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ABSTRACT

 

This paper presents the kinematic and dynamic model-
ing and experimental results with nonlinear adaptive
control of the Hexaglide, a new 6 dof parallel manipula-
tor that is used as a high speed milling machine.
The dynamic equations in a linear form for use in a non-
linear adaptive control scheme are Þrst derived using a
method based on the virtual work principle. These equa-
tions are then implemented on a powerful controller for
real-time compensation of dynamical forces and on-line
dynamic calibration.
Experimental results show that the proposed nonlinear
adaptive controller is capable of identifying the dynami-
cal parameters and that it outperforms conventional lin-
ear axis controllers by far.

 

INTRODUCTION

 

The Hexaglide milling machine is a fully parallel struc-
ture with 6 dof (see Þgure 1). Its kinematics is similar to
the well-known Stewart platform, but instead of variable
length bars, the tool attached to the platform is guided in
the workspace with constant length bars linked to 6 lin-
ear direct drive motors, that are distributed on 3 linear
rails [1].
The most important advantage of such parallel manipu-
lators over serial chain robots is certainly the possibility
to keep all motors Þxed to a base, with the consequence
that the moved mass is much smaller and fast move-
ments can be performed. Apart from this, parallel manip-
ulators can also achieve a higher stiffness and are thus
well suited for the application as high speed milling
machine.
Fast and accurate movements require however a good
control of the actuators. The closed mechanical chains
make the dynamics of parallel manipulators coupled and

highly nonlinear. To minimize the tracking errors these
dynamical forces need to be compensated by the control-
ler.
In order to perform a good compensation, the parameters
of the dynamic model of the manipulator must be known
precisely. Some of these parameters, such as masses, can
be calculated from CAD-drawings or measured when the
robot is disassembled. Other parameters, especially the
friction coefÞcients, are more difÞcult to obtain. A sim-
ple way to identify these parameters is however to use a
nonlinear adaptive control algorithm. This leads to accu-
rate parameters and can be performed on-line, so that
varying parameters, such as friction, can continuously be
updated.

 

Figure 1:

 

 Sketch of the Hexaglide

This paper is organized as follows. In the next section
the kinematic and dynamic model of the Hexaglide
machine is developed. The following section describes



 

the scheme of the nonlinear adaptive controller. Its
implementation on a powerful controller hardware and
experimental results are Þnally presented in the last sec-
tion. 

 

KINEMATIC AND DYNAMIC MODEL

 

As there is no closed form solution for the direct kine-
matics of general parallel manipulators, the following
modeling is only based on the inverse kinematics.

 

Figure 2:

 

 DeÞnition of frames and parameters

 

Kinematics of the Hexaglide

 

For modeling the Hexaglide structure, a base reference
frame  is deÞned as shown in Þgure 2. A second frame

 is attached to the tool center point (TCP) of the robot.

The points linking the legs to the platform are noted ,

, and each leg is attached to the linear motor at

the point , . The pose of the TCP is repre-

sented by the vector

, (1)

where , ,  are the cartesian positions of the TCP and

, ,  the Þxed angles ZYX representation of its rota-

tion [2]. The rotation matrix between the frames  and

 is thus given by:

. (2)

Using the rotation matrix (2), the platform joint positions
 can be transformed to the base reference frame .

The joint coordinates  can then be calculated using the

following equation:

(3)

where

 and .

The joint angles Þnally lead to the joint vector

. (4)

The Jacobian matrix  that gives the relation between
joint velocities and the cartesian velocity of the TCP can
be derived using the partial differentiation of the inverse
geometric model of the machine.  is however represen-
tation dependent. In order to Þnd the instantaneous linear
and angular velocities of the TCP, it has to be multiplied

by the representation dependent matrix :

(5)

with

The joint acceleration  and the linear as well as the
angular acceleration of the TCP can Þnally be obtained
by numerical differentiation of  and  respectively.

