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Abstract

Determination of the magnitudes and directions of the constraints of a mechanical
system can be achieved by finding the basis of the system’s characteristic compliance
or stiffness matrix. When little is known about the geometry of the system. con-
ventional methods cannot be used to calculate the system’s compliance or stiffness
matrix. A new method has been developed that uses experimental data to calculate
a system’s compliance matrix, and an eigenvalue decomposition to extract the direc-
tions and magnitudes of the system constraints. The system was assumed to be a
mechanism in equilibrium. The data were wrenches applied to the system and the
mechanism’s resulting displacement from equilibrium. Wrenches and displacements
were assumed to be linearly related by the system’s compliance matrix.

Imperfect data were managed by estimating a symmetric positive semi-definite
approximation to the compliance matrix. Eigenscrew decomposition was used to
calculate the eigenscrew direction. pitch. and rotational and translational compliance.
The eigenscrew pitches and compliances were analyzed to determine the mechanism’s
compliances and constraints.

Computer simulations suggest that the method reliably finds eigenscrews. pitches.
compliances and directions for well-conditioned matrices. Eigenscrew pitches and

compliances can be found for ill-conditioned matrices. The analytical technique can



be used to evaluate the static behaviour of a system. [t may prove valuable as a

design and analysis tool for biomechanics, robotics and automation.
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List of Symbols and Abbreviations

Symbols

§ is a column vector of three orthogonal infinitesimal translations.
¥ is a column vector of three orthogonal infinitesimal rotations.

7 is a column vector of three orthogonal torques.

f is a column vector of three orthogonal forces.

T is a twist vector in axis coordinates.

t is a twist vector in ray coordinates.

W is a wrench vector in axis coordinates.

W 1s a wrench vector in ray coordinates.

A is the matrix notation for a matrix with columns A,.

C is a compliance matrix of a linear passive system in equilibrium in R8*®.

S is a stiffness matrix of a linear passive system in equilibrium in R6%6.

iv



Spring matrix is a system compliance or stiffness matrix.

A is the matrix that converts twists and wrenches from axis to ray coordinates and

vice versa.

is the set of symmetric positive definite matrices in R**".

7]
va

is the set of symmetric positive semi-definite matrices in R**".

7]
Iva

Abbreviations

SPD Symmetric Positive Definite
SPSD Symmetric Positive Semi-Definite
SVD Singular Value Decomposition

PD Polar Decomposition

DOF Degree of Freedom
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Chapter 1

Introduction

Knowledge of the constraints of a mechanism can be used to understand the behaviour
of a mechanism under different loading scenarios. This knowledge can aid in predict-
ing which loading regimes will produce instability of the mechanism or. converselv.
which directions must be constrained to prevent failure. The static-loading behaviour
of the mechanism can be determined based on its Jacobian matrix, but when there
is no geometric information about the mechanism, the Jacobian matrix cannot be
determined. A survey of current relevant literature produced no satisfactory method
of resolving system constraints for such mechanisms.

The primary goal of this work was to find a method of determining the magnitude
and directions of constraint when presented with a system for which there was little
or no a priori knowledge of the system geometry. Determining the constraints of a
system is a statics problem, as it requires knowledge of both the force and displace-
ment behaviour of the system. Any mechanism, in a given pose, can be modeled
as a mechanism for which the spring matrix (compliance or stiffness matrix) can be

used to characterize the force-displacement behaviour. Using a 6 x 6 spring matrix.
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it is possible to consider the coupling of 3 orthogonal translations, rotations, forces
and torques. and hence determine the directions and magnitudes of constraint by
finding the bases of the matrix. Including 6 motion parameters eliminates the need
for assumptions regarding the system geometry and the number of degrees of free-
dom (DOFs) of the system. The methods for determining the spring matrix from
experimental force and displacement data, and analyzing the matrix, are the main
results presented in this thesis. The experimental method was based on screw theory
and the magnitudes and directions of the constraints (or DOFs) were extracted from
the resulting spring matrix using eigenvalue decomposition. The analvtical method
presented in this thesis is equally applicable to mechanical and biological systems
that can be locally modeled as a linear spring system in equilibrium.

The remainder of this chapter is dedicated to presenting an overview of screw

theory as it was applied in this thesis. The structure of this thesis is:

Chapter 2 contains a review of the literature describing analysis of system DOFs.
spring matrix calculation and the symmetric, positive semi-definite (SPSD) ma-

trix approximation.

Chapter 3 contains a detailed description of the experimental approach used to

calculate a SPSD spring matrix.

Chapter 4 contains a discussion of the procedure and results of computer simula-
tions used to evaluate the validity of the analysis methods presented in this

thesis.

Chapter 5 contains the conclusions drawn from this work and potential future re-

search that may be conducted as a result of this work.
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Appendix A lists the diagonal compliance matrices and results obtained for com-

puter simulated experimental data.

1.1 Screw Theory

In order to model the motion of a mechanical system whose constraints are not known
a priori, it is necessary to acquire 6 DOF force and motion data for the svstem.
Reduction of the acquired data is needed to characterize the system constraints.
determine the number of degrees of freedom and investigate the range of motion.
Screw theory provides a mathematically concise method of analyzing 6 DOF force
and motion data. This section contains a discussion of screw theorv as it applies to

this thesis.

1.1.1 Screw Theory: Historical Development

In the 1800’s the French mathematician, Michel Chasles [6], proved that any small
rigid body motion may be represented as the simultaneous rotation about and trans-
lation along some axis. Chasles’ contemporary, Louis Poinsot [31], proved that any
system of forces and torques can be represented by a single force applied along an axis
and a single moment about the same axis. At the turn of the century, R. S. Ball {4]
unified and expanded upon these theorems in his treatise on screw theorv. The term
“screw theory” was coined in accordance with the analogy between Chasles’ definition
of rigid body motion and the motion of a screw. K. H. Hunt further expanded upon
screw theorv and demonstrated its application to advanced mechanisms in the 1970’s

(17]. In the early 1980’s, Roth applied screw theory to robotic kinematic analysis
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[32]. Lipkin and Patterson [29] used screw theory to classify robot compliance based
on the concept of eigenscrews and compliant axes in the 1990’s. It is the efforts of
Lipkin and Patterson that are of primary relevance to the material presented in this

thesis.

1.1.2 Twists, Wrenches and Screw Axes

Twists. wrenches and screw axes are the main components of screw theory. Lipkin
and Patterson [30], among others. defined these three entities in terms of Pliicker rav
or line coordinate notation. and Pliicker axis coordinate notation. Pliicker coordinate
notation encodes magnitude, direction and location of the line of action using six
parameters. In Pliicker line-coordinate notation, the first three components encode
the direction of the line of action and the remaining three components encode the
location of the line of action with respect to the origin. Hunt [17] explained Pliicker
line notation in terms of force applied to a rigid body.

Let the force vector be represented as F = [fzfyf:]T. Consider a rigid body
whose orientation and location may be described by a coordinate system with the
origin located at its center of mass. Let F be applied at a location p = [zy=]T relative
to the origin of the coordinate frame of the rigid body. The location of the force
vector is immaterial in determining the reaction forces of the body, but it is required
for determining the reaction moments of the body. The vector F acting at point 7
generates a moment 7 about the axes of the reference frame that is defined as the
cross-product of 7 x F. The first three components of the Pliicker line coordinates of

the wrench represent the line direction, F. The last three components represent the

moment of the force about the origin of the coordinate frame, ¥, which encodes the
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location of the line relative to the origin. This definition corresponds to the wrench

in Pliicker ray coordinates, so

w = (1.1)

where f is the force vector and 7 is the moment vector.

Twists can be formed from Chasles’ description of rigid-body motion. A twist
consists of six screw velocities that are approximated by infinitesimal rigid-body dis-
placements (or instantaneous velocities) [30]. Representation of the screw velocity,
or twist, in Pliicker line notation is analogous to the representation of the wrench.
For a twist. the vector of rotational velocities. & (approximated by 7 a rotational
displacement, or instantaneous rotational velocity), yields the direction of the line.
The cross product of & with its location relative to the origin, 7, yields the linear
velocity, V=@ x 7 (approximated by a translation 8, or instantaneous linear veloc-
ity). The first three components of the twist in Pliicker line notation are the rotation.
which encode the direction, and the final three components are the translation. which

encode the location of the line of action, so

Sy -

where & represents a vector of instantaneous translational velocities or equivalently
an infinitesimal translational displacement, and ¥ represents instantaneous rotational
velocities, or infinitesimal rotational displacements. In order to correctly interpret

the rotational displacement as a vector, the rotation of the rigid body about the
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orthogonal axes must be independent of order of rotation about the axes. Small
angular displacements are nearly independent of the order of rotations.

Screw axes are invariant lines along and about which twists occur and wrenches
are applied (see the preceding discussion on Pliicker line coordinates). Screw axes
are defined by a six-cornponent vector, the first three components of which define the
direction of the line and the final three of which provide the moment of the line. or the
location of the line with respect to the origin of the coordinate system. This notation
corresponds to Pliicker ray or line coordinates. Waldron and Hunt [37] explained that
normalizing the twist with respect to the angular displacement. or normalizing the
wrench with respect to the force, yields the normalized Pliicker line coordinates or
the screw coordinates of the twist or wrench.

In keeping with the analogy to the motion of screws, the normalized moment of
the line encodes the pitch of the screw axis. The pitch, A. of the twist is defined as

the ratio of the magnitudes of the translational to rotational motions. so

0-F  en=

==, if||7|| #0;

h={L 77 (1.2)
612, if [|¥7]] = 0.

Here & represents the translational motion and ¥ represents the rotational motion.
In the case of a pure translation, the magnitude of the screw is not infinite. but the
pitched is assigned the value of the magnitude of the translation. This is necessary to

calculate the compliance of the axis as well as to be able to discuss the normalization
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~1

of the eigenscrew. For wrenches, the pitch is defined similarly as:

—
-

. f—% if [|F]] # 0; .
= . 1. |
1712, i (|l =o.

where h is the pitch. 7 is the moment vector and f is the force vector. If a pure moment
is produced. the magnitude of the pitch becomes the magnitude of the moment for

the same reasons as the pitch of the twists.

1.2 System Posture Compliance and Stiffness

Twists and wrenches are related to each other by the system compliance matrix
C € R®*¢ and the system stiffness matrix S € R%*¢. The stiffness matrix S describes
the mechanical system'’s resistance to motion for a particular system configuration.
Properties of spring matrices (compliance and stiffness matrices) are discussed in
terms of system stiffness due to its familiarity and application to simple svstems. but
the properties are equally applicable to system compliance. Because the S matrix is
representative of a linear passive system in equilibrium. it is symmetric and positive
definite.

Symmetry, where S = ST, arises from the assumption that the displacements are
small and occur about an equilibrium position. Symmetry of the stiffness matrix
implies, for example, that a displacement in the z-direction due to a force in the
y-direction will be proportional to a displacement in the y-direction resulting from a
force in the r-direction.

A matrix is positive definite if all its eigenvalues, A;, are positive and non-zero (i.e.
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Ai > 0 for all © = 1 to n where A; of matrix A € R™*"). The requirement that the
matrix be positive definite arises from the strain-energy condition which implies that
energy must be stored by the system when a deformation is imposed. Ang and Andeen
[3] gave a clear explanation of the symmetry and positive definite requirements. The

strain-energy equation, as it relates to components of screw theory, is

[3’1' :,'I‘]S ° >0 (1.4)

-

In order to guarantee a positive result, the S matrix must be positive definite.

The stiffness relationship between the twists and wrenches is

w=ST (1.5)

where @ is the wrench that results when a twist T is imposed on a svstem with
characteristic stiffness matrix S € R®%5. In this equation, the twist is expressed in
axis coordinates and the wrench is expressed in ray coordinates. In Pliicker axis
coordinate notation the components that encode the location of the line are listed
first, followed by the components that encode the direction. Axis notation complies
with the relationship between twists and wrenches established by the spring matrix.

A twist in axis coordinates is

~,
il
L[ Oy

where & represents the translational displacement and 4 represents the rotational
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displacement. The six degree of freedom stiffness equation is analogous to the planar

spring equation

F=kforT=xf (1.6)

-

where £ () is an imposed displacement collinear with the spring, k (k) is the spring
constant or stiffness and F (7) is the resulting force (torque). Stiffness may be
regarded as the system’s ability to resist an imposed deformation or twist. Conversely.
the system compliance may be defined as the system’s freedom to move under the

action of an applied wrench. The equation of system compliance is

T =Cw (1.7)

where 1 is the applied wrench in ray coordinates, that causes the twist displacement
T, which is represented in axis coordinates, when applied to a system with compliance

matrix C € R®*®, This is analogous to the planar spring equation

F (1.8)

Foad o

=

where F is the applied force, 1/k is the spring compliance constant C and f is the
resulting displacement.

By solving for w in Equation (1.7) and equating the result with Equation (1.3)
one can conclude that S = C~!. In order to obtain meaningful results with regard to
the number of degrees of freedom of a mechanical system and the system constraints.

the compliance of the system configuration will be the focus of discussion for the
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remainder of this thesis.

The A Matrix

In the section on twists. wrenches and screw axes, the twist and wrench vectors were
expressed in ray coordinate notation. In the preceding section on the relationship
between twists and wrenches, twists were expressed in axis coordinate notation and
wrenches were expressed in ray coordinate notation. Both notations are used: one
reason is that the matrices that transform twists and wrenches from one coordinate
frame to another have the same form when twists and wrenches are written in opposite
notations. Also, the compliance and stiffness relationships are most simply expressed
when twists and wrenches are written in opposite notations. However. it is often
necessary to write the twist and wrench vectors in a consistent coordinate notation.

The means of converting between coordinate notation is the A matrix:

[0

(1.9)

>

- O O O ©

o = O O o ©
OO OO O O =, o
O O O = C O
I
[ vnmmessss |
~ O
o~
——]

O O O O O -~

O QO = O o

Note that

1. AT = A (1.10)
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and

2. At=47 (1.11)
The effect of the A matrix on twists and wrenches is to reverse the sequence of the
rotation and translation components. The conversion of a twist in axis coordinates

to a twist in ray coordinates is then:

™+
i
3
Il

(1.12)

Oy

Similarly, the conversion of a wrench in ray coordinates to a wrench in axis coordinates

is:

W=Aw= (1.13)

1.2.1 Eigenvalues and Eigenvectors

The mechanical systems considered here may be characterized by eigenvalue and
eigenvector decomposition of the compliance matrices.

Any matrix A € R"*™ may be considered to be a linear function that maps vectors
from one space to another. If 4 is a nonsingular matrix, there are n nontrivial vectors

€ for which the result of the mapping function is a scalar multiple of €, that is,

A€ = A€ (1.14)
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where A € R is a scalar and € represents a vector transformed by the function 4. For
example. consider the case where 4 is the homogeneous representation of a rigid pla-
nar transformation. The pole p is an eigenvector of A corresponding to an eigenvalue
of 1, and so it is the instant center of the transformation and remains unchanged
under the action of A. (The pole is undefined for pure translation.)

In three-dimensional motion, the pole concept may be extended to an invariant
line, or a series of poles in stacked planes. Points on the invariant line are constrained
to translate along the line, and points in the body off the line are constrained to
rotate about the line and translate in the direction of the line.

In order to find the location of the poles, or invariant lines, Equation (1.14) may

be rearranged as

and further simplified to obtain
0=[A-)]e (1.16)

where { represents the identity matrix. Taking determinants of Equation (1.16) gives

the characteristic equation of matrix 4

det[A - Al] =0 (L.17)

Equation (1.17) may be solved for A;...A,, which are the eigenvalues of matrix 4.

The corresponding eigenvectors are those vectors that are mapped to scalar multiples
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of themselves under the action of A, as shown in Equation (1.14).
The eigenvectors form a linearly independent basis of the matrix A. This implies
that the result of the action of A on any vector ¥ is a linear combination of scalar

multiples of the eigenvectors € of 4. Equation (1.14) may thus be rewritten as
A€ = Ae; (1.18)

where €; € R" is an eigenvector, and ); € R represents the eigenvalues of the matrix

A e R¥n.

