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Abstract 

Determination of the magnitudes and directions of the constraints of a mechanicd 

system can be achieved by finding the basis of the system's characteristic compliance 

or stifhiess matrix. When little is known about the geometry of the system. con- 

ventional rnethods cannot be used to calculate the systern's compliance or stiffness 

mat*. A new method has been developed that uses experimental data to calculate 

a system's compliance matrix, and an eigenvalue decomposition to extract the direc- 

tions and magnitudes of the system constraints. The system was assumed to be a 

mechanism in equilibrium. The data were wrenches applied to the systern and the 

mechanism's resulting displacement boom equilibrium. Wrenches and displacements 

were assumed to be linearly related by the systern's compliance rnatrix. 

Imperfect data were managed by estimating a symmetric positive semi-definite 

approximation to the compliance matnu. Eigenscrew decomposition was used to 

calculate the eigenscrew direction. pitch. and rotational and translational cornpliance. 

The eigenscrew pitches and compliances were analyzed to determine the mechanism's 

cornpliances and constraints. 

Cornputer simulations suggest that the method reiiably fin& eigenscrews. pitches. 

cornpliances and directions for weii-conditioned matrices. Eigenscrew pitches and 

compliances c m  be found for ili-conditioned matrices. The analytical technique can 



be used to evaluate the static behaviour of a -stem. It may prove valuable as a 

design and analysis tool for biornechanics, robotics and automation. 
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List of Symbols and Abbreviations 

S ymbols 

d is a column vector of three orthogonal infinitesimal translations. 

7 is a column vector of three orthogonal infinitesimal rotations. 

T is a column vector of three orthogonal torques. 

f is a column vector of three orthogonal forces. 

f is a twist vector in avis coordinates. 

t is a twist vector in ray coordinates. 

T@ is a mench vector in a;xis coordinates. 

W is a wrench vector in ray coordinates. 

A is the matrix notation for a rnatrix with columns xi. 

C is a cornpliance matrix of a linear passive system in equilibrium in IR6? 

S is a stifEness matrix of a linear passive system in equilibrium in Px6. 



Spring matrix is a system cornpliance or sti&eçs matru<. 

4 is the matrix that converts twists and wrenches from axis to ray coordinates and 

vice versa. 

S: is the set of symmetric positive dehite matrices in HTXn. 

S; - is the set of symrnetric positive semi-dehite matrices in Px". 

Abbreviat ions 

SPD Symmetric Positive Definite 

SP SD S ymmetric Positive Semi-Definite 

SVD Singuiar Value Decomposition 

PD Polar Decomposition 

DOF Degree of Freedorn 
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Chapter 1 

Introduction 

Knowledge of the constraints of a rnechanisrn can be used to understand the behaviour 

of a mechanism under different loading scenarios. This knowledge can aid in predict- 

ing which loading regimes will produce instability of the mechanism or. converselv. 

which directions must be constrained to prevent failure. The static-loading behaviour 

of the mechanism can be determined based on its Jacobian matrix, but when there 

is no geometric information about the mechanism, the Jacobian matrix cannot be 

deterrnined. -4 survey of current relevant literature produced no sa t i s fac to~  method 

of resolving system constraints for such mechanisms. 

The primary goal of this work was to find a method of determining the magnitude 

and directions of conçtra.int when presented with a system for which there was little 

or no a priori knowledge of the system geornetry. Determining the constraints of a 

system is a statics problem, a s  it requires knowledge of both the force and displace- 

ment behaviour of the system. Any mechanisrn. in a given pose. can be modeled 

as a mechanism for which the spn'ng mat ri^ (cornpliance or stifaiess matrix) can be 

used to characterize the force-displacement behaviour. Using a 6 x 6 spring matrix. 
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it is possible to consider the coupling of 3 orthogonal translations, rotations, forces 

and torques. and hence determine the directions and magnitudes of constra.int by 

finding the bases of the matrix. Including 6 motion parameters eliminates the need 

for assumptions regarding the system geometry and the number of degrees of free- 

dom (DOFs) of the -tem. The methods for determining the spring rnatriv from 

experimental force and displacement data, and analyzing the matrix. are the main 

results presented in this thesis. The experimental method was based on screw theory 

and the magnitudes and directions of the constraints (or DOFs) were extracted from 

the resulting spring matrix using eigenvalue decomposition. The analvtical method 

presented in this thesis is equdy  applicable to mechanicd and biological systerns 

that can be locally modeled as a linear spring system in equilibrium. 

The remainder of this chapter is dedicated to presenting an overview of screw 

theory as it was applied in this thesis. The structure of this thesis is: 

Chapter 2 contains a review of the literature describing analysis of system DOFs. 

spring matrix calculation and the symmetric. positive semi-definite (S PSD ) nia- 

trix approximation. 