 

Dynamic equations

 

Using the inverse kinematic model, the dynamic equa-
tions can be obtained in the cartesian space in the follow-
ing form [2,3]:

(6)

 denotes the mass matrix of the system,  a

matrix with velocity dependent forces,  the gravity

force vector and  Þnally a vector containing fric-
tion forces. The equations in this form can be obtained
using well known energy based methods such as the
Lagrangian technique.
To apply an adaptation law to the control algorithm it is
however necessary to rewrite the dynamic equations in a
linear form in the dynamical parameters.

(7)

In this form,  is a matrix containing the nonlinear

equations and the states of the robot and  a vector con-
taining the dynamical parameters.
To simplify the computation, the dynamics of the six
links has been neglected [4,5]. The model of the Hexa-
glide consists therefore of seven bodies, the six motors
and the platform. A further simpliÞcation can be made
by calculating the dynamics of the six motors in the joint
space. The dynamic equations can then be rewritten in
the following way:
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, (8)

where  and  describe the dynamics of the six

motor bodies and  and  that of the platform.

Determining  and  is straight forward. The

dynamic forces of the motors consist of inertia and Cou-
lomb as well as viscous friction:

(9)

and

For simplicity, the masses of the six motors, that should
all be equal, are collected together to just one parameter

. The Coulomb and viscous friction coefÞcients are

however considered independently.
The determination of  and  is more complicated.

A body-oriented method based on the virtual work prin-
ciple is used to derive the dynamic equations of the plat-
form in a linear form [6].
The vector of dynamical parameters is given by:

(10)

It consists of the mass of the platform, the Þrst moments
(location of the mass center point relative to the TCP)
and the inertia moments ,  and . The frame

attached to the TCP is supposed to be oriented such that
the inertia moments ,  and  can be neglected.

The matrix  is given by

, (11)

where the Jacobian matrix , deÞned in (5), projects

the forces from the cartesian into the joint space. The
acceleration  and the skew symmetric matrix  cor-

responding to the cross product are deÞned as follows:

 and (12)

. (13)

The matrices  and  are Þnally deÞned as

, (14)

, (15)

where the angular velocity  of the platform in the tool
coordinate system is given by

(16)

with

. (17)

The dynamic equations are now given in a compact lin-
ear form, that can be used for real-time computation in a
nonlinear adaptive control scheme.

 

NONLINEAR ADAPTIVE CONTROL

 

In the last years, many nonlinear adaptive control
schemes have been investigated [7,8,9,10]. These
approaches require however that the dynamic model can
be calculated in the joint space from actual joint coordi-
nates. As the dynamic model of fully parallel manipula-
tors can only be calculated in the cartesian space, and
because calculating the actual cartesian position using a
numerical algorithm for the direct kinematics is very
time consuming, a control scheme is required that com-
putes the dynamics from desired values.
A further assumption with most control schemes is that
the velocity of the actuators  can be measured. With
the Hexaglide and in many other robotic applications,
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this is however not the case. Some researchers were
dealing with this problem and proposed to use nonlinear
velocity observers or linear observers in combination
with nonlinear controllers [11,12,13].
For controlling the Hexaglide, a scheme is proposed that
is similar to the so called computed torque controller [8],
with the modiÞcation that the dynamic model is com-
puted from desired values instead of actual joint coordi-
nates. The control scheme is shown in Þgure 3 below.

Figure 3: Scheme of model based controller

It consists mainly of a feedforward part of the inverse
dynamics and a nonlinear feedback loop. The control
law is as follows:

(18)

where  is the inverse dynamic model in a linear form
(equation 8), calculated from desired values.

(19)

The feedback part is calculated as follows. The mass
matrix that relates the joint accelerations with the actua-
tor forces can be determined as

(20)

and the feedback of position and velocity errors as

. (21)

The controller gains  and  can be determined by

pole placement to obtain a critically damped system as
follows:

  and  (22)

As the velocities  of the six motors can not be mea-
sured directly, they have to be observed from measured
motor positions. The following linear 2nd order velocity
observer is used:

(23)

with  and .

