programmer

from the chores. However, to smoothen the transition into this programming-free environment, it may first

be desirable to implement GUI solutions which allow the user to program image analysis tasks using a

more intuitive graphical approach.
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