Chapter 3 contains a detailed description of the experimental approach used to 

calculate a SPSD spnng matrix. 

Chapter 4 çontains a discussion of the procedure and results of compurer simula- 

tions used to evaluate the validity of the analysis methods present~ci in ttiis 

t hesis. 

Chapter 5 contains the conclusions drawn from this work and potential future re- 

search that may be conducted as a result of this work. 
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Appendix A lists the diagonal cornpliance matrices and results obtained for corn- 

puter simulated experimentai data. 

1.1 Screw Theory 

In order to model the motion of a mechanical system whose constraints are not known 

a priori, it is necessary to acquire 6 DOF force and motion data for the system. 

Reduction of the acquired data is needed to characterize the system constraints. 

determine the number of degrees of fkeedom and investigate the range of motion. 

Screw theory provides a mathematically concise method of analyzing 6 DOF force 

and motion data. This section contains a discussion of screw theory as it applies to 

this thesis. 

1.1.1 Screw Theory: Historical Development 

In the 1800's the French mathematician, Michel Chasles [6], proved that any small 

rigid body motion may be represented as the simultaneous rotation about and trans- 

lation along some axis. Chasles' contemporary, Louis Poinsot [31]. proved chat any 

system of forces and torques can be represented by a single force applied along an avis 

and a single moment about the same axis. At the turn of the centurv, R. S. Bal1 j-l] 

unified and expanded upon these theorems in his treatise on screw theory. The term 

"screw theory" was coined in accordance with the analogy between Chasles' definition 

of ngid body motion and the motion of a screw. K. H. Hunt further expanded upon 

screw theory and demonstrated its application to advanced mechanisms in the 1970's 

[17]. In the early 1980's. Roth applied screw theory to robotic kinematic analysis 
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[32]. Lipkin and Patterson [29] used screw theory to classify robot cornpliance based 

on the concept of eigenscrews and compiiant axes in the 1990's. It is the efforts of 

Lipkin and Patterson that are of primary relevance to the material presented in this 

thesis. 

1.1.2 Twists, Wrenches and Screw Axes 

Twists. wrenches and screw axes are the main components of screw theory. Lipkin 

and Patterson [30], among others. defined these three entities in terms of Plücker ray 

or line coordinate notation. and Plücker *s coordinate notation. Plücker coordiuate 

notation encodes magnitude, direction and location of the line of action using six 

parameters. In Plücker line-coordinate notation, the first three components encode 

the direction of the line of action and the rernainuig three components encode the 

location of the line of action with respect to the origin. Hunt [17] explained Plücker 

line notation in terms of force applied to a rigid body. 

Let the force vector be represented as = [f, f, fZlT. Consider a rigid body 

whose orientation and location may be described by a coordinate -stem with the 

origin located at its center of m a s .  Let F be applied at  a location p= [zyzIT relative 

to the origin of the coordinate frame of the ngid body. The location of the force 

vector is immateriai in determining the reaction forces of the body. but it is required 

for determining the reaction rnome~ts of the body The vector F acting at point P 

generates a moment 7' about the axes of the reference frame that is defined as ctie 

cross-product of p x  F .  The first three components of the Plücker line coordinates of 

the wrench represent the line direction, P.  The last three components represent the 

moment of the force about the origin of the coordinate frame, F, which encodes the 
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location of the line relative to the origin. This definition corresponds to the wrench 

in Plücker ray coordinates, so 

where f is the force vector and r' is the moment vector. 

Twists can be formed from Chasles' description of rigid-body motion. A twist 

consists of six screw velocities that are approlemated by infinitesimal rigid-body dis- 

placements (or instantaneous velocities) (301. Representation of the screw velocity: 

or twist, in Plücker line notation is analogous to the representation of the wrench. 

For a twist. the vector of rotational velocities. 2 (approximated by T a rotational 

displacement, or instantaneous rotational velocity), yields the direction of the line. 

The cross product of W with its location relative to the origin, 7, yields the linear 
+ 

velocity, V = G x r' (approxhated by a translation 6, or instantaneous linear veloc- 

ity). The first three components of the twist in Plücker line notation are the rotation. 

which encode the direction, and the final three components are the translation. rvhich 

encode the location of the line of action, so 

where 6 represents a vector of instantaneous translational velocities or equivaiently 

an infinitesimal translationai displacemem, and represents instantaneous rotational 

velocities. or infinitesimal rotational displacements. In order to correctly interpret 

the rotational displacement as a vector, the rotation of the rigid body about the 
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orthogonal axes must be independent of order of rotation about the axes. Srnall 

angular displacements are nearly independent of the order of rotations. 