The poles of the observer are set by pole-placement also.
They should be chosen so that the observer has a higher
bandwidth than the controller.

For the adaptation of the dynamical parameters  the
following algorithm that is based on the minimization of
tracking errors is used [8]:

(24)

 is a positive deÞnite matrix composed of learning fac-
tors, to tune the speed of adaptation of the different
parameters.  is then adapted by integration of (24).

IMPLEMENTATION AND RESULTS
The implementation of the proposed control algorithm
requires a fast controller hardware. Therefore the con-
troller is based on a 300MHz PowerPC 604e RISC-Pro-
cessor board in a VME chassis. To control the motors in
torque mode, measure the motor positions etc., the VME
system is further equipped with fast D/A converters,
encoder counters and digital IO boards.

Figure 4: Controller hardware and XOberon
development environment

All processes such as the control algorithm, the dynam-
ics computation or the path planner are implemented as
time critical tasks running on top of XOberon [14], an
object-oriented hard real-time operating system with a
deadline driven scheduler.
The closed loop controller as well as the path planning
process together with the coordinate transformation have
a sampling time of 300µs, while the dynamic model is
calculated every 900µs. The adaptation of dynamical
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parameters and other tasks like NC-kernel and security
processes are however only called every few ms.

The following Þgure shows the prototype of the Hexa-
glide milling machine, developed by the Institute of
Machine Tools at the ETH, on which the experiments
have been performed.

Figure 5: Hexaglide milling machine

With a length of the linear guideways at the upper base
of 3 m and leg-lengths of 1 m this machine can achieve a
workspace of about 500x500x300 mm. The linear direct
drives that move the upper joints on the guideways have
a maximum force of 2500 N each. The maximum veloc-
ity of the TCP is 1 m/s and the acceleration about 1 g in
every direction within the workspace.

In order to test the nonlinear controller, a set of dynami-
cal parameters for the model has to be identiÞed Þrst.

Figure 6: Adaptation of dynamical parameters

This identiÞcation is performed by the adaptation algo-
rithm. Figure 6 shows the evolution of these parameters,
starting from Þrst estimates, while the machine performs
a simple translational movement.
The actual parameters are learned within 5 to 10 min-
utes. While the mass parameters remain constant after a
few minutes, the varying friction parameters, especially
the viscous frictions, are continuously updated.

Table 1: ÒLearnedÓ dynamical parameters

The following Þgure shows results of circle trajectories
with different velocities, when the actuators are con-
trolled with conventional linear PD controllers with a
static stiffness of 20 N/µm. For a better illustration the
errors in the plot are 40x ampliÞed. It can easily be seen
that increasing the velocity of the TCP leads to increased
tracking errors.

Figure 7: Circle test with linear axis controllers

The next plot shows a comparison of results obtained
with linear axis controllers and with the nonlinear adap-
tive controller. It is the same circle trajectory, with a
velocity of 0.4 m/s.
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Figure 8: Linear vs. nonlinear control

Table 2: Statistics of errors along the circle trajectory

The nonlinear controller is able to keep the tracking
errors much smaller than the linear axis controllers.
Even at high speed motion, a good accuracy is achieved,
that conventional linear controllers are only able to
achieve when moving slowly.

CONCLUSIONS
Due to their potential advantages for high-speed motion
and accuracy, parallel mechanisms have currently caught
the interest of the machine-tool community. This paper
showed that these mechanisms can attain a high accu-
racy only when a nonlinear control is used, and provided
methods for implementing such a controller.
A nonlinear adaptive controller with velocity observer
was designed and implemented on a 6 dof parallel
manipulator with direct drive actuators. The experiments
showed that the nonlinear controller reduced the tracking
errors by a factor of about 10 relative to linear joint con-
trollers, when fast movements were performed.
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