Eigenscrews

The eigenscrews of a compliance matrix C for a system posture are determined in
much the same way as for any square matrix. The primary difference is the interpre-
tation of the eigenvector as a screw axis, with three components indicating direction
and three components indicating the line moment. Eigenscrews are determined by
the characteristic equation (1.19) based on ¢ = ACw, where A ensures consistent

coordinate notation, so
\i€; = ACE; (1.19)

The eigenscrews are represented by &; € R®. When the eigenscrews are normalized
with respect to the magnitude of the vector formed by the first three components.

as in Equation (1.20), the first three components of the eigenscrew represent the
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direction and the final three components encode the pitch of the matrix.

€

R

-

€;
T
=[:r y z hr hy hz]

where 2z + y? + z2 = 1. and 1 < i < 6. In this notation, the pitch of the eigenscrew

can be found using the method of Lipkin and Patterson [29], as
eTAE; (1.21)

The pitch is the relative amount of translational and rotational compliance in the
direction of the eigenscrew. Values of |A;| > 1 indicate that more units of translation
occurs per unit of rotation. Conversely, values of |h;|] < 1 indicate more units of
rotational deformation occur per unit of translational deformation. The rotational
and translational compliance associated with each eigenscrew may be determined
by combining the pitches and the eigenvalue corresponding to the eigenscrew. The

equations that define translational and rotational compliance are, respectively

C, = ’\ih'i (122&)
A;
== 1.22b

When é¢; is acted upon by AC, Ai represents the scalar multiple bv which ¢&; is
compressed or extended in the direction of the eigenscrew, &;. The pitch h; represents

the ratio of the magnitude of translation to rotation, and A; represents the total
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motion in the direction of €;. Thus, A; and h; represent the amount of constraint in

the direction of €;.

Compliant Axes

Lipkin and Patterson [29] described compliant axes based on the two-svstem of Hunt
[17]. These axes are determined from the eigenvalue/eigenvector decomposition. A
compliant axis exists if there are two collinear eigenscrews having eigenvalues and
pitches of equal magnitude but opposite sign. These two eigenscrews are reciprocal,
or dual (i.e. é€TA& = 0). Lipkin and Patterson [29] define a compliant axis as one
on which an applied “force produces a parallel linear deformation. and a rotational
deformation about the line of force produces a parallel couple.” In essence. the
compliant axis behaves like a linear spring when a force is applied, and behaves like
a torsional spring when a rotational deformation is applied. The application of forces
and rotational deformations coincident with a compliant axis result in un-coupled
rotational and translational behaviour.

If a compliant axis exists then all other eigenscrews must intersect the compliant
axis in a hyperplane orthogonal to it. If two compliant axes exist. then all eigenscrews
are grouped in orthogonal pairs. Patterson and Lipkin [29] presented a classification

scheme for systems based on the number of compliant axes.

1.3 Summary

The determination of system constraint and compliance characteristics is challenging
for mechanical systems for which there is no geometric information. I[n order to

avoid making assumptions regarding the system geometry, a method of experimentally
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determining the static behaviour of the system has been proposed. A method based
on screw theory has been developed to evaluate the characteristic constraints and
compliances of systems for which there is no knowledge of the system geometry. Screw
theory offers the benefit of concise descriptions of 6-DOF data. incorporation of force
and motion data, and easily interpretable eigenscrew results. Methods described in
the open literature used to evaluate system DOF's and characteristic spring matrices
were reviewed. The following chapter contains a discussion of these methods. and

their pros and cons within the context of the goals of this work.



Chapter 2

Literature Review
!

Characterization of a mechapical system based on its degrees of freedom. as described
in the preceding chapter, has three distinct stages: determination of the number of
degrees of freedom; determination of the system spring matrix; and optimization of
the experimentally determined compliance matrix (ensuring the symmetric, positive-

definite requirement).

2.1 Identification of System Degrees of Freedom
(DOFs)

Four distinct methods of system DOF identification have been discussed in the robotic
and biomedical literature. These methods are characterization of system spring ma-
trices [29], determination of the rank of the Jacobian matrix and screw-system iden-
tification ({7], [17], [18]. [28], [41]), analysis of configuration space trajectories [27].

and principal component analysis [9]. A survey and comparison of methods used to

17
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detect the DOF's of a system are presented in the following sections.

2.1.1 Characterization of System Compliance and Stiffness
Matrices

The characterization of mechanical systems based on spring matrices was presented
by Patterson and Lipkin [29] in 1990. Patterson and Lipkin's method of system
analysis used the relationship between the system displacements and forces. the com-
pliance matrix. to determine the system characteristics. The system rotations and
translations were represented as twists, and the forces and moments were represented
as wrenches in Pliicker coordinates. These elements, as well as the system compliance
matrix were introduced in the theory section of Chapter 1. Patterson and Lipkin char-
acterized robot manipulators based on the eigenscrews of the compliance matrix and
the existence of compliant axes. The eigenscrews were represented in six-component
Pliicker ray coordinates. A twist resulting from the application of an arbitrary wrench
may be calculated as a linear sum of the eigenscrews. The ratio of the eigenvalue to
the corresponding eigenscrew pitch yielded the rotational compliance. Multiplication
of the eigenvalue with the corresponding eigenscrew pitch resulted in the translational
compliance. Small values of compliance indicated directions of constraint. whereas
large values indicated directions of compliance. Thus the number of degrees of free-
dom of the system was determined based on the magnitude of the rotational and
translational compliance of the eigenscrews.

Patterson and Lipkin's method offers the opportunity to analyze general systems
for which no knowledge of configuration geometry exists, but for which accurate eval-

uation of the compliance matrix is possible. The directions of the axes of motion
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can be obtained from the eigenscrews. The system analysis also determines the ex-
tent of constraint for each eigenscrew by including the forces required to cause the
displacements. For these reasons, Patterson and Lipkin’s method of eigenscrew de-
composition and system compliance characterization was selected for application to

the problem described in Chapter 1.

2.1.2 Rank of the Jacobian Matrix and Screw System Iden-
tification

The Jacobian matrix J(¢) relates instantaneous joint velocities, § (and static gen-
eralized forces) to the instantaneous Cartesian velocity of the tip (and to the static
force/torque present at the tip). Because the columns of the Jacobian are screws.
it can also be interpreted as containing position and direction information for each
of the constraints of a system in configuration ¢, where ¢ is a vector of the actua-
tor positions that specifies the manipulator configuration. System analysis based on
evaluation of the rank of the Jacobian matrix is based on linear independence of the
screws that are the column vectors. A matrix A € R8*S is of full rank iff its column-
space is 6. If each column represents the direction of an actuator axis for a robot
manipulator in screw coordinates (i.e.. the matrix is the Jacobian .J(§)). then a rank
of 6 indicates that the manipulator is free to move from its present configuration. If
the rank, r < 6, the manipulator is constrained in 6 — r motions (translations and
rotations) from the present configuration, and only r motions are free.

Hunt (18] presented a method of extracting the number of degrees of freedom
available to a manipulator based on its Jacobian matrix for a specific configuration.

The Jacobian. J(g), is constructed using the screw coordinate representation of the
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actuators & in ray coordinates as columns of J(§). Reciprocal screws were found in

axis coordinates for the set of screws in J(q§) using:

J(@)a =0 (2.1)

where @ is a member of the matrix of reciprocal screws, J*(q), represented in axis
coordinates. The screws in J(q) represent directions of kinematic freedom, whereas
the reciprocal screws represent the directions of constraint of the system (i.e. a force
applied to the end effector in the direction of a reciprocal serew produces no motion of
the end-effector because this direction is completely constrained). For rank(J(q)) = 6.
there is no solution for &; in Equation (2.1) and the end-effector has total kinematic
freedom.

Hunt [17] presented a thorough survey of the kinematic interpretations of twenty-
seven general and special cases of screw systems. In each case. the effect of loss of
degrees of freedom (or increase in size of the reciprocal screw space) on manipulator
kinematics was discussed.

Zavatsky [41] used the technique described above to examine the number of de-
grees of freedom available in a flexed-knee-stance testing rig. Using the parameterized
geometry of the simulator’s actuators in screw coordinates. Zavatsky found the an-
alytical solution for the rig’s determinant. The author used this result to deduce
which configuration conditions yield a zero determinant, indicating loss of degrees of
freedom at this configuration. He also determined that a zero determinant could be
avoided by careful selection of geometric parameters of the rig.

Conlay and Long [7] considered the converse situation: they examined the stability

(constraints) of the knee for different degrees of flexion. For each flexion position. they
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determined the position and orientation of each of the nine constraining structures
(ligament, capsule and contact force) of the knee. The screw coordinates of each
constraining structure were obtained by modeling each constraint as a prismatic joint.
The matrices for any combination of six structures were obtained and the determinant
of the matrix was evaluated. A determinant of zero indicated that at least two of
the columns representing the constraints were dependent (r < 6) and the knee with
r < 6 was considered unstable, as it would be unconstrained in one or more rotations
or translations. The unconstrained direction corresponds to the direction given by
the reciprocal screw. The researchers found that no combination of six constraint
directions produced a zero determinant. Based on this result, it was concluded that
the knee was stable for the range of flexion that they examined.

The work of Murphy and Mann (28] on kinematic freedom of the knee bears several
similarities to the work by Conlay and Long. Murphy and Mann modeled ligament
and contact force constraints as zero-pitch wrenches corresponding to prismatic joints.
Murphy and Mann also recognized that the ligaments exert no force until they are
extended beyond their initial length, and exert no force beyond their rupture length.
The insertion sites for each ligament on the tibia and femur provided the initial length
and origin of each filament. All possible positions and orientations of the femur
relative to the tibia were determined separately for each of the filament constraints.
The positions and orientations of the femur form an annulus, with the inner radius
corresponding to the initial length of the filament and the outer radius corresponding
to maximum filamentary extension. The intersection of the annuli for all ligaments
was the set of achievable positions and orientations of the femur with respect to the

tibia based on ligament constraints. The contact situations were evaluated for each of



N
N

CHAPTER 2. LITERATURE REVIEW

these positions, as there would be no contact force exerted for the case in which there
is lift-off from the tibial plateau. Once the ligament and contact constraints were
determined for each tibia-femur configuration, the screw coordinates were calculated
for each constraint. A matrix, A. of the screw coordinates was constructed and the
rank, r, of the matrix was determined. For r < 6. there was a solution to either
or both of the repelling and reciprocal screw system configurations. Representing a

screw axis as &, the screw axis is in a repelling configuration if

[AV)
[V
~—

da <0 (2.

and it is in a reciprocal configuration if

Aa =0 (2.3)

A solution for the repelling screw system represents a direction in which the ligaments
are shortened and lift-off occurs from the tibial plateau. A solution for the reciprocal
screws represents a direction in which no work is done by the constraints, or a direction
in which the body is unconstrained. The authors presented one example solution for
the model. but cited the need for a complete set of solutions for the configurations of
the knee in order to properly characterize the total freedom of the knee.

Although the methods introduced in this section have the advantage of revealing
which directions are constrained and which ones are free to move, the methods are
unable to provide the amount of constraint or freedom about each screw axis because
force conditions are not taken into account. This omission could result in incorrect

conclusions when using the constraint analysis method of Conlay and Long. and
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also when using the method of Murphy and Mann. Conclusions drawn from the
freedom analysis of the testing rig by Zavatsky could also be challenged on this basis.
In all of these cases, the discussion of freedom or constraint is based solelv on the
geometry of the physical system. Determination of the number of degrees of freedom
by examination of the linear independence of the actuator or constraint axes vields the
number of directions in which the manipulator may move, but does not consider that
some of these directions may be very stiff and highly resistant to motion. Conversely.
some of the directions of “constraint” may be very compliant and not provide the
“stability” expected from the results of the kinematic analysis. For this reason. the
results obtained by Conlay and Long may be questioned: it is possible that for some
arrangements of the ligaments and contact forces, the knee may be unstable under
certain loading conditions. Zavatsky’s analysis may also be questioned if there are
geometric configurations for which directions of freedom are very stiff, which would
imply that the rig is kinematically free to move in a free direction but would require
application of a large force in order to do so.

A second disadvantage of Zavatsky's method is that accurate knowledge of the ge-
ometric configuration of the actuators or constraints must be known a priori. Thus.
the method of screw systems and Jacobian matrix rank may not be applied to me-
chanical systems for which accurate description of actuator/constraint configuration

is not known.

2.1.3 Analysis of Configuration Space Plots

C-space is strongly associated with robot analysis: it is a space which represents

all positions and orientations attainable by a manipulator. Operational c-space for
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a) 1 DOF b) 2 DOF

0
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Figure 2.1: C-space trajectories for 1. 2. and 3 DOF systems.

planar motion may be plotted in three dimensions because three parameters (.r.y
and ¢ about z) are sufficient to fully specify a manipulator’s planar position and
orientation. The minimum number of DOF's required to achieve a given motion can
be estimated from the trajectory in the manipulator’s c-space. The c-space for a
one-DOF joint will map to a curve, the c-space for a two-DOF manipulator will map
to a surface. and the c-space for a three-DOF manipulator will map to a volume (see
Figure (2.1)).

In 1993, Moore etal [27] presented a method of determining the number of degrees

of freedom required to specify a planar motion of the human wrist. Their method of
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identifying the number of DOF's consisted of plotting the three c-space parameters
in three-dimensional space and fitting the c-space to a curve, surface or volume. The
residuals of the fits were calculated and analyzed to determine the number of degrees
of freedom necessary to describe the wrist “power” motion. “Large” residuals would
indicate a poor fit of the c-space trajectory to a surface, so more DOFs would be
required to describe the kinematics of the wrist. Moore etal determined the c-space
for the wrist by observing the relative motion between a coordinate system fixed to
the hand and a coordinate system fixed to the arm, as the wrist cycled through the
planar “power” motion. After obtaining the c-space for repeated motions, a surface
was fit to the c-space and residuals between the c-space and the modeled surface were
calculated. Residuals for the surface fit were small and indicated that two degrees of
freedom were required to fully specify the “power” motion.

Two advantages of this method of DOF identification are its straightforward ap-
plication to experimental data, and no ¢ prior: knowledge of the system geometry
was required. Two disadvantages of this technique were that it focused on kinematics
of the wrist. and did not yield the directions of the axes that provided the two degrees
of freedom. The lack of force data meant that no measure of stiffness or compliance

associated with each degree of freedom was determined.

2.1.4 Principal Component Analysis
Jolliffe [19] stated that
The central idea of principal component analysis (PCA) is to reduce the

dimensionality of a data set which consists of a large number of interre-
lated variables, while retaining as much as possible of the variation present
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in the data set. This is achieved by transforming to a new set of variables.
the principal components (PCs), which are uncorrelated. and which are
ordered so that the first few retain most of the variation present in all of
the original variables.

The PCs can be obtained by eigenvalue decomposition of the covariance matrix
for the set of original variables. The eigenvectors are the PCs and represent linear
combinations of the original variables, and the eigenvalues are the variance of the
original variables associated with each PC. The largest eigenvalues correspond to
those PCs that maximize the variance of the original variables.

PCA has had broad application. Jolliffe [19] cited application of PCA to analyvze
the correlation of anthropometric measurements, the description of weather factor
patterns over large spatial areas, the correlation of life-style factors of the elderly. the
correlation of chemical compounds and properties, and correlation between prices of
various stocks. PCA has also been applied to signal processing [22], acoustics [21],
imaging (23], face recognition [34], speech analysis [35], and many other applications.

Principal Component Analysis (PCA) is being used in current research to identify
the axes of freedom of motion. Deluzio [9] has had promising results in using eigenvec-
tors to identify the axes of rotation in simple and double pendulum experiments. As
in the work by Moore etal [27] described above, the data analyzed is kinematic data
and neglects forces acting on the system. Another similarity to the c-space method
is that PCA requires no a priori knowledge of the system geometry. However. in
contrast to the work by Moore etal, PCA does identify the directions of the axes of
motion.

PCA does not allow determination of the magnitude of stiffness or compliance

about each axis because it neglects forces. It is unclear how such data could be
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included in PCA while preserving the physical significance of the PCs.