Screw axes are invariant lines dong and about which twists occur and wrenches 

are applied (see the preceding discussion on Plücker line coordinates). Screw axes 

are d e h e d  by a six-component vector, the first three components of which define the 

direction of the iine and the final three of which provide the moment of the line. or the  

location of the line with respect to the origin of the coordinate system. This notation 

corresponds to Plücker ray or üne coordinates. WaIdron and Hunt [37] explained that 

normalizing the twist with respect to the angular displacement. or normalizing the 

wrench with respect to the force, yields the normalized Plücker line coordinates or 

the screw coordinates of the twist or wrench. 

In keeping with the analogy to the motion of screws, the normalized moment of 

the line encodes the pitch of the screw axis. The pitch, h. of the twist is defined as 

the ratio of the magnitudes of the translational to rotational motions. so 

Here 6 represents the translational motion and -7 represents the rotational motion. 

In the case of a pure translation, the magnitude of the screw is not infinite. but the 

pitched is assigned the value of the magnitude of the translation. This is necessary to 

calculate the cornpliance of the axis as well as to be able to discuss the norrndization 



of the eigenscrew. For wrenches, the pitch is defmed similarly as: 

where h is the pitch. 7 is the moment vector and fis the force vector. If a pure moment 

is produced. the magnitude of the pitch becomes the magnitude of the moment for 

the same reasons as the pitch of the twists. 

1.2 System Posture Cornpliance and Stifbess 

Twists and wrenches are related to each other by the system compliance matrix 

C E and the system stiffness r n a t r ~ ~  S E Fx6. The stifkess rnatrix S describes 

the mechanicd system's resistance to motion for a particular system configuration. 

Properties of spring matrices (cornpliance and stiffness matrices) are discussed in 

terms of system stifbess due to its familiarity and application to simple systems. but 

the properties are equally applicable to system compliance. Because the S matrix is 

representative of a linear passive system in equilibrium. it is syrnmetric and positive 

definite. 

S-ymmetry, where S = 9. arises from the assumption that the displacements are 

small and occur about an equilibrium position. Symmetry of the stifbess matrix 

implies, for example, that a displacernent in the x-direction due to a force in the 

g-direction will be proportional to a displacement in the y-direction resulting frorn a 

force in the s-direction. 

A matrix is positive definite if al1 its eigenvaiues, hi, are positive and non-zero (Le. 
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Xi > O for d l  i = 1 to n where X i  of matrix A E PX"). The requirement that the 

rnatrix be positive definite arises from the strain-energy condition rvhich implirs that 

energy must be stored by the system when a deformation is imposed. Ang and Arideen 

[3] gave a clear expianation of the symmetry and positive definite requirements. The 

strain-energy equation, as i t  relates to cornponents of screw theory, is 

In order to guarantee a positive result, the S matrix must be positive definite. 

The stiffness relationship between the twists and wrenches is 

where zü is the wrench that results when a twist S is irnposed on a system with 

characteristic stifkess rnatrïx S E In this equation, the twist is expressed in 

axis coordinates and the wrench is expressed in ray coordinates. In Plücker avis 

coordinate notation the components that encode the location of the line are listed 

first, followed by the components that encode the direction. kxis notation complies 

with the relationship between twists and wrenches established by the spring matrix. 

-4 twist in axis coordinates is 

where b represents the translational displacement and 7 represents the rotational 
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displacement. The six degree of freedorn stifhess equation is analogous to the planar 

spring equation 

where Z (8) is an  imposed displacement collinear with the spring, k (n) is the spring 

constant or stifhess and F (T)  is the resulting force (torque). Stiffness rnay be 

regarded as the system's ability to resist an imposed deformation or twist. Conversel. 

the system compliance may be defined as the system's freedorn to move under the 

action of an applied wrench. The equation of -stem compliance is 

where lu' is the applied wrench in ray coordinates. that causes the twist displacement 

T ,  which is represented in axis coordinates, mhen applied to a system with cornpliance 

matrix C E This is analogous to the planar spring equation 

where F is the applied force, 1/11 is the spring cornpliance constant C and 3 is the 

resulting displacement. 

By solving for îu' in Equation (1.7) and equating the result with Equation (1.5) 

one c m  conclude that S = C-' . In order to obtain meaningful results with regard to 

the number of degrees of freedom of a mechanical -stem and the system constraints. 

the compliance of the system configuration will be the focus of discussion for the 



remainder of this thesis. 