2.2 Determining the Compliance Matrix of a Sys-
tem

The spring matrix of a mechanical system can be calculated using geometrical infor-
mation, or estimated from experimental data. The majority of the work [26], [37].
[12], [20], [33], [38], [10], [3], [36] bas been on the calculation of compliance based on
the known geometry of the system. The work of Gosselin [12] and Tahmasebi and
Tsai [36] are typical examples of the geometrical approach. both defining the stiffness

matrix K as
K = J(@TxJ(@) (2.4)

where « is a diagonal matrix representing the stiffness of each of the actuators and J(q)
is the Jacobian of the manipulator for configuration ¢§. Both Tahmasebi and Tsai. and
Gosselin determined the stiffness of parallel manipulators from the Jacobian matrix.
For these mechanisms. the forward solution is more complicated than the inverse
solution. For this reason. the problem is posed in the inverse form and the Jacobian
matrix of the parallel manipulator is defined as the inverse of the Jacobian used in
standard practice. This equation is derived from the way that the Jacobian relates

(a) infinitesimal displacements, and (b) static forces. The displacement relationship
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q = J(q)o (2.

where 44 is the vector whose components are the infinitesimal displacements of the
actuators, and 0z, is the vector whose components are the infinitesimal displacements

of the end-effector, 6. The statics relationship is
F=J@'f (2.6)

F is the vector of forces and torques applied at the end effector. and f is the vector of
generalized forces applied at the actuators. Modeling the actuators as having linear

stiffness gives the relation

f=réq (2.

o
-1
o

from which Equation (2.4) can be derived. A consequence of such a formulation is
that the accuracy of determining the system'’s stiffness, depends on the accuracy of
the knowledge of the system’s geometry. For situations where little is known about
the configuration of the system, the Jacobian cannot be reliably determined.

The experimental approach to estimating the spring matrix is not reported in
the open literature as frequently as is the geometrical approach. To the best of our
knowledge, EIMaraghy and Johns [11] are the only research group that have attempted
to experimentally determine the compliance of the end-effector of a manipulator.

They attempted to experimentally determine the end-effector compliance in order to
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validate a model that was previously determined analytically (ElMaraghy and Johns
[10]). They were, however, unsuccessful in validating the analytical solution of the
compliance matrix of the SCARA robot they studied because they were unable to
defeat the active compliance compensation in the manipulator control system. Their
reported experimental results for the PUMA 560 did correspond to results obtained
by Lozinski [25].

These results confirmed that an experimental approach for determining the com-
pliance was possible. The experimental method was, in essence, estimating the com-
pliance at the end-effector by displacing the end-effector a known amount and mea-
suring the applied force. The particular goal of the work of ElMaraghy and Johns
described in [11] was to measure the joint compliances that were calculated using a
Jacobian method. The significance of their corresponding paper is as a demonstra-
tion of the possibility of experimentally determining end-effector compliances based
on measurement of end-effector forces and displacements of a system for which the

geometric configuration is unknown.

2.3 Obtaining Symmetric Positive-Definite Matri-
ces from Experimental Data

A typical experiment for estimating the compliance of a mechanical system might be
to apply a wrench w to the system when it is in equilibrium, and then to measure
the resulting twist T from equilibrium. Recall that @ was defined in the previous
chapter as a vector of forces/torques in ray coordinates and T was defined as a

vector of translations/rotations in axis coordinates. The column vectors of repeated
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measurements can be gathered into matrices, so for a constant compliance matrix C
at the equilibrium configuration the wrenches can be assembled into a matrix w and
the corresponding displacements can be assembled into a matrix T. The individual
relations T = Cw; can thus be expressed as T = Cw.

As previously discussed, the compliance matrix C must be symmetric and positive
definite. However, when obtaining experimentally measuring twists and wrenches.

there will inevitably be noise in the measurements. Estimating C as

C = Twf (ww?)™! (2.8)

will not necessarily produce an estimated compliance matrix C that is symmetric
and positive-definite. Thus in general, a symmetric positive-definite approximation
to the experimental matrix must be found. Two approaches have been proposed
for the solution of the symmetric positive-definite matrix problem: find the nearest
symmetric positive-semidefinite (SPSD) matrix to the given matrix. or find some
SPSD matrix that minimizes the residuals of the modeled system (i.e. that minimizes

|ICw — T||F). || - || represents the Frobenius norm which is calculated as

|Bllr =

for matrix B.
Let A be an arbitrary matrix and let P be an SPSD matrix (P € S5 where S3
is the set of SPSD matrices in R***). Higham [16] proposed a method of finding the

SPSD matrix P nearest to A by minimizing the Frobenius norm of their difference.
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which is finding P such that:

1 _ 9
B lA - Pllr (2.10)

This method was based on the matrix 2-norm approximation method reported by
Halmos [13], which found the matrix 2-norm distance to a set of positive approximants
for a given matrix A. The 2-norm of a matrix was defined as the square root of the

spectral radius of a given matrix:

[Cezpllz = \/ (CLClzp) (2.11)

The spectral radius p of a matrix B is defined as the maximum magnitude of the
eigenvalues of B.

Higham'’s solution provides a unique solution P for the positive approximation.
The approximant is obtained by setting the negative eigenvalues of the matrix A to
zero. Higham’s approximation method is described in greater detail in Chapter 3.
Section 3.2.

Minimization of residuals for a modeled system was first presented by Brock {3]
in 1968. Brock proposed a method of minimizing the Frobenius norm of the residuals
of a modeled linear system by setting the first-derivative of the function in Equation

(2.12) to zero, so that
f(C) = tr[(Cw - T)TZ(Cw — T)] (2.12)

where C € ST represents an n x n symmetric positive-definite matrix. w € R**™ and
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T € R"*™ represent system force and displacement data respectively. and Z € R**"
is a diagonal scaling matrix. For the solution of system stiffness or compliance. the
identity matrix was used for Z. The trace of a matrix “tr” is defined as the sum
of the eigenvalues of the matrix. As demonstrated in 1996 by Woodgate [39]. this
method does not guarantee a positive definite solution for a perturbed system. nor
does it guarantee the existence of a solution.

Allwright [1] presented a solution for the minimization problem introduced by
Brock that determined a SPSD approximant using an iterative projection method
and least-squares approximation. Candidate matrices for the minimization of the
residual were constrained to lie in conical hulls to ensure definiteness of the solution.

Woodgate [40], [39] presented two iterative algorithms for minimization of the
Frobenius norm of the residuals. The algorithm proposed in his first paper [40] used
a least-squares or quasi-Newton iterative approach to solve for a SPSD matrix over a
convex solution space. The constraints were specified in order to guarantee a positive
semidefinite solution. No measure of efficacy of the algorithm was reported in the
paper. He later reported {39] that the efficiency and accuracy of these solutions
obtained using the least-squares algorithm depended on the initial estimate for C. In
this latter paper an algorithm was presented that used a modified Newton’s method
to find a positive semi-definite matrix in a non-convex space. This method relied on
constraints in the algorithm for convergence. Woodgate claimed this method offered
greater efficiency and better convergence properties than did his previous algorithm
(40], but these claims remain unsubstantiated.

The most recent reference to the residual-minimization problem in the open lit-

erature is by Andersson and Elfving (2]. They presented a survey of the theory
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and reported a numerical study comparing the convergence properties of gradient-
projection algorithms, a modified parallel-tangent method and a method presented
by Han and Lou [14]. The gradient-projection algorithms included the methods de-
veloped by Woodgate [40] and Allwright [1]. Andersson and Elfving observed that the
gradient-projection algorithms exhibited sensitivity to starting-matrix condition val-
ues. The residual error decreased monotonically for the gradient-projection methods.
although error for the parallel-tangent method was not consistent for high iteration
values (i.e. near convergence). The method of Han and Lou proved sensitive to
step length and initial conditioning of the problem. Of the three methods investi-
gated in this study, the authors preferred the gradient-projection methods because
they were more consistent in convergence and less sensitive to selection of step size
than the other methods. However, Andersson and Elfving concluded fast and robust
algorithms for convergence of the residual minimization problem have not yet been

developed.



Chapter 3

Determining the System

Compliance Matrix

This chapter contains a discussion of the process that was used to obtain the system
compliance matrix given twist and wrench data for an arbitrary mechanical system.
Consideration was given to the situation when experimentally gathered twist and
wrench data may be contaminated with noise. When this is the case, the calculated
system compliance matrix is rarely symmetric and positive semi-definite. A SPSD
matrix approximation method, presented in this chapter, is intended to ensure that
the compliance matrix is physically meaningful. Error-corrective measures. which
included system over-determination and SPSD approximation. were implemented and
evaluated for efficiency in reducing compliance matrix errors. The results of these

evaluations are presented at the end of this chapter.

34
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3.1 Determining the Compliance Matrix for a Me-
chanical System

Given perfect data, the compliance matrix C of a system configuration can be deter-
mined given applied force (wrench, w) and resulting displacement (twist. T) data. C

can be isolated in T = ACw to obtain
C = ATw™ (3.1)

In Equation (3.1), both T and w must be elements of R™**, m = n = 6, and A
ensures that twists and wrenches are in consistent notation. In Equation (3.1). the
twists T were given in axis coordinates and wrenches w were in ray coordinates. In
order to reduce the effect of noise and ensure that w is of full rank, the system is
generally over-determined and n > 6. When n > 6, w is not directly invertible.

There are two possibilities for obtaining the inverse of w.

3.1.1 Isolating the Compliance Matrix in Over-determined
Systems

The simplest means of isolating C entails post-multiplying both sides of Equation
(3.1) by w7 to obtain square matrices Tw” and ww?. In so doing, square invertible
matrices are obtained provided that the matrix is non-singular (i.e. det(wwT) # 0).

C can then be estimated as

C = ATwh ) (vw")™! (3.2)
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If ww” is not invertible, then the pseudo-inverse of the w matrix can be obtained
using singular value decomposition (SVD). The SVD of a matrix A € R™*" is a
decomposition of A into three constituent components: two orthogonal matrices U €

R™*™ and V' € R**", and a diagonal matrix of singular values £ € R™*" as
SVDA) =UZVT =4 (3.3)

One important property of orthogonal matrices is that the transpose is equal to the
inverse (i.e., [U]™! = [U]" and [V]~! = [V]T). The inverse of a diagonal matrix is
obtained by taking the reciprocal of the diagonal elements of the matrix, so oy, ™! = ;-.
In the case where o0;; = 0, the reciprocal is artificially set to zero. Taking the SVD of

w in Equation (3.1), results in
T = ACU,Z, VT (3.4)
C can be estimated as

C = ATV, 2;'UT (3.5)

3.2 Determining the Compliance Matrix from Ex-
perimental Data

Whenever data is collected experimentally, there will be error associated with the
measurements. Noise may interfere constructively or destructively with the magni-

tude of the electrical signal, resulting in increased or decreased magnitude of the
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measurement. This measurement error can propagate through calculations involving
the experimental data and affect the results such that they will not make sense when
applied to real systems. The calculation of the compliance matrix based on exper-
imentally acquired twist and wrench data is vulnerable to the propagation of such
errors, so the resulting compliance matrix is rarely SPSD.

As discussed in the preceding section, the SPSD requirement must be met for real
systems. When a compliance matrix does not meet these conditions, an approxima-
tion must be found that preserves the information provided by the experimentally
determined compliance matrix C.o, but also meets the SPSD criteria. In the preced-
ing chapter, two methods of obtaining a SPSD compliance matrix were presented.
Higham’s method [16] was selected for SPSD approximation based on its conciseness
and its guarantee of a SPSD solution. In Higham’s method, the SPSD matrix “near-
est” to the experimentally determined matrix was found by minimizing the Frobenius
norm of the residuals. This “nearest” matrix can be defined as a linear function Cypp -
that yields results that are very similar to results obtained with C.;, when applied
to an arbitrary vector of independent variables, X (i.e. Cm,(}? ) = Copp(X)). The
matrix C,pp is obtained by minimizing the residuals of the elements of the C,., and
Capps matrices in

[Cezp = CappelIF (3.6)

min

Higham’s method was based on an approximation method presented by Halmos [13]
in 1972. Halmos’ approximation method resulted in a non-unique solution for the
SPSD matrix problem. Halmos used the 2-norm to specify the distance from Cez, to

a SPSD approximant Cygp,. The 2-norm of a matrix was defined as the square-root
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of the spectral radius of a given matrix:
ICezpll2 = 1/ P(CLpCezp) (3.7)

The spectral radius p of a matrix B is defined as the maximum magnitude of the
eigenvalues of B. Halmos defined the distance from C., to a symmetric positive
semidefinite matrix Cypp, as the 2-norm of (Cezp —Capp,)- There is an analogy between
the distance between SPSD and non-SPSD matrices, and the distance between a
complex number N = a + b7 and a positive, real approximant R as illustrated in
Figure (3.1). The positive real approximant R of N is the real component a of V.
The distance from R to N is the magnitude of the imaginary component |b| of V.
The 2-norm distance between C.zp and Cypp,, is the distance from the .z, matrix
to a set of all positive approximants, implying there may be more than one within
that distance from C,,,. This suggests that the 2-norm method may not locate the
“nearest” matrix.

In 1988, Higham [16] presented a method by which a unique. nearest SPSD matrix
to a real matrix could be found by using the Frobenius norm to limit the range of the

search and identified a unique solution. The Frobenius norm is defined as

[Ceaplle = /33 (38)

Coappr the SPSD approximant t0 Cezp, is found by minimizing ||Cezp— Cappll%- Higham
first decomposed C.;, into a symmetric part D

]_)=C,'.¢..,,r,+();‘frp

5 (3.9)
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Figure 3.1: Real approximation of an imaginary number.

and a skew-symmetric part F

Cezp — CE
E= _"’i.z_“’; (3.10)
Because D + E = Cqp,
ID + E|z = [IDI|F + | Ellf = [|Cesnll7 (3.11)

The problem is thus reduced to one of finding a symmetric positive semidefinite

(SPSD) approximation for the symmetric component, D.

”Ce:rp - Cappr”?? = "D - Cappr”%‘ + ||E|lz (3-12)
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D can be decomposed into constitutive components using the singular-value decom-

position, so that

SVD(D) = ZAZ¥ =D (3.13)

where A is a diagonal matrix with elements |\,| and Z is an orthogonal matrix.
Because Z is orthogonal it can be used to transform a matrix to a similar matrix.
This is useful here because if A = ZTBZ then ||A||r = ||ZTBZ||r. Applying Z to

D = Coppp of Equation (3.12) gives

1D = Coppelle = 127 DZ = ZTCuppe Z11% = |IA - Y12 (3.14)
where
A=2TDZ (3.13)
and
Y =2TCoppr 2 (3.16)

The expansion of Equation (3.14) using the definition of the Frobenius norm gives
A-Y|;= nyj + Z(/\:’ —-yu)® > Z(’\z —ya)® > Z A7 (3.17)
1% t A <0 A <0

and all y; > 0 since Y must be symmetric positive semidefinite. There is thus a

unique solution for the problem of approximating a diagonal matrix ¥ which consists



CHAPTER 3. DETERMINING THE SYSTEM COMPLIANCE MATRIX 41

of the diagonal elements. ); for all \; > 0 and 0 for all A\; < 0. The rationale for
setting A, = 0 for A; < 0 was that Q is closer to A\, < 0 than |),|. A straightforward

means of systematically eliminating the negative diagonal elements is

D+ F
Cappp = 2 (3.18)

where F' = Zdiag(]\:|)Z7. The eigenvalues of Copp, are (X;(D) + A(F))/2. Higham
(15] took advantage of the relation of polar decomposition to singular value decorn-
position to obtain the symmetric SPSD matrix, £'. For the square compliance matrix
Cezp let the symmetric component D have the polar decomposition D = QF, where
Q is an orthogonal real matrix (QTQ = I) and F is a symmetric positive-definite
matrix (£ € §%). From the relationship between the polar decomposition (PD) and

singular value decomposition,

SVD : D=CTVT (3.19)

PD : D=QF (3.20)

D =QF = (UVT)(VEVT) = USBT, so

Q = UVT (3.21)

F = vzvt (3.22)

The positive approximant, Coppr, Was given in Equation (3.18) as (D + F')/2. The
eigenvalues of F are |A;(D)|. The averaging effect of Equation (3.18) results in can-

cellation of the negative eigenvalues of D and the resulting C,,p, meets the SPSD
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requirements.

Positive semidefinite approximation may provide meaningful results for a real svs-
tem. The following section on error-minimization evaluates the effectiveness of over-
determination of the mechanical system, and of SPSD approximation. in reducing the
error associated with the experimentally determined compliance matrix. The effec-
tiveness will be further evaluated for specific matrices in the computer simulations

contained in the following chapter.

3.3 Minimizing Error

Raw data do not necessarily conform to the requirements of the physical svstem as
was discussed in the preceding section. Inaccuracy of the compliance matrices may
arise from noise in force and displacement measurements. non-collocated reference
frames, and violation of experimental assumptions. These error sources can provide
indefinite and non-symmetric compliance matrices. This section details the proce-

dures implemented to reduce error and contains a discussion of their efficiency.

3.3.1 Apgreement with Twist “Small Angle” Requirement

In the section on screw theory in the introduction. the three angles of rotational
deformation of the twist were represented by a vector. 7. of rotations about the x.
v and z axes. These angles rotate the rigid body from its initial orientation to its
final orientation. In order to correctly represent these displacements as a vector, the
rotations must be order-independent. Order-independence is true of “small” angular

displacements, but how small is “small”? A Matlab function was written to perform
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a Monte Carlo simulation of angular displacements. The function first randomly
generated three angles between 0 and a user-specified maximum value in degrees.
These three angles were used to construct a rotation matrix, R, using the x-z-v Euler
angle notation. R was then decomposed using six distinct Euler angle notations to
obtain the individual rotations about each of the x, v and z axes. The calculated
rotational values were then compared with the original values of rotation. The Euler
decomposition method most sensitive to error was the y-z-x Euler angle notation.
which is the opposite order of the one used to construct the R matrix.

The data were repeatedly examined for increasingly large maximum angular val-
ues. It was determined that if all angles were less than 2 degrees the order-independence

assumption was valid with a mean error of 0° and standard deviation of +0.15°

(£7.5%).

3.3.2 Over-determination

In order to investigate the effect of over-determining the system, a Matlab simulation
program was written to generate a 6 x 6 random matrix B from a uniform distribution
between zero and one. The singular value decomposition (SVD) of the random matrix

was obtained. and a symmetric positive semi-definite matrix C was calculated as

C=VgIal¥

where V3 was an orthogonal matrix whose columns represent the eigenvectors of BT B
and g was the diagonal matrix obtained by SVD. Next, a random 6 xn wrench
matrix, w, was created. where 6 < n < 360. By combining the C and w in Equation

(1.7), a corresponding 6 xn twist matrix, 7', was obtained. The entries of the w
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and T matrices were perturbed by a small amount £ that represented noise in the
measurements of the wrenches and twists. The maximum amount of noise added to
each entry of the twist and wrench matrices was determined by p, the noise measured
as a percentage of the signal. as specified by the user. For the computer simulations.
5% < p < 20% was used to examine the stability of the estimation process. The value

of noise added to the signal was thus
k= (p+100) x wy; x (r +2)

where r was a random number from a normal distribution with standard deviation
of 1 and mean of 0. k.- had a value of p percent of the signal. The perturbed twist
and wrench matrices were denoted wezp and T.,, respectively. Using the perturbed

matrices, the compliance matrix, C,.z,, was calculated to be
Cerp = A(Tezpl,) (Werpwl ) ™! (3.23)

as described in the preceding chapter on determination of the compliance matrix. The
relative error of C,.;, with respect to the original symmetric positive-definite matrix

C was calculated as

1€ = Cempllr

iClr (3-24)

err =
where || -}|r indicates the Frobenius norm. This error measurement allowed evaluation
of the efficacy of over-determinacy for error-reduction.

Figures (3.2)—(3.4) display the results of the simulations with varying percentage
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of perturbation included in the T and w matrices. Figure (3.2) displays the results
obtained for a spectrum of 1000 randomly generated compliance matrices. In Fig-
ures (3.3) and (3.4), the results were obtained from a compliance matrix representing
systems with one and six DOF’s respectively. The abscissa of the graphs refers to
the number of twists or wrenches used to calculate the compliance matrix. and the
ordinate refers to the corresponding relative error between C,;, and the original com-
pliance matrix. For each point on the graph, 1000 repetitions were performed to
ensure that the wrench, twist, and perturbation matrices sufficiently sampled the
population. The Frobenius norms of the residuals were averaged over these 1000
trials.

The graphs in Figure (3.2) for the randomly generated compliance matrices demon-
strate a trend of decreasing error with increasing over-determination of the system.
The residual error was decreased to 0.52 + 0.09% for 5% noise content: 1.07 + 0.19%
for 10% noise content: and a mean error of 1.37 £ 0.75% for 5-20% noise content.
Results obtained for controlled ill-conditioned and well-conditioned compliance matri-
ces representing systems with 1 and 6 degrees of freedom respectively were similar to
those obtained for the randomly generated matrices. The results for an ill-conditioned
(condition value of 250) compliance matrix are shown in Figure (3.3) ; those for the
well-conditioned compliance matrix (condition value of 8) are shown in Figure (3.4).
This indicates that Higham's SPSD approximation method is reliable regardless of
the condition number of the matrix.

In all cases, the Frobenius norm of the residual and the standard deviation de-
creased with increasing over-determination, which indicated that over-determination

was effective in reducing error due to noise. Because residual errors for twenty-five
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Figure 3.2: Frobenius norm of residuals of the compliance matrix obtained from raw
twists and wrenches vs. randomly generated compliance matrices with noise contam-
ination of twists and wrenches of 5%-20% and varying system over-determination.
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Figure 3.3: Frobenius norm of the compliance matrix obtained from raw twists and
wrenches vs. the original compliance matrix for a 1 DOF system with noise contam-
ination of twists and wrenches of 5%-20% and varying system over-determination.
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times over-determined. or 150 observations, corresponded to 2.5% or less for 10% noise

content, 25 times over-determined systems were used for all simulations performed in

this thesis.

3.3.3 Symmetric Positive Semidefinite Approximation

The third method of error reduction applied to the simulated and experimental re-
sults was symmetric, positive semidefinite approximation of C.z,. Approximation
was done to ensure the compliance matrix conformed to the SPSD requirement of
real mechanical systems. The approximation method used here was presented in the
preceding chapter.

The efficacy of the SPSD approximation was examined in a similar manrer to
that discussed in the preceding section on over-determination. Again. simulations
were performed in which randomly generated twist and wrench matrices. based on a
symmetric positive-definite compliance matrix, were perturbed and a SPSD approx-
imant was calculated. The measure of success of the algorithm was two-fold: first
that a SPSD matrix was obtained, and second that the approximation improved the
residual error with respect to the original compliance matrix.

Results showed that the SPSD approximation was effective in consistently pro-
ducing a symmetric positive semidefinite matrix that met the criteria for real svstems
as outlined in the previous chapter. Results obtained for the residual errors are pre-
sented in Figures (3.5)-(3.7). As in the preceding section on over-determination,
simulations were performed for one thousand random matrices, one 1DOF matrix
and one 6DOF matrix. Approximation of the SPSD matrix was performed as a con-

tinuation of the evaluation of over-determination, and the same compliance. twist and
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wrench matrices were used at this stage.

These graphs are similar to the graphs in Figures (3.2)—(3.4). This result implies
that the majority of the error-reduction is achieved by over-determination of the
system. For closer examination of the effect of approximating the symmetric positive
semidefinite compliance matrix, the percentage difference in error for Cezp t0 Copp

(equivalent to C,pp,.) Was calculated. The results are reported in Figures (3.8)-(3.10).

As can be seen from Figures (3.8)—(3.10), SPSD approximation of the compliance
matrix provides a statistically significant improvement of the residual error obtained
for noisy data. These figures also indicate that SPSD approximation consistently
improves the estimate of the system compliance matrix.

All three error-reducing methods discussed in this section were implemented in

the simulations for real systems described in the following section.
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Figure 3.5: Frobenius norm of residuals of the approximant vs. randomly generated
compliance matrices with noise contamination of twists and wrenches of 5%-20% and
varying system over-determination.
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Figure 3.6: Frobenius norm of the approximant vs. the original compliance matrix
for a 1 DOF system with noise contamination of twists and wrenches of 5%-20% and

varying system over-determination.
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Figure 3.8: Percentage reduction in the Frobenius norms of the residuals for Cgpp vs.
Cezp for randomly generated compliance matrices with noise contamination of twists

and wrenches of 5%~20% and varying system over-determination.



CHAPTER 3. DETERMINING THE SYSTEM COMPLIANCE MATRIX

Percentage Reduction in Residual Ermor: 5% Noise

£ 8 e

Percent Enor Reduction

8

10

50 100 150 200 250 300 350 400
Number of Twists

Percentage Reduction in Residual Error: 10% Noise

Percen| Error Reduclion
8 & 8

N
o
—

- — r——

.

S0 100 150 200 250 300 350 400
Number of Twists

Mean Percentage Reduction in Residual Error: 5-20% Noise

T
o

L

3

Percent Ercor Reduction
8

Wr

-

50 100 150 200 250 300 350 400
Number of Twists

[$]]

Figure 3.9: Percentage reduction in the Frobenius norm of the residuals for Cypp, vs.
Cezp for a 1 DOF system with noise contamination of twists and wrenches of 5%-20%
and varying system over-determination.
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Chapter 4

Experimental Procedure and

Results

This chapter contains a description of the experimental procedure and the results
obtained for the computer simulations conducted to evaluate the viability of using
compliance matrices derived from experimental data to characterize mechanical sys-

tems.

4.1 Experimental Procedure

Computer simulations were conducted for fifteen system compliance matrices. The
majority of the matrices were diagonal matrices constructed to represent systems of
varying numbers and magnitudes of DOFs. Four of the matrices were extracted from
Patterson and Lipkin [29]. These four matrices represented compliance of a parallel
manipulator, a finger of the Stanford/JPL robot hand, an elastically suspended rigid

body and a six DOF robot performing a grinding operation. The fifteen compliance

57
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matrices varied in conditioning from 4 to 1060. The condition number of the ma-
trix is the ratio of the largest singular value to the smallest singular value obtained
from singular value decomposition. The conditioning of a matrix is a measure of its
sensitivity to error. Rows and columns associated with the largest values are most
susceptible to error arising from noise and other perturbations.

The computer simulation consisted of randomly generating a matrix of 150 wrenches
and calculating the corresponding twist matrix using one of the compliance matrices.
Noise was added to the twist and wrench matrices. The noise levels used for the
simulations were 5%, 10% and 20%. An intermediate compliance matrix was calcu-
lated using the perturbed twist and wrench data according to the method described
in the preceding chapter. The SPSD approximant was obtained for the intermediate
matrix using Higham’s method as described in the preceding chapter. At this point,
the SPSD approximant was compared to the original system matrix. The error for
the approximant was obtained by calculating the Frobenius norm of the residuals of
the approximant and the system matrix. and normalizing this value with respect to
the Frobenius norm of the system matrix.

Once a SPSD approximant was obtained, eigenscrew decomposition was performed
according to the method described in the theory section of the introduction. The
eigenscrew directions, pitches and eigenvalues of the approximant were calculated
and compared to the eigenscrew directions, pitches and eigenvalues of the system
matrix. Because calculation of the rotational and translational compliance is based
on ratio and multiplication of the eigenvalues and pitches, it was deemed sufficient
to measure the error in the latter two values and the eigenscrew direction in order

to evaluate the impact of error in the approximant on concliusions about the system
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drawn from eigenscrew decomposition.

The simulations were repeated 1000 times at 5%, 10% and 20% for each compliance
matrix. All points on the graphs in this chapter represent the mean error value and
standard deviation of 1000 trials. Computer simulations were used to evaluate the
utility of compliance-matrix analysis in experimental characterization of mechanical

systems. The fifteen compliance matrices examined were of three kinds:

e One matrix that represented a hinge joint. The matrix was constructed analyt-
ically to have high rotational compliance about a single axis. low translational
compliance along the hinge axis, and low compliance along and about all other
axes. This was an initial validation matrix, for which the compliant axis was

known and results were clearly interpreted.

e Four matrices from literature, all representing physical systems with varving
degrees of freedom and compliances. These matrices were secondary validation

matrices, for which the compliant axes were established through peer review.

e Ten diagonal compliance matrices, representing systems with varying compli-
ance states. The results could be validated by comparing the estimation with
the model, and no other validation was available due to the paucity of the

literature on this subject. (See Appendix A.)

The four matrices previously reported were taken from the work of Patterson and Lip-
kin [29], correcting obvious typographical errors in their article. These four matrices
represented the compliances of: a parallel manipulator [26]; a finger of the Stan-
ford/JPL robot hand [8]; a rigid body elastically suspended by a set of six springs:

and a six DOF robot performing a grinding operation. Condition numbers of the
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fifteen compliance matrices varied from 4 to 1060.

In each computer simulation 150 wrenches were generated, with each of the six
wrench values drawn from a normal distribution between -1 and +1 and multiplied by
a scaling factor which ensured that the small angle condition would not be violated.
For each wrench, the ideal twist was calculated as the matrix-vector product of the
compliance matrix and the wrench. In order to simulate effects of sensor noise. a
“noise” component of magnitude M,, was added to each element of the wrench vector.
Each noise component was drawn from a normal distribution between — M, and +M,,,
where M, represented a specified percentage of the element of the wrench vector. The
twist vector was similarly and independently contaminated with uniformly distributed
variates scaled to the element of the twist vector.

The noise levels used for the simulations were 5%, 10%, and 20% of the relevant
wrench element. The vectors were gathered into matrices that simulated time series
of measurements, and for each twist/wrench pair the intermediate compliance matrix
was calculated from the perturbed twist and wrench data using the method described
in the preceding chapter. The SPSD approximant to the compliance matrix was
obtained using Higham’s method, also described in the preceding chapter.

Each SPSD approximant matrix was compared to the original system matrix.
The error for the approximant was obtained by calculating the Frobenius norm of
the residuals of the approximant and the system matrix, and then normalizing this
value by dividing it by the Frobenius norm of the system matrix. This error value
represented an overall measure of the efficacy of the approximation.

For each SPSD approximant the eigenscrew decomposition was also obtained. as
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described above. The eigenscrew directions, pitches and eigenvalues of the approxi-
mant were calculated. Differences in eigenscrew directions between the approximant
and the original system were calculated as angles, using the standard definition that
the cosine of the angle between two unit vectors is the dot product of the vectors.
Because rotational and translational compliances are functions of the eigenvalues and
pitches, errors in the elementary values of eigenvalues and pitches were calculated
rather than calculating errors in the derived values. These error values represented
specific performance criteria of the approximation.

For each compliance matrix, 1000 sets of 150 wrench vectors were generated and
the corresponding twist vectors were calculated. Vectors in each set were contami-
nated with ro noise and with 5%, 10%, and 20% noise as described above. Mean

errors and standard deviations of errors were calculated for evaluation.

4.2 Results of Computer Simulations

The following four examples v-ere included to help illustrate the procedure described
in the preceding section and to present a sample of the results obtained for the fifteen

system compliance matrices.

4.2.1 Example 1: A Stiff Hinge

In order to verify that the analysis of rigid-body motions based on screw theory
produced useful and accurate information regarding the constraints of real mechanical
systems, the results for simulations of real systems were investigated extensivelv. The

following example is a simple diagonal matrix representing the compliance matrix of
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a stiff hinge with one rotational DOF.

62

Figure 4.1: The compliance of the stiff hinge in this figure was modeled by Chinge.

The compliance matrix of the hinge was based on the system illustrated in Figure

(4.1). The rotational degree of freedom occurred in the direction of the longitudinal

axis of the hinge, X. A compliance matrix for a stiff hinge was calculated as

Chinge =

L

CmnatT:

o o o o o

o o o

o o o C© o©

CmatR.

|

-

(4.1)

where Cnar. Cmatr represent the translational and rotational compliance of the hinge

material, respectively, and Cpinge is the rotational compliance of the hinge. The antici-

pated results for the eigenvalue and eigenvector decomposition of Chnge Were that the

largest eigenvalue should correspond to the x-direction and the pitch of the hinge axis

should be very small, indicating large rotational compliance and small translational
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compliance.