The 5 Matrix 

In the section on twists. wrenches and screw axes, the twist and wrench vectors were 

e.xpressed in ray coordinate notation. In the preceding section on the relationship 

between twists and menches, twists were expressed in axis coordinate notation and 

wrenches were expressed in ray coordinate notation. Both notations are used: one 

reason is that the matrices that transform twists and wrenches from one coordinate 

£rame to another have the same form when twists and wrenches are written in opposite 

notations. rUso, the cornpliance and stiffness relationships are most simply expressed 

when twists and wrenches are written in opposite notations. However. i t  is often 

necessary to m i t e  the twist and wrench vectors in a consistent coordinate notation. 

The means of converting between coordinate notation is the 5 matnu: 

Note that 
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The effect of the A matrix on twists and wrenches is to reverse the sequence of the 

rotation and translation components. The conversion of a twist in axis coordinates 

to a twist in ray coordinates is then: 

L J  

Sirnilarly, the conversion of a wrench in ray coordinates to a mench in asis coordinates 

is: 

1.2.1 Eigenvalues and Eigenvectors 

The mechanicd systems considered here may be characterized by eigenvalue and 

eigenvector decomposition of the cornpliance matrices. 

Any matrix A E RnXn may be considered to be a linear function that rnaps vecton 

from one space to another. If A is a nonsingular matrix, there are n nontrivial vectors 

ë for which the result of the mapping function is a scalar multiple of ë. that is. 



where A E W is a scalar and ërepresents a vector transformed by the function -4. For 

example. consider the case where A is the homogeneous representation of a rigid pla- 

nar transformation. The pole p is an eigenvector of -4 corresponding to an eigeri\xlue 

of 1, and so it is the instant center of the transformation and remains unchanged 

under the action of A. (The pole is undehed for pure translation.) 

In three-dimensional motion, the pole concept may be extended to an invariant 

line, or a series of poles in stacked planes. Points on the invariant line are constrained 

to translate dong the line. and points in the body off the line are constrained to 

rotate about the line and translate in the direction of the line. 

Ln order to find the location of the poles, or invariant lines, Equation ( 1-14) may 

be rearranged as 

and furt her simplified to obtain 

where I represents the identity matnu. Taking determinants of Equation ( 1.16) gives 

the characteristic equation of rnatrix -4 

detI.4 - X I ]  = O ( 1 -17) 

Equation (1.17) may be solved for XI . . . A,, which are the eigenvalues of rnatr~u A. 

The corresponding eigenvectors are those vectors that are mapped to scdar multiples 
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of themselves under the action of A, as shown in Equation (1.14). 

The eigenvectors form a linearly independent basis of the matrix -4. This implies 

that the result of the action of A on any vector i7 is a Iinear combination of scdar 

multiples of the eigenvectors ë of A. Equation (1.14) may thus be rewritten as 

where 6 E Rn is an eigenvector, and & E B represents the eigenvalues of the m a t r k  

-4 E IRnxn. 

Eigenscrews 

The eigenscrews of a compiiance matrix C for a system posture are determined in 

much the same way as for any square rnatrix. The primary difference is the interpre- 

tation of the eigenvector as a screw axis, with three components indicating direction 

and three components indicating the line moment. Eigenscrews are determined by 

the characteristic equation (1.19) based on t = &CG, where 5 ensures consistent 

coordinate notation, so 

The eigenscrews are represented by 6 E R6. When the eigenscrews are normalized 

with respect to the magnitude of the vector formed by the first three cornponents. 

as in Equation (1.20). the first three components of the eigenscrew represent the 
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direction and the final three components encode the pitch of the matnu. 

where x2 + (I' + z2 = 1. and 1 5 i 5 6. In this notation, the pitch of the eigenscrew 

can be found using the method of Lipkin and Patterson [29], as 

The pitch is the relative amount of translational and rotational compliance in the 

direction of the eigenscrew. Values of 1&1 > 1 indicate that more units of translation 

occurs per unit of rotation. Conversely, values of (hl < 1 indicate more units of 

rotational deformation occur per unit of translational deformation. The rotat ional 

and translational compliance associated with each eigenscrew may be determined 

by combining the pitches and the eigenvaiue corresponding to the eigenscrew. The 

equations that define translational and rotational compliance are, respectively 

When is acted upon by &c, X i  represents the scdar multiple by which é, is 

compressed or extended in the direction of the eigenscrew, é,. The pitch hi represents 

the ratio of the magnitude of translation to rotation, and Ai represents the total 
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motion in the direction of e',. Thus, Xi and h, represent the amount of constraint in 

the direction of 6.  