The value of Cpinge, Was 5}5, and the values of ¢ and cnqer in all directions
were ﬂlﬁ. The wrench matrix was randomly generated and the twist matrix was
obtained from the equation of compliance. Computation of the eigenvectors and
eigenvalues of the Chnge matrix was performed for non-noisy and noisy data. 5%.
10% and 20% noise were added to the twist and wrench matrices that were generated

for the hinge compliance matrix. The matrix of eigenvectors obtained for data with

0% noise content was

1.00 0 0 0 0 1.00
0 1.00 0 0 1.00 0
0 0 1.00 100 0 0
e= (4.2)
-0.10 O 0 0 0 0.10
0 -100 O 0 1.00 O
0 0 —-1.00 1.00 0O 0 J

Each column of the e matrix represents one eigenscrew. The direction of the eigen-
vector was given by the first three components of the eigenscrew. The corresponding

eigenvalues were

X= [—0.5 —0.05 —0.05 0.05 0.05 0.5] x 1073

The pitches of the eigenscrew axes were

E=[—o.1 -10 —-1.0 1.0 1.0 0.1]
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From the eigenvalues and the eigenscrew pitches, the rotational compliances were

calculated as
Cr = [50.0 05 05 0.5 05 50.0] x 1074

The translational compliances were also obtained using the eigenvalue and pitch for

each of the eigenscrews. These were

Cr = [0.5 05 05 0.5 035 0.5] x 107*

From the eigenvalues, eigenscrew directions and eigenscrew pitches it was determined
that the system consisted of three orthogonal compliant eigenscrews. Eigenscrew
pairs 1 - 6, 2 - 5, and 3 - 4 formed compliant axes. Compliant axes 2 - 5 and 3
- 4 had very small rotational compliance and 1 - 6 had 100 times larger rotational
compliance. From the rotational compliance and translational compliances. it was
easy to determine that the system had only one degree of rotational compliance and
was highly constrained in translation. Compliant axis 1 - 6 corresponded to the x-
axis of the hinge as was expected. The pitch of the 1 - 6 axis was calculated to
be +/- 0.1 which implies that for every unit of translational motion, there will be
10 units of rotational motion. Combining the pitches with the eigenvalues of the
hinge axis, a rotational compliance of 5.0 x1073 and a translational compliance of
5.0 x10™° were obtained. These results implied that the 1 - 6 compliant axis is
resistant to translational motion. The compliance results were in agreement with the
model of the hinge. The condition number of the compliance matrix was 100, which

is moderately ill-conditioned.
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5%, 10% and 20% noise were added to the twist and wrench data and the errors
relative to the original compliance matrix, and the eigenscrew decompositions were
calculated for 1000 trials. Figure (4.5) presents the error of the approximant rela-
tive to the original hinge matrix for each of the 1000 trials. Error reduction of the
approximant appears to be effective.

Figure (4.2) contains the results of angular error for each of the eigenvectors for
increasing noise levels. Errors for each of the corresponding eigenvalues are presented
in Figure (4.3). Errors in the eigenscrew pitches are displayed in Figure (4.4). Each
data point in these two figures corresponded to the average of a sample population
of 1000. As can be seen from Figure (4.2) the eigenvector directions for 2 - 4 and 3 -
5 compliant axes were very sensitive to noise. However, the eigenvector direction of
the 1 - 6 compliant axis was very stable. This suggested that the x-axis of the hinge
will be correctly identified to within one degree when 20% was added to the twists
and wrenches. The eigenscrew pairs 2 - 4 and 3 - 5 were confined to lie in a plane
orthogonal to the 1 - 6 compliant axis, but their directions could not be reliably
determined within the plane because these two compliant axes were not distinct.
Figure (4.3) shows the computations of the eigenvalues for the compliant axes were
robust with respect to added noise. Figure (4.4) indicates that the eigenscrew pitches
were reliably determined for each of the compliant axes. Table (4.1) contains the
values of the data used to construct these figures.

Table (4.1) presents the mean errors and standard deviations of the results for
eigenscrew angular error, eigenvector error and eigenscrew pitch error for each eigen-
screw with increasing noise content. The compliant axis had the largest error distri-

bution in pitches. The large errors in direction were attributed to (a) ill-conditioning
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Figure 4.2: Mean errors of eigenscrew directions for hinge model averaged over 1000
trials at 5%, 10% and 20% noise content.
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Figure 4.4: Mean errors of pitches for hinge model averaged over 1000 trials at 5%,
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Figure 4.5: Error of the approximant with respect to the hinge compliance matrix.

of the matrix and (b) algebraic multiplicity of the small eigenvalues. It was also
observed that, in spite of the large angular error distribution, the eigenscrews corre-
sponding to constrained directions remained in a plane orthogonal to the direction
of the most compliant eigenscrew axis. This is to be expected, because eigenvectors

with distinct eigenvalues must be orthogonal.
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Noise 1 2 3]

Eigen- | 5% || 0.0+£0.1] 1.7+255| -6.6+24.8
screw | 10% 0.0+0.2 | 1.84+27.3 | -10.4+25.4
Dir®(°) [20% || 0.0£0.5 | 2.1+26.7 | -9.9+24.9
Eigen- | 5% || 0.0£0.0] 0.0+0.0 0.02£0.0 |
valnes |[10% || -0.1%3.1| -0.1£02| -0.1%0.2
(%) |20% | -0.5£6.0| -0.3%06| -0.3%0.6
Pitches | 5% || 0.0£0.3] 0.0£0.0 0.0£0.0
(%) 10% || -0.1x0.5| 0.0+0.1 0.0+0.1
20% | -05+1.0| 0.0£0.3 0.0£0.3
Noise* 4 5 6

Eigen- | 5% || -4.8+24.4 | 0.8+24.9 0.0£0.1
screw | 10% | -1.5%27.0 | -0.6£27.2 | -0.2+0.2
Dir"®(°) [20% || 1.94£255 [-0.6£255 | -0.4+0.3
Eigen- | 5% | 0.0£00] 0.0£0.0 0.0£0.0
values | 10% || -0.1£0.2 | -0.1£02| -0.2%3.1
(%) [20% || -0.3£0.6 | -0.4+0.6| -0.5%6.0 |
Pitches | 5% || 0.0+£0.0 0.0+0.0 0.0£0.3 ]
(%) [10% || 0.0£0.1| 0.0£0.1 0.1£0.5
20% || 0.0+0.4| 0.0£04| -0.5+1.0

Table 4.1: Mean errors and standard deviations of eigenscrew direction. pitch and
eigenscrew for each of the eigenscrews of the hinge mode at 5%, 10% and 20% noise

content.

4.2.2 Example 2: A Finger of the Stanford/JPL Robot Hand

The passive compliance matrix of one finger of the Stanford/JPL robot hand was

given by Cutkosky etal [8] as

—

0.13
0
-0.02
0
—0.93

0

0
0.12
0
0.50
0
0.30

-
—-002 0 -093 O
0 0.50 0 0.30
0.02 0 0.10 0
x 1073
0 3.25 0 2.00
0.10 0 1200 O
0 2.00 0 1.25

70

(4.3)
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This matrix was ill-conditioned with a condition number of 964. As in the preceding
stiff-hinge example, the eigenscrews and eigenvalues were calculated based on the

compliance matrix. The normalized eigenscrews were

-

-0.31 -0.75 0 0 -0.75 -0.31

093 -047 0.14 -0.14 047 -0.93
-0.18 -047 -0.99 -099 -047 -0.18
e= (4.4)
-0.06 0.15 -0.65 065 -0.15 0.06

-0.10 -0.04 0.01 001 -0.04 -0.10

0.01 0 1.01 -1.01 0 -0.01

The corresponding eigenvalues were
X= [—0.98 —0.33 —0.02 0.02 0.33 0.98} x 107
The eigenscrew pitches were
h= [-0.08 —0.09 ~1.00 1.00 0.09 o.osJ
The rotational compliances of the eigenscrews were
Cr= [12.93 3.60 0.02 0.02 3.60 12.93] x 1073
The translational compliances of the eigenscrews were

Cr= [0.07 0.03 0.02 0.02 0.03 0.07] x 1073
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Due to the non-collinear eigenscrews, there were no compliant axes for the Stan-
ford/JPL finger in this posture. This result was not expected for this manipulator.
The small rotational and translational compliances reveal that the finger was very
stiff. The lack of compliant axes could be attributed to the high stiffness of the
manipulator that may have made decoupling of the imposed translations and rota-
tions impossible. Past experience indicated that this result may also be attributed to
erroneous reporting of the compliance matrix in the literature.

The error of the approximant relative to the compliance matrix in Equation (4.3)
was calculated for twists and wrenches containing 5%, 10% and 20% noise. The
results of these calculations are presented in Figure (4.6). These results are very

similar to those obtained for the hinge example.

F-Norm Residual Error of the Approximant
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Figure 4.6: Error of the approximant with respect to the compliance matrix of the
finger from the Stanford/JPL robot hand.
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Noise 1 2 3
Eigen- | 5% | 0.1+08 | 0.0£2.0 | -3.3-0.3:x18.9
screw | 10% || 0.1£1.7]| -0.1+4.0 1.6-.7:+30
Dir"5(°) [20% || 0.1£3.2. 0+75| 5.5-0.6:x40
Eigen- | 5% 12432 -6.4+9.8 -100.0£0.0
values | 10% -0.2+59 | -3.0£132 -100.0+0.0
(%) | 20% -0.6x10.2 | -2.1£189 -88.2+78.7
Pitches | 3% 34.3+81.2 | 33.0£79.5 32.6+£84.1 ]
(%) | 10% 33.1+85.1 | 36.9£92.8 33.6£81.5

20% 33.0+88.8 | 36.8£76.8 34.3+82.3

Noise 41 5 6
Eigen- | 5% || 15.3-0.2i£13.0 | 1.6+1.1 0.7+£0.5
screw | 10% || 21.3+0.1:£23.2 | 2.6%2.9 1.2+1.1
Dir®5(°) [ 20% [[ 21.2+0.1:%£352 | 2.0+7.2 1.1£3.1
Eigen- | 5% | -100.0+£0.0 | -7.0£9.2 -1.0£3.5
values [ 10% -100.0£0.0 | -2.2£13.4 -5.7£0.0
(%) | 20% -86.1+85.3 | -3.5+18.6 -0.9+10.4
Pitches [ 5% 33.6+83.7 | 36.3+£84.8 36.6+82.5
(%) 10% 34.4+82.0 | 34.7+91.3 33.4%+81.8

20% 36.9+78.9 | 30.0£87.2 37.0£77.2

Table 4.2: Mean errors and standard deviations of eigenscrew direction, pitch and
eigenvalue for each of the eigenscrews of a finger of the Stanford/JPL robot hand at
5%. 10% and 20% noise content.

Angular deviation of the eigenscrew directions. error in the eigenvalues and error
in eigenscrew pitches were calculated for each of the eigenscrews for varving noise
content. The results of these calculations are presented in Table (4.2). Error distri-
butions were large, especially for the eigenscrews corresponding to the smallest values
of compliance, 3 and 4. because of the nearly singular condition of the matrix. Be-
cause the compliance values of 3 and 4 were nearly 0, large error offsets and imaginary

values in the eigenscrews were occasionally obtained.
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4.2.3 Example 3: A Parallel Manipulator

74

The compliance matrix for a parallel manipulator was given by Patterson and Lipkin

[29] as

898

o O © © o

0 0
898 0
0 218
0 0
0 0
0 0

0
0
0
0
.0
0

This matrix is ill-conditioned, with a condition number of 864.

The normalized eigenscrews of the scaled compliance matrix were

-

1.0
0
0
—29.4
0

0
1.0
0
0
—-29.4
0

0 0
0 0
1.0 1.0
0 0
0 0
-1.4 14

0
1.0
0
0
29.4
0

1.0
0
0

294
0
0

where each column of e represents an eigenscrew. The corresponding eigenvalues were

X=[—30.5 -30.5 -15.2 15.2 30.5 30.5]
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The pitches of the eigenscrews were

k= [-29.4 -29.4 -14 14 294 29.4]

The rotational compliances were

C’R=[1.o 1.0 10.6 10.6 1.0 1.0]

The translational compliances were

Cr= [898.0 898.0 21.8 21.8 898.0 898.0]

The eigenscrews and eigenvalues presented here were consistent with the results re-
ported by Patterson and Lipkin {29]. The eigenscrews and eigenvalues at 0% noise
revealed that the system had three pairs of eigenscrews that met the criteria of com-
pliant axes (eigenscrew pairs 1 - 6, 2 - 5, and 3 - 4). These three compliant axes
formed an orthogonal system with axes coinciding with the x-, y- and z-directions
of the parallel manipulator’s coordinate frame. Calculation of the rotational and
translational compliance for each of the eigenscrews revealed that the x-directed and
v-directed compliant axes had high translational compliance, whereas the z-directed
compliant axis had high rotational compliance. These results suggest that this is a
3-DOF system.

5%, 10% and 20% noise was added to the twists and wrenches. The relative errors
in the approximant were comparable to those obtained in the other examples.

Mean errors and standard deviations of errors are presented in Table (4.3). The
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Figure 4.7: Error of the approximant with respect to the compliance matrix of the
parallel manipulator.

eigenscrews corresponding to the large diagonal elements were especially susceptible
to noise, and poor results were obtained. Again, the two largest eigenvalues were
equal and the matrix was ill-conditioned. This is a situation similar to the stiff-hinge
example and the results are similar to those obtained for the hinge.

It should be noted that Patterson and Lipkin multiplied the values of the matrix by
10*. This magnification factor calls into question the effect of scaling on the estimation
of the compliance matrix. The original matrix calculated by Merlet [26] used units of
Newtons and millimeters, with the matrix having a condition number of 864. These
units are inconsistent with SI usage. When units of Newtons and meters were used to
calculate C. the condition number was 24 000, which is essentially a singular matrix.

When Patterson and Lipkin reported their results in Newtons and millimeters they
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did not scale angular measurements accordingly, hence the change in the condition
number of the matrix. For both the scaled and unscaled compliance matrices the
eigenscrew directions and eigenvalues were the same, but the magnitude of the pitch
changed substantially because the angles were not reported in milli-radians to ensure
consistency between the units. The effect of scaling and unit consistency was not
thoroughly investigated in this work, but the decrease in the condition number of
Merlet’s compliance matrix suggested that a matrix’s sensitivity to error. can be
improved by astute selection of units. Care must be taken to ensure consistency in

the units for a correct eigenscrew decomposition to be obtained.

4.2.4 Example 4: A 6 DOF Robot for a Grinding Operation
The passive compliance matrix for a six-DOF robot used in grinding operations was

reported by Patterson and Lipkin [29] as

(0 8 0 0 0 0 0
0.59 0 0 0 1.20

0 0 100 0 0

4
0
0 0 1.2 0 -450 0
0
0 0 —-450 0 210 0
0

1.20 0 0 0 3.00
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Noise 1 2 3

Eigen- | 5% | -3.0£26.4 | -2.1£26.5 -0.1+0.3
screw | 10% || -1.6+£26.9 | 0.0+27.1 -0.2+0.6

Dir®$(°) [20% || 0.3£32.1] 1.4%39.1 0.0+11.8
Eigen- | 5% 0.0+53] -01%x52] -0.1+0.4
values | 10% || -0.2+10.5 | -0.5+10.3 -0.4+0.9
(%) [20% || 0.4+18.7 | -5.6+24.7 14111 |

Pitches | 5% 0.5+0.7] 0.4+0.7 0.0£0.4
(%) 10% || 1.7£26 [ 21%2.9 -0.1+0.8

20% || 7.0+8.8 | 15.7£26.8 | -67.3+£227.7

I Noise 4 5 6
Eigen- | 5% -0.1+£0.3 | 2.2+26.5 -1.6+£26.6
screw | 10% -0.1+£0.6 | 1.0+£27.2 -3.6+£26.8

Dir™S(°) [ 20% || -0.3£3.0 | -0.8£34.4 | -2.7+31.7
Eigen- | 5% -0.1+0.4] -0.1+5.3 -0.2+54
values | 10% || -0.5%0.9 | -0.5£10.3 | -0.3+105
(%) 20% || -2.0+£2.1] -3.0£22.0 0.2+19.4

Pitches | 5% -0.0£0.4] 0.4%0.7 0.5+0.8
(%) [10% || -02+£09| 2.2+338 1.8£238

20% || -4.5+381 | 11.8+17.0 T2£87

78

Table 4.3: Mean errors and standard deviations for eigenscrew direction. pitch and
eigenvalue of each eigenscrew of the parallel manipulator at 5%. 10% and 20% noise

content.
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The system eigenscrews were

1.00
0
0
-0.07
0
0

0
—0.96
0.29
0
0.16
0.17

The corresponding eigenvalues were

-0.79
-0.61
0
—0.11
0.45

0
0.79
-0.61

-0.11

-0.45

0 1,00-
-096 0
~-029 0

0 0.07
-016 O

0.17 0 J

X= [—6.93 —2.22 —063 063 2.22 6.93]

The pitches of the eigenscrews were

k= [—0.07 -0.11 —-0.19 0.19

The rotational compliances were

0.11 0.07]

Cr= [100.00 20.63 3.37 3.37 20.63 100.00]

The translational compliances were

Cr= [0.48 0.24 0.12 0.12 0.24 0.48J

(4.8)

Eigenscrew decomposition of the compliance matrix in Equation (4.7) revealed the ex-

istence of one compliant axis collinear with the x-axis of the system coordinate frame.
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The 1 - 6 pair of eigenscrews formed the compliant axis. The other four eigenscrews
were perpendicular to the compliant axis. Calculation of the eigenscrew compliance
revealed that the compliant axis was predominantly rotationally compliant. Eigen-
screws, 2, 5. 3 and 4 were less rotationally compliant. Translational compliance also
decreased for the 2, 5, 3 and 4 eigenscrews.