Cornpliant Axes 

Lipkin and Patterson [29] described cornpliant axes based on the two-sytem of Hunt 

[IP]. These axes are determined kom the eigendue/eigenvector decomposition. -A 

compliant axis exists if there are two collinear eigenscrews having eigenvalues and 

pitches of equal magnitude but opposite sign. These two eigenscrews are reciprocal. 

or dual (i.e. e'fAëj = O). Lipkin and Patterson [29] define a compliant auis as one 

on which an applied "force produces a parallel linear defonnation. and a rotational 

deformation about the line of force produces a paralle1 couple." In essence. the 

cornpliant a i s  behaves like a linear spring when a force is appiied. and behaves like 

a torsional sprhg when a rotational deformation is appiied. The application of forces 

and rotational deformations coincident with a compliant axis resuit in un-coupied 

rotationd and translational behaviour. 

If a compliant axis exists then ail other eigenscrews must intersect the compliant 

axis in a hyperplane orthogonal to it. If two compliant axes exïst. then al1 eigenscrews 

are grouped in orthogonal pairs. Patterson and Lipkin [291 presented a classification 

scheme for systems based on the number of compliant axes. 

Summary 

The determination of system constraint and cornpliance characteristics is chdlenging 

for mechanical systems for which there is no geometric information. In order to 

avoid making assumptions regarding the system geometry, a method of experimentdly 



determinhg the static behaviour of the system bas been proposed. A rnethod based 

on screw theory has been developed to evaluate the characteristic constraints and 

cornpliances of systems for which there is no knowledge of the system geometry. Screw 

theory offers the benefit of concise descriptions of 6DOF data. incorporation of Force 

and motion data, and easily interpretable eigenscrew results- Methods described in 

the open literature used to evaluate system DOFs and characteristic spring matrices 

were reviewed. The following chapter contains a discussion of these methods. and 

their pros and cons within the context of the goals of this work. 



Chapter 2 

Literature Review 

Characterization of a mechaaical system based on its degrees of freedom. as described 

in the preceding chapter, bas three distinct stages: determination of the nuniber of 

degrees of freedom; determination of the system s p ~ g  matrix; and optimization of 

the experimentaily determined cornpliance matrix (ensuring the symmetric. positive- 

defini t e requirement ). 

2.1 Identification of System Degrees of Freedom 

(DOFs) 

Four distinct methods of system DOF identification have been discussed in the robotic 

and biomedical literature. These methods axe characterization of system spring ma- 

trices [29], determination of the rank of the Jacobian matriv and screw-system iden- 

tification ( [ i l ,  [1710 [18]. [28], [41]), analysis of configuration space trajectories [XI. 

and principal component analysis [9]. A survey and cornparison of methods used to 



detect the DOFs of a system are presented in the following sections. 

2.1.1 Characterization of System Cornpliance and Stiffiess 

Matrices 

The characterization of mechanical systerns based on spring matrices was presented 

by Patterson and Lipkin (291 in 1990. Patterson and Lipkin's method of system 

analysis used the relationship between the system displacements and forces. the corn- 

pliance matrix. to detemine the system characteristics. The system rotations and 

translations were represented as twists, and the forces and moments were represented 

as wrenches in Plücker coordinates. These elements, as well as the system compliance 

matrix were introduced in the theory section of Chapter 1. Patterson and Lipkin char- 

acterized robot manipulators based on the eigenscrews of the compliance matrix and 

the existence of cornpliant axes. The eigenscrews were represented in six-component 

Plücker ray coordinates. .A twist resuiting from the application of an arbitrary wrench 

may be calculated as  a linear sum of the eigenscrews. The ratio of the eigenvalue to 

the corresponding eigenscrew pitch yielded the rotational compliance. ?vIultiplication 

of the eigenvalue with the corresponding eigenscrew pitch resulted in the t ransla tional 

corn pliance. Small values of cornpliance indicated directions of constraint . nhereas 

large vaiues indicated directions of co~npliance. Thus the number of degrees of free- 

dom of the system was determined based on the magnitude of the rotational and 

translational compliance of the eigenscrews. 

Patterson and Lipkin's method offers the opportunity to  andyze general systerns 

for which no knowledge of configuration geometry exists, but for which accurate eval- 

uation of the compliance matriv is possible. The directions of the axes of motion 



can be obtained £Îom the eigenscrews. The system analysis also detemines the ex- 

tent of constraint for each eigenscrew by including the forces required to cause the 

displacements. For these reasons, Patterson and Lipkin's method of eigenscrew de- 

composition and system cornpliance characterization was selected for application to 

the probiem described in Chapter 1. 

2.1.2 Rank of the Jacobian Matrix and Screw System Iden- 

tification 

The Jacobian matrix J($) relates instantaneous joint velocities. a (and static gen- 

eralized forces) to the instantaneous Cartesian velocity of the tip (and to the static 

force/torque present at the tip). Because the columns of the Jacobian are screws. 

it can also be interpreted as containing position and direction information for each 

of the constraints of a system in configuration 4. where q is a vector of the actua- 

tor positions that specifies the manipulator configuration. System analysis based on 

evaluation of the rank of the Jacobian matrix is based on linear independence of the 

screws that are the column vectors. A matrix rl E R6x6 is of full rank ilf its çolumn- 

space is 6. If each column represents the direction of an actuator axis for a robot 

manipulator in screw coordinates (i-e.. the marriv is the Jacobian J(q3). then a rank 

of 6 indicates that the manipulator is free to move from its present configuration. If 

the rank, r < 6, the manipulator is constrained in 6 - r motions (translations and 

rotations) from the present configuration, and only r motions are free. 

Hunt [lS] presented a method of emracting the number of degrees of Freedom 

available to a manipulator based on its Jacobian rnatrix for a specific configuratioii. 

The Jacobian. J(q3, is constructed using the screw coordinate representation of the 



actuators oi in ray coordinates as columns of J ( 3 .  Reciprocal screws were found in 

axiç coordinates for the set of screws in J(qi  using: 

where is a member of the matrix of reciprocal screws, J ' ( 3 ,  represented in avis 

coordinates. The screws in J(q7 represent directions of kinematic freedom, whereas 

the reciprocal screws represent the directions of constraint of the svstem (Le. a force 

applied to the end effector in the direction of a reciprocal screw produces no motion of 

the end-effector because this direction is completely constrained) . For rank( J(g3) = 6. 

there is no solution for a7 in Equation (2.1) and the end-effector has total kinematic 

freedom. 

Hunt [17] presented a thorough survey of the kinematic interpretations of twenty- 

seven generd and special cases of screw systems. In each case. the effect of loss of 

degrees of freedom (or increase in size of the reciprocal screw space) on manipulator 

kinematics was discussed. 

Zavatsky [41] used the technique described above to examine the number of de- 

grees of freedom aMilable in a Bexed-knee-stance testing rig. L'sing the parameterized 

geornetry of the simulator's actuators in screw coordinates. Zavatsky found the an- 

alytical solution for the rig's determinant. The author iised chis resuit to deduce 

which configuration conditions yield a zero determinant, indicating loss of degrees of 

freedom at this configuration. He also determineci that a zero determinant could be 

avoided by carefid selection of geometric parameten of the rig. 

Conlay and Long [71 considered the converse situation: they examined the stability 

(constraints) of the knee for different degrees of flexion. For each flexion position. they 



determined the position and orientation of each of the nine constraining structures 

(ligament. capsule and contact force) of the knee. The screw coordinates of each 

constraining structure were obtained by modeling each constra.int as a prismatic joint. 

The matrices for aay combination of six structures were obtained and the determinant 

of the rnatrix was evaluated. A determinant of zero indicated that at least two of 

the columns representing the constraints were dependent (r < 6) and the knee with 

r < 6 was considered unstable, as it would be unconstrained in one or more rotations 

or translations. The unconstrained direction corresponds to the direction given by 

the reciprocal screw. The researchers fomd that no combination of six constraint 

directions produced a zero determinant. Based on this result, it was concluded that 

the knee was stable for the range of flexion that they examined. 

The work of Murphy and Mann (281 on kinematic freedom of the knee bears several 

similaxities to the work by Conlay and Long. Murphy and Mann modeled ligament 

and contact force constraints as zero-pitch wrenches corresponding to prismatic joints. 

Murphy and Mann also recognized that the ligaments exert no force until the? are 

extended beyond their initial length, and exert no force beyond their rupture length. 

The insertion sites for each ligament on the tibia and femur provided the initial length 

and origin of each filament. .U possible positions and orientations of the femur 

relative to the tibia were d e t e d n e d  separately for each of the filament constraints. 

The positions and orientations of the femur form an annulus, with the inner radius 

corresponding to the initial length of the filament and the outer radius corresponding 

to maximum filamentary extension. The intersection of the annuli for al1 ligaments 

was the set of achievable positions and orientations of the fernur with respect to the 

tibia based on ligament constraints. The contact situations were evaluated for each of 



these positions, as there would be no contact force exerted for the case in which there 

is Ii&off from the tibial plateau. Once the ligament and contact constraints were 

determined for each tibia-femur configuration, the screw coordinates were calculated 

for each constraint. A matrix, A, of the screw coordinates was constructed and the 

rank, r, of the matrix was determined. For r < 6 .  there mas a solution to either 

or both of the repelling and reciprocal screw system configurations. Representing a 

screw axis as 6. the screw axis is in a repelling configuration if 

and it is in a reciprocal configuration if 

-4 solution for the repelling screw system represents a direction in which the ligaments 

are shortened and lift-off occurs hom the tibial plateau. A solution for the reciprocal 

screws represents a direction in which no work is done by the constraints. or a direction 

in which the body is unconstrained. The authors presented one example solution for 

the model. but cited the need for a complete set of solutions for the configurations of 

the knee in order ta properly characterize the total freedom of the knee. 