The compliance matrix in Equation (4.7) was calculated from noise contaminated
twists and wrenches. The approximant was compared to the original matrix. with
the errors presented in Figure (4.8).

F-Norm Residual Error of the Approximant
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Figure 4.8: Error of the approximant relative to the compliance matrix of the 6 DOF
robot for grinding operations.

Eigenscrew directional error, eigenvalue error and eigenscrew pitch error were
calculated for 5%, 10% and 20% noise. The results of these trials are presented in

Table (4.4). The distribution of the errors in eigenscrew directions were small. The
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Noise 1 2 3

Eigen- | 5% | 0.1£0.4|-08+09| 05%1.4
screw | 10% | 0.2£0.9 | -0.1£L1.7| 0.7£2.9
| Dir"S(°) [20% || 0.1£1.9 [-0.2+3.8 [ 1.8%6.4
Eigen- | 5% | 0.0£2.2[-0.1£2.1| -0.4%4.1
values | 10% | -0.1+4.3 | -0.5+4.3 | -1.7£8.0
(%) [20% || -1.3£8.4 | -2.1£8.2 | -5.1£16.7
Pitches | 5% | 0.0+0.4] 0.1+£1.8| 0.2%35
(%) [10% | 0.0£0.7 | 0.4£36| 0.8£6.38
20% || -0.1£1.4| 0.9+7.1| 3.5£146

Noise || 4] 5 6

Eigen- | 5% | 0.1£1.5]-0.1£0.9| -0.1+0.4
screw | 10% || 0.3£3.0 | -0.1£1.7 | -0.2%0.8
Dir®(°) [20% || 0.9%6.5 | -0.2£3.7| -0.3x1.8
Eigen- | 5% || -0.2+4.0]-02+2.1[ -0.1%£2.2
values | 10% || -1.5£8.0 | -0.8+4.2 | -0.3%4.3
(%) |20% || -5.4£16.0 | -2.0£8.4 | -03%84
Pitches | 5% | 0.1+3.4| 0.1+£1.8| -0.0+0.4
(%) [10% || 0.8%6.9 | 0.4£3.5| 0.0%0.7
20% || 3.6+14.1 | 0.8£7.6 | -0.1x1.4
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Table 4.4: Mean errors and standard deviations of eigenscrew direction, pitch and
eigenvalue associated for each of the eigenscrews of the robot performing a grinding
operation at 5%, 10% and 20% noise content.

error distribution for the eigenvalues and pitches were larger, as expected for a poorly
conditioned matrix. The relatively small errors in eigenscrew directions is because all

eigenvalues were distinct.
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4.2.5 Example 5: An Elastically Suspended Rigid Body

82

The compliance matrix of an elastically suspended rigid body was reported by Pat-

terson and Lipkin [29] as

The corresponding eigenvalues were

40.40 0 0 -16.00 0
0 30.00 0 0 —11.80
0 0 31.80 0 0
C =
—16.00 0 0 56.20 0
0 —11.80 0 0 10.50
0 0 -13.10 0 0
The normalized eigenscrews of C' were
1.00 0 0 0 0
0 0 1.00 -1.00 O
0 1.00 0.00 0.00 1.00
e(0) =
-0.85 0 0 0 0
0 0 -169 -169 O
| 0 -1.12 -0.00 0.00 1.12

0

0
-13.10

0

0

25.40

1.00

A0) = [—63.65 —41.52 -=29.55 5.95 15.32 31.65]

(4.10)
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The eigenscrew pitches were

h{0) = [—0.85 —-1.12 -1.69 1.69 1.12 0.85]

The rotational compliances were

Cr(0) = [75.07 37.11 17.48 3.52 13.69 37.33]

The translational compliances were

Cr(0) = [53.97 46.46 49.95 10.05 17.14 ‘26.83]

There were no compliant axes in this system because there were no equal values of
compliance. The eigenscrews formed an orthogonal system and demonstrated that
the compliance behaviour of the rigid body could not be decoupled. The errors for
eigenscrew direction. pitch and eigenvalue are presented in Table (4.5). The mean
errors and standard deviations were small as was expected because of the condition

number of 13.4 of the compliance matrix.

4.3 Summary of Results of Computer Simulations

The results for the remaining ten compliance matrices investigated were consistent
with the results presented in the examples. Ill-conditioned matrices consistently
vielded large error distributions (+£10% to £25%) for eigenvalues and eigenscrew
pitches. The eigenvalues were more sensitive to ill-conditioning than the eigenscrew

pitches. When matrix ill-conditioning was combined with non-distinct eigenvalues,
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Noise 1 2 3
Eigen- | 5% | -0.0£0.3 | -0.0+0.4 [ 0.0£0.5
screw | 10% || -0.0£0.6 | -0.1+£0.9 { 0.0£1.0
Dir"(°) [20% [ -0.0£1.1 [ -0.1+1.7 | -0.1£2.0 |
Eigen- | 5% || -0.1+£0.4 | -0.1£0.4 | -0.1£0.4
values | 10% || -0.2+0.8 | -0.2£0.8 | -0.3£0.8
(%) [20% || -1.0£1.5 | -1.0%1.6 | -0.9+1.6
Pitches | 5% || 0.0+0.3 [ -0.0£0.4 | 0.0+0.4
(%) |10% || -0.0%0.7 | -0.0£0.7 | -0.0£0.8

20% || -0.1x1.4| 0.0£1.4|-0.0£1.6

Noise 4 5 6
Eigen- | 5% || -0.0£0.3 | -0.0£0.4 [ 0.0£0.5
screw | 10% || -0.0£0.6 | -0.1£0.9 [ 0.0£1.0
Dir™8(°) [ 20% || -0.0+£1.1 [ -0.1+1.7 | -0.1£2.0
Eigen- | 5% || -0.1£0.4 [ -0.1+0.4 [ -0.1£0.4
values | 10% || -0.2+0.8 | -0.2+0.8 | -0.3%£0.8
(%) 120% || -1.0£1.5 | -1.0£1.6 | -0.9£1.6
Pitches | 5% || 0.0+0.3 [ -0.040.4 | 0.0+0.4
(%) |10% || -0.0£0.7 [ -0.0£0.7 | -0.0%0.8

20% || -0.1£1.4 | 0.0+£1.4|-0.0%1.6
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Table 4.5: Mean errors and standard deviations for eigenscrew direction. pitch and
eigenvalue for each of the eigenscrews of an elastically suspended rigid body at 3%.
10% and 20% noise content.
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F-Nom Residual Error of the Approximant
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Figure 4.9: Error of the approximant relative to the compliance matrix of the elasti-
cally suspended rigid body.

the eigenscrew directions were poorly determined. When a matrix was well con-
ditioned. the error distributions were reduced for all criteria examined. When there
were no compliant axes. it was difficult to determine the number of degrees of freedom

of the system.



Chapter 5

Conclusions, Recommendations

and Future Work

This thesis addressed the question, “Is it possible to determine the number. directions
and magnitudes of compliance of a system for which there is no a prior knowledge of
the system geometry?” While exploring the possible methods of solving this problem.
an intermediate goal became the accurate determination of the system compliance ma-
trix. The primary contribution of this thesis was the presentation of a viable solution
for describing the static properties of any mechanical or biomechanical system. This
chapter contains a discussion of the success of this project in meeting the goals of

this thesis. and of remaining work to improve the current solution technique.

5.1 Conclusions

The results of the computer simulations reported in the preceding chapter demon-

strated that it was possible to determine the compliance matrix of a system based on

86
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the experimental wrench and twist data, regardless of the extent of knowledge of the
system geometry. Higham’s SPSD approximation method was successful in reducing
error incurred by noisy data and obtaining a SPSD matrix. The normalized Frobenius
norm of the residuals of the approximant revealed that the compliance matrix could
be determined to within 4% of the actual system compliance matrix when 20% noise
was added to the twist and wrench data. The success of the eigenscrew decomposi-
tion in determining the number, direction and magnitude of the degrees of freedom
of the system was difficult to measure, because the accuracy of the information ob-
tained through eigenscrew decomposition was dependent on matrix conditioning and

algebraic multiplicity of the compliance matrix.

5.1.1 The Effect of Matrix Conditioning

The condition number of the compliance matrix was a good indicator of the accuracy
of the results obtained with eigenscrew decomposition. Ill-conditioned compliance
matrices exhibited increased sensitivity to noise when the eigenscrew decomposition
was applied. Large errors in eigenvalue and pitch magnitudes were associated with
ill-conditioned matrices. When the compliance matrix was ill-conditioned. the results

obtained with eigenscrew decomposition were unreliable.

5.1.2 Algebraic Multiplicity

Algebraic multiplicity posed problems in detection of eigenscrew direction when this
situation was combined with ill-conditioning. Algebraic multiplicity occurred when
two or more compliant axes had equal compliance magnitudes. When four of six eigen-

screws had equal magnitude of compliance, these four eigenscrews were constrained
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to lie in a plane orthogonal to the direction of the remaining two eigenscrews. When
noise was added to the twists and wrenches, the directions of the four eigenscrews re-
mained confined to the plane orthogonal to the two remaining eigenscrews. but their

directions within the plane could not be reliably determined.

5.1.3 System Coupling in the Compliance Matrix

Non-zero off-diagonal elements of the compliance matrix indicated coupling in the
system. When the system was compliant, the compliance matrix was diagonalizable
by transforming the system to a new reference frame. However, non-diagonalizable
matrices existed (e.g. Example 5 in Chapter 4) in which there was extensive cou-
pling. In these situations, more information about the system could be gained from
examination of both the compliance matrix coupling and the eigenscrew analysis.
For this reason. it is very important to consider the compliance matrix as well as the
eigenscrew decomposition when analyzing system DOFs. Due to the possibility of
extensive coupling within the system, all six DOFs of the system must be measured
until it is possible to determine that fewer DOFs exist. The extent of coupling may

indicate the existence of skew axes.

5.2 Recommendations and Future Work

The work presented in this thesis in no way exhausts the breadth of topics to be inves-
tigated with regard to compliance matrices. This section contains a brief description

of a few of the topics that remain to be explored.
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5.2.1 Improving the Compliance Matrix Approximant: SPD
Matrices

Higham’s method of obtaining a SPSD matrix approximant was used in this thesis.
but a second approach to the problem of obtaining a SPSD matrix was discussed in
the review of relevant literature (Chapter 2). This alternate approach was posed as
a problem of minimizing residual errors. The error-reducing capabilities of each of
these methods should be compared.

One short-coming of Higham's approximation method is that it returns a semi-
definite approximant. This approximant can be singular or ill-conditioned. producing
difficulties in performing the eigenscrew analysis as discussed above. Restricting the
approximant to a symmetric, positive-definite (SPD) solution would improve relia-
bility of the results obtained with the eigenscrew analysis and possibly improve the

residual error of the approximant as well.

5.2.2 Optimization of Matrix Conditioning via Scaling

Compliance matrices can be divided into four quadrants. based on the units in each

quadrant, so

A B
BT D

C =

where A has units of length over force (%), B and BT have units of unity over force
(%), and D has units of unity over force times length (5L=). By careful selection

of the units of length (e.g.. mm, m, km) it is possible to change and improve the
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condition number of the compliance matrix. This was demonstrated by Merlet [26]
for the compliance of a parallel manipulator in Example 2 of Chapter 4. Further
investigation into the effect of scaling on matrix conditioning and eigenscrew analyvsis
would be useful. It may be possible to optimize the condition number of the matrix

by careful selection of scaling.

5.2.3 Minimization of the System Coupling

It may be possible to select a reference frame that diagonalizes the compliance ma-
trix, or that minimizes the off-diagonal values in the compliance matrix. Loncaric
[24] described how to transform stiffness and compliance matrices into other coor-
dinate systems. Finding the optimal transformation (rotation and translation) that

diagonalizes the matrix may prove to be challenging.

5.2.4 Application to Mechanical and Biological Systems

The methods of DOF analysis presented in this thesis have not been applied to real
systems. The application of compliance matrix evaluation and eigenscrew decom-
position to mechanical and biological systems is the next obvious step. The results
obtained from the computer simulations were promising for potentially determining
the compliance matrix for any multi-body system. According to the computer simu-
lations, it should be possible to analyze the DOF's based on experimental wrench and
twist data. It should be noted that care should be taken to collocate the reference
frames of the twists and wrenches. The condition and rank of the wrench matrix
should also be monitored in order to ensure the richness of the data. Inertial effects

within the system should be avoided when measuring the applied wrenches in order to
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ensure the equilibrium criterion. Finally signal conditioning should be used to elim-
inate as much noise as possible from the twists and wrenches without compromising

the quality of the measurements.

5.3 Summary

This work originated from a biomechanical problem for which the magnitude and
direction of the passive constraints of the human knee were required. The knee is
a complex three-body system with passive motion constrained by ligamentous soft-
tissue and bone-on-bone contact. There is redundancy in the constraints of the knee
because the failure of one ligament does not result in an unconstrained range of
motion. Each knee is geometrically unique which means that the location of the
insertion sites of the ligaments vary slightly from knee to knee. The stiffness of the
ligaments and the density of the bone also vary depending on the age of the tissue, and
quality of the tissue which degrades in the presence of joint disease such as arthritis.
For these reasons, finding the constrained directions of motion of the knee and the
amount of constraint are not easily determined using conventional methods where
geometry and material properties are known and constant.

The results of this work suggest that the number, directions and magnitudes of
constraint can be determined for any mechanical system. The methods of analysis
here could be useful as a tool for design and analysis of prosthetic joints, the diagnosis
of human joint instabilities and the detection of unwanted constraint or compliance

in robot manipulators as they interact with their environments.
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Appendix A

Ten Diagonal Compliance Matrices

The results of the computer simulations for ten different diagonal compliance ma-
trices are summarized in this appendix. The matrices were constructed to simulate
the compliance matrices of stiff mechanical systems with varying numbers and mag-
nitudes of DOF's. For each matrix, 1000 trials were performed at 3 noise levels (5%.
10% and 20 %). For each trial, 150 samples of twists and wrenches were generated
and contaminated with noise. The compliance matrix was reconstructed from the
twists and wrenches, and the SPSD approximant was calculated. The eigenscrew
decomposition of the compliance matrix was performed in which the eigenscrew di-
rection and pitch, the eigenvalues. and the rotational and translational compliance
were calculated. Mean errors and standard deviations of the eigenscrew directions.
eigenvalues and eigenscrew pitches are presented in the tables for each matrix. The

results were discussed in Chapter 4.
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A.1 One Rotational DOF System

The compliance matrix is

0.