Although the methods introduced in this section have the advantage of reveaiing 

which directions are constrained and which ones are free to move, the methods are 

unable to provide the amount of constraint or fkeedom about each screw axis because 

force conditions are not taken into account. This omission could result in incorrect 

conclusions when using the constraint analysis method of Conlay and Long. and 



&O when using the method of Murphy and Mann. Conclusions drawn from the 

freedom analysis of the testing rig by Zavatsky could also be challenged on this basis. 

In al1 of these cases, the discussion of freedom or constraint is based solely on the 

geometry of the physical -tem. Determination of the number of degrees of freedorn 

by examination of the linear independence of the actuator or constraint axes yields the 

number of directions in which the manipuiator may rnove, but does not consider that 

some of these directions rnay be very stiff and highly resistant to  motion. Conversel- 

some of the directions of LLconstraint" may be very cornpliant and not provide the 

*ktabiliw expected from the results of the kinematic analysis. For this reason. the 

results obtained by Conlay and Long rnay be questioned: it is possible that for some 

arrangements of the ligaments and contact forces. the knee may be unstable under 

certain loading conditions. Zavatsky 's analysis may also be questioned if there are 

geometric configurations for which directions of freedom are very stiff, which would 

imply that the rig is kinematically fkee to move in a free direction but would require 

application of a large force in order to do so. 

-4 second disadvantage of Zavatsky's method is that accurate knowledge of the ge- 

ometric configuration of the actuators or constraints must be known a priori. Thus. 

the method of screw systems and Jacobian matrix rank may not be applied to me- 

chanical systerns for which accurate description of actuator/constraint configuration 

is not known. 

2.1.3 Analysis of Configuration Space Plots 

C-space is strongly associated with robot analysis: it is a space which represents 

dl positions and orientations attainable by a manipulator. Operational c-space for 



a) 1 DOF b) 2 DOF 

c) 3 DOF 

Figure 2.1: C-space trajectories for 1. 2. and 3 DOF systems. 

planar motion may be plot ted in three dimensions because t hree paranieters 

and 4 about z) are sufficient to fully speciS a manipulator's planar position 

orientation. The minimum number of DOFs required to achieve a given motion 

[ .r. .lj 

and 

can 

be estimated fiom the trajectory in the manipulator's c-space. The c-space for a 

one-DOF joint dl map to a c w e ,  the c-space for a two-DOF manipulator will map 

to a surface. and the c-space for a three-DOF manipulator will map to a volume (see 

Figure (2.1)). 

In 1993, Moore e t d  [27] presented a method of determinhg the number of degrees 

of freedom required to speci& a planar motion of the human wrist. Their method of 



identifjing the number of DOFs consisted of plotting the three c-space pararn~t~rs  

in three-dimensional space and fitting the c-space to a curve, surface or volume. The 

residuak of the fits were calculated and analyzed to determine the number of degrees 

of freedom necessary to describe the wrist "powef motion. "Large" residuals would 

indicate a poor fit of the c-space trajectory to a surface. so more DOFs would be 

required to describe the kinematics of the wrist. Moore e t d  determined the c-space 

for the wrist by observing the relative motion between a coordinate system k e d  to 

the hand and a coordinate system k e d  to the arrn, as the wrist cycled through the 

planar '~ower" motion. After obtaining the c-space for repeated motions, a surface 

was fit to the c-space and residuals between the c-space and the modeled surface were 

calculated. Residuals for the surface fit were smali and indicated that two degrees of 

freedom were required to fully specifir the "power" motion. 

Two advantages of this method of DOF identification are its straightforward ap- 

plication to experimental data, and no a priori knowledge of the system geornetry 

was required. Two disadvantages of this technique were that it focused on kinematics 

of the wrist. and did not yield the directions of the axes that provided the two degrees 

of freedom. The lack of force data meant that no measure of s t ihess  or cornpliance 

associated with each degree of freedom was determined. 