01 -

The normalized eigenscrews of C, were

| 1.00
0
0
—0.06
0
0

The corresponding eigenvalues were

A= [—0.32 —0.06 —0.04 0.04 0.06 0.32] x 1072

The eigenscrew pitches were

0 0 0 0
03 0 0 0
0 003 O 0
0 0 500 O
0 0 0 0.10
0 0 0 0
0 0 0
1.00 0 0
0 1.00 1.00
0 0 0
-0.55 0 0
0 —-0.78 0.78

x 1073

h = [-—0.06 -0.55 -0.78 0.78 0.55 0.06]
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The rotational compliances were

R = [5.00 0.10 0.05 0.05 0.10 5.00] x 1073

The translational compliances were

Cr= [0.02 0.03 0.03 0.03 0.03 0.02] x 107°

The compliance matrix had three orthogonal compliant axes. two of which were very
stiff. The condition number of the matrix was 250 which is moderately ill-conditioned.
There was no algebraic multiplicity. Figure A.1 summarizes the results obtained for
the residual error of the approximant. Table A.1 contains a summary of the errors
obtained for the eigenscrew directions, the eigenvalues and the eigenscrew pitches for

increasing noise level.
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Noise 1 2 3
Eigen- | 5% | 0.0£0.1 | 0.0£0.3 | -0.1£0.2
screw | 10% || 0.0£0.3 | 0.0£0.6 | -0.1£0.5
Dir®5(°) [20% || 0.0£0.5| 0.0£1.5 | -0.1£1.5
Eigen- | 5% || 0.0£2.6 | 0.0+0.0 | 0.0+0.1
values | 10% || 0.2+4.7 | -0.1£0.1 | -0.1£0.2
(%) [ 20% || -0.8+£9.8 | -0.5+1.0 | -0.5%0.7
Pitches | 5% || 0.0£0.3 | 0.0+£0.0 [ 0.0+0.0
(%) [10% |[-0.1£0.5 | 0.0£0.1 | 0.0+0.1

20% || -0.5+£1.0 | 0.1£1.0] 0.2+06

Noise 4 5 6
Eigen- | 5% || 0.0+£0.2 | 0.0+£0.3| 0.0+0.1
screw | 10% || 0.0%0.6 | 0.0£0.6 | 0.0+0.3
Dir"®(°) [20% || 0.0+1.5] 0.0£1.5 ] 0.0+0.5
Eigen- | 5% || 0.0£0.0 | 0.0£0.0 ] -0.1+2.7
values | 10% || -0.1£0.2 | -0.1£0.1 | -0.4+4.7
(%) |[20% || -0.5%0.7 | -0.5+1.1 | -0.1+9.8
Pitches | 5% || 0.0£0.0 | 0.0+£0.0 | 0.0+0.3
(%) |[10% || 0.0£0.1 | 0.1£0.1 | -0.1+0.5

20% [| 0.2+0.6 | 0.1+1.0 | -0.5£1.0
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Table A.1: Mean errors and standard deviations for eigenscrew direction. pitch and
eigenvalue for each of the eigenscrews of C; at 5%, 10% and 20% noise content.
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F-Norm Residual Error of the Approximant
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Figure A.1: Error of the approximant relative to compliance matrix C;.

A.2 Two DOFs System: Collinear Rotational and
Translational

The system compliance matrix was

250 0 0 0 0 0
0 003 O 0 0 0
0 0 003 0 0 0
Cz =
0 0 0 500 O 0
0 0 0 0 010 0O
0 0 0 0 0 0.05
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The normalized eigenscrews of C, were

1.00 0 0 0 0 1.00
0 1.00 0 0 100 0O
0 0 1.00 100 O 0
-0.71 0 0 0 0 071
0 —0.55 0 0 035 0

0 0 -0.78 0.78 0 0

The corresponding eigenvalues were
X= [—3.53 -0.06 —0.04 0.04 0.06 3.53] x 1073
The eigenscrew pitches were
h= [—0.71 ~0.55 —0.78 0.78 0.55 0.71]
The rotational compliances were

Cr= [s.oo 0.10 0.05 0.05 0.10 5.00] x 1073

The translational compliances were

Cr= [2.50 0.03 0.03 0.03 0.03 2.50J x 1073
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The system had three compliant axes and no algebraic multiplicity. The condition
number was 167. Two of the directions were very stiff. The translational and rota-
tional compliance of the x-direction was correctly identified. Figure A.2 presents the
residual errors of the approximant for increasing noise. Table A.2 presents a summary

of the errors in eigenscrew direction, eigenvalues and eigenscrew pitches.

F-Norm Residual Error of the Approximant
45 v r . r

% Error

B . J

10 15 20 25
% Noise

o
(S48 o

Figure A.2: Error of the approximant relative to compliance matrix Cs.
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Noise 1 2 3

Eigen- | 5% 0+0.2| 0%0.1 0+0.1
screws | 10% | -0.1£0.3| 0+0.3|-0.1£04
Dir®(°) [20% || -0.2£0.6 | 0+0.8 | -0.2+1.1
Eigen- | 5% [} -0.1+0.4 | 0.0%0.1 | -0.1£0.1
values | 10% || -0.2+0.8 | -0.1£0.2 | -0.2+0.2
(%) 20% || -0.9£1.7 { -0.7+£1.0 [ -0.7£0.7

Pitches | 5% || 0.0£0.4] 0.0+0.0 | 0.0+0.0
(%) 10% || 0.0£0.7 | 0.1+0.1 | 0.1+0.2

20% || -0.1+1.5 | 0.2+£0.9 | 0.2+0.6

Noise 4 5 6

Eigen- | 5% || 0.0£0.1 | 0.0£0.1 | 0.1%0.1
screws | 10% || 0.0+0.4 | 0.0+0.3 | 0.1+0.3
Dir?5(°) [20% || 0.0+1.2] 0.0£0.8 | 0.3%£0.5
Eigen- | 5% |{ -0.1£0.1 | 0.0+0.1 | -0.1+0.4
screw | 10% || -0.240.2 | -0.2£0.2 | -0.3+0.8
(%) [20% || -0.7+£0.8 | -0.7£1.1 [ -0.9%1.7

Pitches | 5% || 0.0+0.0 | 0.0£0.0 | 0.0+£0.4
(%) [10% || 0.1x0.2]| 0.1£0.| 0.0£0.7

20% || 0.2*0.6 | 0.2£0.9 | -0.1£1.5
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Table A.2: Mean errors and standard deviations for eigenscrew direction, pitch and
eigenvalue for each of the eigenscrews of C; at 5%. 10 % and 20% noise content.
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A.3 Two DOFs System: Non-collinear Rotational
and Translational

The system compliance matrix was

- -
002 O 0 0 0 0
0 250 O 0 0 0
0 0 003 O 0 0
Cs; =
0 0 0 500 O 0
0 0 0 0 010 O
i 0 0 0 0 0 0.05

The normalized eigenscrews of C; were

- -

0 1.00 0 0 100 O
1.00 0 0 0 0 1.00
0 0 1.00 100 O 0
0 —0.06 0 0 006 O
-5.00 0 0 0 0 5.00
0 0 -0.78 0.78 O 0

The corresponding eigenvalues were

X=|-050 —0.32 —004 004 0.32 0.50} x 1073
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The eigenscrew pitches were
h= [—5.00 ~0.06 —0.78 0.78 0.06 5.00]
The rotational compliances were
Cr = [0.10 5.00 0.05 0.05 5.00 0.10] x 1073
The translational compliances were

C}=[2.50 0.02 0.03 0.03 0.02 2.50] x 1073

Again, there were three compliant axes and no algebraic multiplicity. The condition
value of the matrix was 250. Eigenscrew decomposition identified the non-collinear
translational and rotational compliance. The residual errors of the approximant are
summarized in Fiigure A.3. Table A.3 summarizes the errors in the eigenscrew direc-
tions, the eigenvalues, and the eigenscrew pitches. The stiff axis had large errors in

eigenscrew pitch values.



APPENDIX A. TEN DIAGONAL COMPLIANCE MATRICES

| Noise 1 2 3
Eigen- | 5% 0.3£10.7 | 0.0£0.2 0.0+£0.3
screw | 10% -0.2£19.5| 0.0£5.3 -0.1£0.5
Dir®(°) [ 20% -1.0+25.8 | 1.3£24.7 -0.2+1.2
Eigen- | 5% 0.0+09 | -0.1£25 0.0+0.1
values | 10% -0.2£2.4 | 0.4%81 -0.2+0.2
(%) |20% -3.8+£11.8 | 14.8+26.9 -0.7£0.8

Pitches | 5% 3.3+5.0] -0.1£03 ] 76.4+97.2
(%) | 10% 9.9+11.3 | -0.3%0.6 | 100.8+100.0

20% || 24.7£22.7| -1.0£1.6| 98.4+99.8

1 Noise 4 5 6
Eigen- | 5% 0.0+£0.3| 0.0£0.2| -0.3x10.6
screw | 10% -0.1+£0.5 | -0.1+7.2 -0.5£18.5

Dir™5(°) [20% || -03%1.2 | -0.7£38.7 0.8420.2
Eigen- | 5% -0.1£0.1 | -0.1£25 0.0£0.9
values [ 10% -0.2+0.21 04x72 -0.6x4.6
(%) [20% -0.7£0.8 | 4.2x187| -10.0+16.9

Pitches | 5% || 76.4%97.2 | -0.1£0.3 3.3+5.1
(%) 10% || 100.8£100.0 | -0.3+0.6 10.1£11.8

20% | 98.4X99.8 | -1.0%x1.5| 238*2l.5
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Table A.3: Mean errors and standard deviations for eigenscrew direction, pitch and
eigenvalue for each of the eigenscrews of C3 at 5%, 10 % and 20% noise content.
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F-Normm Residual Error of the Approximant
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Figure A.3: Error of the approximant relative to compliance matrix Cj.

A.4 Two Rotational DOFs System

The compliance matrix was

002 0 0 0 0 0
0 003 O 0 0 0
0 0 0603 O 0 0
C4 = X 10-3
0 0 0 5.00 0O 0
0 0 0 0 25 0
0 0 0 0 0 O.OSJ
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The normalized eigenscrews of C, were

[ 1.00 0 0 0 0 1.00-
0 1.00 0 0 1.00 0
B 0 0 1.00 1.00 0 0
o7 —0.06 0 0 0 0 0.06
0 -0.11 0 0 011 0
0 0 —0.78 0.7746 0 0 )

The corresponding eigenvalues were
A= [—0,32 ~0.27 —0.04 0.04 0.27 0.32} x 107°
The eigenscrew pitches were
h= [—0.06 —0.11 —0.78 0.78 0.11 0.06]
The rotational compliances were

Cr = [5.00 250 0.10 0.10 2.50 5.00] x 1073

The translational compliances were

Cr= [0.02 0.03 0.03 0.03 0.03 0.02] x 1073

The rotational compliance in the x-direction and in the y-direction were correctly

identified by eigenscrew decomposition. There were three compliant axes, of which
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one was very stiff. The condition number of the matrix was 250. The residual errors
of the approximant are summarized in Figure A.4. Table A.4 presents a summary of

the errors resulting from increasing noise level in the eigenscrew decomposition.

F-Norm Residual Error of the Approximant

4.5 L T A 8
af ]
asfk .
at -
52.5- :
w
2 2t .
1.5¢ .
1t 4
0.5} .
o . . . .
0 5 10 15 20 25

% Noise

Figure A.4: Error of the approximant relative to compliance matrix Cj.
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Noise 1 2 3

Eigen- | 5% || 0.0+40| 02+69| -0.1£0.3
screw | 10% | 0.3£9.2 | 0.7£15.0 | -0.1%0.6
Dir®(°) [20% [[ 1.0£16.0 | 1.1£25.0 -0.3£14
Eigen- | 5% || -0.1#2.5| -0.1+1.5] -0.1+0.1
values [10% || 0.2+4.7 | -0.7£2.9[ -0.2%0.2
(%) [20% || 0.9%9.4| -1.4%7.0| -0.7%038

Pitches | 5% || -0.4+0.7 ] 0.6%1.1 0.0£0.0
(%) [10% || -1.9£3.3| 26+4.0 | 0.1£0.2000

20% || -5.7£7.2 | 6.5£8.0 | 0.2+0.6000

Noise 4 5 6

Eigen- | 5% || 0.0£0.3| -0.1£69 0.2+4.2
screw | 10% || -0.1£0.6 | -0.5£15.1 | -1.2+9.4
Dir®5(°) [20% || -0.3£1.5 | 0.3£25.2 | -1.1+16.2
Eigen- | 5% || -0.1£0.1| -0.2+1.5 0.2+25
values [10% || -0.2+0.2 | -0.6%2.8 0.4+48
(%) [20% || -0.7£08 | -21£6.2| -0.1x10.5

Pitches | 5% || 0.0£0.0 ] 06+1.2] -0.4+1.3
(%) [10% || 0.1£0.2| 26+42| -2.0£3.8

20% || 0.2£0.6 | 6.6£79| -5.8%7.4
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Table A.4: Mean errors and standard deviations for eigenscrew direction, pitch and

eigenvalue for each of the eigenscrews of Cy at 5%. 10 % and 20% noise content.
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A.5 Two Rotational DOFs System: Equal Magni-
tude

The compliance matrix was

002 0 0 0 0 0
0 003 O 0 0 0
0 0 003 o 0 0
C5 = X 10_3
0 0 0 500 0 0
0 0 0 0 500 O
0 0 0 0 0 0’054

The normalized eigenscrews of Cs were

r -

0 1.00 0 0 100 O
1.00 0 0 0 0 1.00
0 0 100 100 O 0
0 —0.06 0 0 006 O
—0.08 0 0 0 0 0.08
0 0 -0.78 0.78 0 0

The corresponding eigenvalues were

X=|-039 —032 —0.04 0.04 032 0.39} x 1073
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The eigenscrew pitches were

h= [-—0.08 -0.06 —0.78 0.78 0.06 0.08]

The rotational compliances were

Cr= [5.00 5.00 0.05 0.05 5.00 5-00] x 1073

The translational compliances were

Cr= [0.03 0.02 0.03 0.03 0.02 0-03] x 1073

The compliances of the rotational DOF's were correctly identified by the eigenscrew
decomposition. The eigenscrew decomposition yielded three orthogonal compliant
axes for the system. This matrix approaches the condition of algebraic multiplicity
for the x-direction and the y-direction. The condition number of the matrix was 250.
The residual errors for the approximant are summarized in Figure A.5. The errors
for the eigenscrew directions, the eigenvalues and the eigenscrew pitches for the trials

including noise are summarized in Table A.5.
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[ Noise 1 2 3
Eigen- | 5% |] 0.2+5.0| 0.0£4.1| 0.0+0.3
screw | 10% || 0.3£10.1 | -0.6+8.4] -0.1+0.6
Dir®(°) {20% || -0.1+18.8 | -1.8£16.5 | -0.4*1.5
Eigen- | 5% 0.1£2.0 | -0.3£2.4 | -0.1+0.1
values {10% || 0.2+£4.0 | -0.8+4.7| -0.2+0.2
(%) [20% | -1.0+£9.5]-0.5+£12.0 | -0.9+1.0

Pitches | 5% || 0.1+£0.3 | -0.1£0.3| 0.0+0.0
(%) 10% || 0.5£1.0 | -0.5£0.9] 0.1%0.2

20% 1.0£2.8 | -1.3£2.7| 0.3+0.7

Noise 4 5 6

Eigen- | 5% || 0.0+£0.3| 0.3%4.1| -0.2£5.0
screw | 10% || -0.1+0.6 0.8+8.6 | 0.6+10.3

Dir®(°) [20% || -0.3+1.6 | -0.9+16.7 | 0.0+£18.8
Eigen- | 5% || -0.1+0.1 | -0.1£2.5] 0.1£2.0
values | 10% || -0.2£0.2 | -0.5+£4.6| 0.2+£3.8
(%) [20% || -1.0£1.0 | -0.4+11.6 | -0.6+£10.0

Pitches | 5% | 0.0+£0.0] -0.1£0.3| 0.1+0.3
(%) 10% 0.1+£0.2 | -0.5+1.0| 0.5+1.0

20% || 0.3£0.8| -1.3£2.8| 0.9%£238
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Table A.5: Mean errors and standard deviations for eigenscrew direction. pitch and

eigenvalue for each of the eigenscrews of Cs at 5%. 10 % and 20% noise content.
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F-Norm Residual Error of the Approximant
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Figure A.5: Error of the approximant relative to compliance matrix Cs.

A.6 Two Translational DOFs System

The compliance matrix was

5.00 0 0 0 0 0
0 250 O 0 0 0
0 0 002 O 0 0
CG =
0 0 0 003 0O 0
0 0 0 0 010 O
0 0 0 0 0 0.05J
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The normalized eigenscrews of Cs were

0 1.00 0 0 1.00 0
1.00 0 0 0 0 1.00
0 0 1.00 1.00 0 0
e= x 1073
0 -12.91 0 0 1291 0
-5.00 0 0 0 0 5.00
0 0 —-0.63 0.63 0 0

The corresponding eigenvalues were
X= [—0.50 —-0.39 -0.03 0.03 0.39 0.50] x 1073
The eigenscrew pitches were
h= [-5.00 —12.91 -0.63 063 12.91 5.00]
The rotational compliances were
Cr = [0.10 0.03 0.05 0.05 0.03 0.10} x 1073
The translational compliances were

Cr = [2.50 5.00 0.02 0.02 5.00 2.50} x 1073

There were three compliant axes identified for the system. The translational DOF's

were correctly identified using eigenscrew decomposition. The condition value of the
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matrix was 250. The residual errors for the approximant are presented in Figure A.6.
The errors in eigenscrew directions, pitches and eigenvalues are summarized in Table
AL6.

F-Norm Residual Error of the Approximant
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Figure A.6: Error of the approximant relative to compliance matrix Cs.
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| Noise 1 2 3
Eigen- | 5% || 0.1£1.3| 0.2%£35| 0.0+0.1
screw | 10% || 0.0+£2.9 | -0.2+74]-0.1+0.3
Dir®5(°) [ 20% || 0.0£6.3 | -0.6%13.7 | -0.2£0.5
Eigen- | 5% || 0.0+0.8} -0.2+2.0 | -0.1+0.1
values [10% || 0.0£1.7 | -0.5%£4.0 | -0.2+0.2
(%) [20% || -0.3£3.9] -0.7£7.9 | -0.9%1.0
Pitches | 5% ]| 0.0£0.3] 0.3+0.5| 0.0£0.1
(%) [10% || -02+0.7| 1.2+14] 0.1£02
20% || -0.6£3.3] 4.0+4.4| 0.4%03

Noise || 4 5 6

Eigen- | 5% || 0.0£0.2| 0.3%+35 ]| -0.1+1.4
screw | 10% |} -0.1+0.3 0.0+7.6 | 0.0+£3.0
Dir™(°) [20% || -0.2+0. | -1.4*14.0 | 0.0£6.4
Eigen- | 5% || -0.1£0.1] 0.0%£2.0] 0.0+0.9
values [ 10% || -0.2+0.3 | -0.1=4.0 | 0.0£1.7
(%) | 20% || -0S£I1.0] -1.1%7.6] -0.4%£3.6
Pitches | 5% || 0.0£0.1 | 0.3+0.5]| 0.0+0.3
(%) 10% || 0.1+0.2] 1.2+1.4[-0.2+0.7
20% || 0.4£0.8 | 3.8464 |-06+3.2
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Table A.6: Mean errors and standard deviations for eigenscrew direction. pitch and
eigenvalue for each of the eigenscrews of Cg at 5%, 10 % and 20% noise content.
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A.7 Two Translational DOF's System: Equal Com-
pliance

The compliance matrix was

i 1
500 0 0 0 0 0
0 500 O 0 0 0
0 0 002 o 0 0
C‘,' =
0 0 0 003 0 0
0 0 0 0 010 O
0 0 0 0 0 0.0SJ
The normalized eigenscrews of C; were
0 1.00 0 0 1100 O
1.00 0 0 0 0 1.00
0 0 1.00 1.00 0 0 .
e = x 10_'j
0 -12.91 0 0 1291 O
-7.07 0 0 0 0 7.07
0 0 —-0.63 063 0 0

The corresponding eigenvalues were

X= [—0.71 —~0.39 -0.03 0.03 039 0.71| x 1073
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h= [_7.07 -1291 -0.63 0.63 12.91 7.07]

—

Cr= [0.10 0.03 0.05 0.05 0.03 0.10] x 1073

Cr= [5.00 5.00 0.02 0.02 5.00 5.00] x 1073

The system had three orthogonal compliant axes. Eigenscrew decomposition correctly
identified the two translationally compliant axes. The third compliant axis was stiff.
The condition number of the matrix was 250. The compliance matrix approaches
algebraic multiplicity. The residual errors for the approximant were presented in
Figure A.7. A summary of the errors in the eigenscrew directions. the eigenvalues

and the eigenscrew pitches is presented in Table A.7.
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Table A.7: Mean errors and standard deviations for eigenscrew direction. pitch and
eigenvalue for each of the eigenscrews of C7 at 5%, 10 % and 20% noise content.

TEN DIAGONAL COMPLIANCE MATRICES

Noise 1 2 3
Eigen- | 5% || 0.1£1.2 | 0.0£2.2 | 0.00.1
screw | 10% || 0.4£2.2| 0.4+4.0|-0.1%0.3
Dir®S(°) [ 20% || -0.1£4.3 | -0.1£7.9 | -0.2£0.6
Eigen- | 5% || 0.0+1.2 | 0.0£2.1 | -0.1+0.1
values | 10% || -0.1£2.1 | -0.4%4.1 | -0.3+0.3
(%) [20% || -0.2£4.3| -0.9£7.3 | -1.3%£1.4
Pitches | 5% || 0.0+£0.3] 0.I1+£0.3 | 0.0£0.1
(%) [10% || 0.1£0.5| 0.4+06| 0.1+03

20% || 0.4%1.3| 1.6+1.5| 0.6£1.0

Noise 4 5 6
Eigen- | 5% || 0.0+0.1 | -0.3% 2.1 | -0.2%+1.1
screw | 10% || -0.1+£0.3 | 0.1+4.1 | -0.3+2.2
Dir®(°) [20% | -0.2£0.6 | 0.2x7.8 | -0.2%4.3
Eigen- | 5% | -0.1+0.1 | -0.1£2.1 | 0.0£1.2
values | 10% || -0.3£0.3 | -0.1x4.1 | -0.1%2.2
(%) | 20% || -1.2%1.3| -1.1£7.3 | -0.6%4.3
Pitches | 5% | 0.0+£0.1 | 0.1£0.3 | 0.0£0.3
(%) [10% | 0.1£0.3| 0.4%£06 | 0.1x0.5

20% || 0.6£1.0| 16+1.4|0.4%13
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Figure A.7: Error of the approximant relative to compliance matrix C;.

A.8 Three Rotational DOFs System: Two Equal
Compliances

The compliance matrix was

-

002 0 0 0 0 0
0 003 O 0 0 0
0 0 003 O 0 0
Cg =
0 0 0 500 O 0
0 0 0 0 500 O
0 0 0 0 0 250
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The normalized eigenscrews of Cg were

[ 0 1.00 0 0 100 O -
1.00 0 0 0 0 1.00
_ 0 0 1.00 1.00 O 0
- 0 —0.06 0 0 006 O
—-0.08 0 0 0 0 0.08
0 0 -0.11 0.11 O 0 )

The corresponding eigenvalues were

x= [-0.39 -0.32 —0.27 027 0.32 0.39] x 1073

The eigenscrew pitches were

h= [—0.08 ~0.06 —0.11 0.11 0.06 o.os]
The rotational compliances were
Cr= [5.00 5.00 2.50 2.50 5.00 5.00] x 1073
The translational compliances were

Cr= [0.03 0.02 0.03 0.03 0.02 0.03] x 1073
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Again the system has three compliant axes and approaches the condition of algebraic

multiplicity. Eigenscrew decomposition correctly identified the compliant axes and
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the magnitudes of rotational and translational compliance. The condition number
of the matrix was 250. The residual errors of the approximant are summarized in
Figure A.8. The errors in eigenscrew directions, pitches and eigenvalues are presented

in Table A 8.
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Figure A.8: Error of the approximant relative to compliance matrix Cj.
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Noise 1 2 3
Eigen- | 5% | -0.1+5.6 | 0.1£6.1 | -0.7+7.7000
screw | 10% || -0.3+11.2 { -0.8+15.0 -1.9+17.5
Dir"S(°) [20% || 0.4+22.0 | 0.3£30.3 | -2.7+32.4
Eigen- | 5% ] 0.1£2.0] -0.1£24 -0.3+1.5
values | 10% || -0.4£5.5 0.1£5.9 -0.4+5.2
(%) [20% || -6.4+13.0] 6.1+14.3 0.2£135
Pitches | 5% || 0.1£0.3 ] -0.6+0.8 0.7+1.2
(%) |[10% " 0.0£2.7 | -2.0£27 2.9+45
20% || -3.6£83 | -3.1%£5.6 7.8£83
Noise 4 5 6
Eigen- | 5% || -0.8+7.8| -0.1+6.1 0.1+5.5
screw |10% || 0.0+17.7 | 0.6%£15.4 -0.5+11.5
Dir™(°) [20% [[-1.4£31.0 | 0.5%29.0 | 0.3%22.3]
Eigen- | 5% || -0.2%1.5] 0.1+2.4 0.2+2.0 |
values [10% | -0.4%£5.5| 0.1£5.7 -0.1+5.5
(%) [20% || 0.1£125 | 6.2%15.2 | -7.3+14.4
Pitches | 5% || 0.7+1.2 ] -0.6+0.8 0.1+0.3
(%) [10% || 2.9+4.6| -2.0+2.7 -0.2+3.8
20% || 7.4£8.0 [ -3.0£5.3 -3.5%8.5
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Table A.8: Mean errors and standard deviations for eigenscrew direction. pitch and
eigenvalue for each of the eigenscrews of Cg at 5%, 10 % and 20% noise content.
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A.9 Three Rotational DOFs System: Equal Mag-

nitude

The compliance matrix was

002 0 0 0 0 0
0 003 O 0 0 0
0 0 003 0O 0 0
CQ =
0 0 0 500 O 0
0 0 0 0 500 O
0 0 0 0 0 5.00
The normalized eigenscrews of Cy were
0 0 1.00 100 O 0
1.00 0 0 0 0 1.00
0 1.00 0 0 100 O
e = x 1073
0 0 —-0.06 006 O 0
—0.08 0 0 0 0 0.08

0 —0.08 0 0 008 O

J

The corresponding eigenvalues were

by =[—0.39 -0.39 -0.32 0.32 0.39 0.39] x 1073
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The eigenscrew pitches were

h= [—0.08 -0.08 —0.06 0.06 0.08 0.08]

The rotational compliances were

Cr= [5.00 5.00 5.00 5.00 5.00 5.00] x 107°

The translational compliances were

Cr= [0.03 0.03 0.02 0.02 0.03 0.03} x 1073

There were three compliant axes in the system. The rotational degrees of freedom were
correctly identified by the eigenscrew decomposition. This system contains algebraic
multiplicity. The condition number of the matrix was 250. The residual errors of the
approximant are presented in Figure A.9. A summary of the errors in the eigenscrew

directions, the eigenvalues and the eigenscrew pitches are presented in Table A.9.
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Noise 1 2 3
Eigen- | 5% || -0.3%11.6 | -0.1£27.1 | -3.5£25.0
screw | 10% || -0.6£17.0 | -0.8%£28.3 | -4.3%£25.0
Dir"®(°) | 20% || -0.9%£23.2 [ -0.6+32.4 | -3.8+30.2
Eigen- | 5% || -11.9+10.0 | -0.1+2.6 | 14.3+10.5
values | 10% || -10.8£11.5| 0.2x4.7 | 12.1*11.6
(%) [20% || -13.5£14.6 | 0.6%9.7 | 15.4%15.3
Pitches | 5% || -0.1£0.4| 0.1+0.3| 0.0+0.40
(%) [10% || -05+12| 0.5+0.9 0.0£1.3

20% || -22+34| 1.6%26 0.4£2.9

Noise 4 5 6
Eigen- | 5% || -1.4+25.2 | -0.7£27.1 | -0.2+11.4
screw | 10% || -1.2%24.7 | -1.7+£28.4 | -0.3%16.8
Dir™(°) [20% || 0.6£30.0 | -0.1+33.6 | -0.3£23.4
Eigen- | 5% || 16.0£11.7 | -1.3%2.1 | -11.7£10.0
values [ 10% || 15.3%13.6 | -2.3+£3.8 | -10.6+11.8
(%) [20% || 17.3£16.8 | -3.6+9.8 | -15.0+14.7
Pitches | 5% | 0.0£0.4| 0.1+0.3| -0.1+0.4
(%) [10% || -0.1+1.1| 05%1.1]| -04%*1.2

20% 0.4+27| 18+29 | -2.3x34
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Table A.9: Mean errors and standard deviations for eigenscrew direction. pitch and

eigenvalue for each of the eigenscrews of Cg at 5%. 10 % and 20% noise content.
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F-Norm Residual Error of the Approximant
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Figure A.9: Error of the approximant relative to compliance matrix Cy.

A.10 Six DOFs System

The compliance matrix was

10.00 O 0 0 0 0
0 500 O 0 0 0
0 0 250 O 0 0 3
Cw = x 107
0 0 0 500 O 0
0 0 0 0 250 O
0 0 0 0 0 1.25
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The normalized eigenscrews of C;g were

[ 1.00 0 0 0 0 1.00-
0 1.00 0 0 100 O
_ 0 0 1.06 100 O 0
T —-141 °0 0 0 0 14
0 -1.41 0 0 141 O
i 0 0 —141 141 0 0 |

The corresponding eigenvalues were
A= [-7.10 —-3.50 -1.80 1.80 3.50 7.10] x 1073

The eigenscrew pitches were

h= [—1.41 —141 -1.41 1.41 1.41 1.41]
The rotational compliances were

. -3

Cr= {5.00 250 1.25 1.25 2.50 5.00}

The translational compliances were

Cr= [10.00 500 2.50 2.50 5.00 10.00]

The compliance matrix had three compliant axes. All six DOFs were correctly iden-

tified by eigenscrew decomposition. The condition number of the matrix was 8. The
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residual errors for the approximant are summarized in Figure A.10. The errors in

the eigenscrew directions, the eigenvalues and the eigenscrew pitches are presented in

Table A.10.

F-Norm Residual Error of the Approximant
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3.5r : I’ b
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525F 4
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Figure A.10: Error of the approximant relative to compliance matrix C)g.
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[ Noise 1 2 3
Eigen- | 5% | 0.0+£0.3| 0.0+0.3 | 0.0+0.3
screw | 10% || 0.0£0.6 | 0.0£0.7 | -0.2+£0.5

Dir®S(°) [20% || -0.1£1.1 | 0.0£1.3 | -0.2¥1.1
Eigen- | 5% || 0.0£0.4] 0.0£0.5 [ 0.0+0.5
values | 10% || -0.2£0.8 | -0.2£0.9 | -0.3+0.9
(%) |[20% || -0.9£1.7 | -1.0%1.7 | -1.0£1.7

Pitches | 5% || 0.04£0.4 | 0.0£0.4 | 0.0+0.4
(%) |10% || 0.0£0.7 | 0.0£0.7 | 0.0%0.7

20% | 0.1£1.4| 0.0+1.4 | 0.0+1.4

Noise 4 5 6

Eigen- | 5% || 0.0£0.3 | 0.0£0.3 | 0.0+0.3
screw | 10% || 0.0£0.6 | 0.0+£0.7 | 0.0+£0.6

Dir"(°) {20% [[-0.1£1.1| 0.0£1.2 | 0.1*1.1
[ Eigen- | 5% || -0.1+0.5 | 0.0+0.4 | 0.0+0.4
values | 10% [ -0.3+£0.9 | -0.3%£0.9 | -0.3£0.8
(%) |20% || -1.0£1.7 | -1.0£1.6 | -0.9%1.6

Pitches | 5% || 0.0£0.4 | 0.0£0.4 | 0.0+0.4
(%) |10% || 0.0£0.7 | 0.0£0.7 | 0.0%0.7

20% | 0.0£1.4 | 00£1.4| 0.1+14
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Table A.10: Mean errors and standard deviations for eigenscrew direction, pitch and
eigenvalue for each of the eigenscrews of Cyy at 5%, 10 % and 20% noise content.
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