2.1.4 Principal Component Analysis 

Jolliffe 1191 stated that 

The central idea of principal component andysis (PCA) is to reduce the 
dimensionality of a data set which consists of a large number of interre- 
lated variables, while retaining as much as possible of the variation present 



in the data set. This is achieved by transforming to a new set of variables. 
the principal components (PCs), which are uncorrelated. and which are 
ordered so that the first few retain most of the variation present in all of 
the original variables- 

The PCs can be obtained by eigenvalue decomposition of the covariance rnatrir 

for the set of original variables. The eigenvectors are the PCs and represent linear 

combinations of the original variables, and the eigenvalues are the variance of the 

original variables associated wit h each PC. The Iargest eigenvalues correspond t O 

those PCs that maximize the variance of the onginal vanables. 

PCA has had broad application. Jolliffe [19] cited application of PCA to analyze 

the correlation of anthropometric measurements. the description of weather factor 

patterns over large spatial areas, the correlation of Me-style factors of the elderly. the 

correlation of chernical compounds and properties, and correlation between pnces of 

various stocks. PCA has also been applied to signal processing [22], acoustics [XI, 

imaging [23] , face recognition [34], speech analysis [35], and many ot her applications. 

Principal Component Analysis (PC.2) is being used in current research to idrntify 

the axes of freedom of motion. Deluzio [9] has had promising results in using eigenvec- 

tors to identi@ the axes of rotation in simple and double pendulum experiments. As 

in the work by Moore e t d  [27] descnbed above. the data analyzed is kinematic data 

and neglects forces acting on the -stem. Another similarity to the c-space method 

is that PCX requires no a priori knowledge of the system geometry. However. in 

contrast to the work by Moore e td ,  PC.4 does identify the directions of the axes of 

motion. 

PCA does not dlow determination of the magnitude of stifiess or cornpliance 

about each axis because it neglects forces. It is unclear how such data could be 



included in PCA while preserving the physicd significaoce of the PCs. 

2.2 Deterrnining the Cornpliance Matrix of a Sys- 

tem 

The spring matrix of a mechanicd system can be calculated using geometrical infor- 

mation, or estimated Erom experimentd data. The majonty of the work [26], [371. 

[12], [201, [33], [38], [IO], [3], [36] has been on the calculation of cornpliance based on 

the known geometry of the system. The work of Gosselin [12] and Tahmasebi and 

Tsai [36] are typical examples of the geometncai approach. both defining the stiffness 

rnatriv K as 

where n is a diagonal matrix representing the stifiess of each of the actuators and J ( 3  

is the Jacobian of the manipulator for configuration 4. Both Tahmasebi and Tsai. and 

Gosselin determined the stiffness of paralle1 manipulators from the Jacobian matrix. 

For these mechanisms. the fonvard solution is more complicated than the inverse 

solution. For this reason. the problem is posed in the inverse form and the .Jacohian 

matrix of the pardel  manipulator is defined as the inverse of the Jacobian used in 

standard practice. This equation is derived Erom the way that the Jacobian relates 

(a) infinitesimai displacements, and (b) static forces. The displacement relationship 



where 64 is the vector whose components are the infinitesimal displacements of the 

actuators, and 62, is the vector whose components are the infinitesimal displacements 

of the end-effector, 65. The statics relationship is 

F is the vector of forces and torques applied at the end effector. and fis the vector of 

generalized forces applied at the actuators. Modeling the actuators as having linear 

stiffness gives the relation 

from which Equation (2.4) can be derived. -4 consequence of such a formulation is 

that the accuracy of determining the system's stiffness, depends on the accuracy of 

the knowledge of the system's geometry. For situations where little is known about 

the configuration of the system. the Jacobian cannot be reliably determined. 

The experimental approach to estimating the spring rnatrix is not reported in 

the open literature as frequently as is the geometrical approach. To the best of our 

knowledge, ElMaraghy and Johns [1 l] are the only research group that have attemp ted 

to experimentally determine the cornpliance of the end-effector of a manipulator. 

They attempted to experimentally determine the end-effector cornpliance in order to 



validate a mode1 that was previously determined analyticaily (E1Maraghy aiid Johns 

[IO]). They were, however, unsuccessful in validating the anaiytical solution of the 

cornpliance mat* of the SCARA robot they studied because they were unable to 

defeat the active cornpliance compensation in the manipulator control system. Their 

reported experimental results for the PUMA 560 did correspond to results obtained 

by Lozinski (251. 

These results confirmed t hat an experimental approach for determining the com- 

pliance was possible. The experimental method was, in essence, estimating the corn- 

pliance at  the end-effector by displacing the end-effector a known amount and mea- 

suring the applied force. The particular goal of the work of ElMaraghy and Johns 

described in [ll] was to measure the joint compliances that were calculated using a 

Jacobian method. The significance of their correspondhg paper is as a demonstra- 

tion of the possibility of experïmentally determining end-effector compliances based 

on measurement of end-efFector forces and displacements of a system for which the 

geometric configuration is unknown. 

2 -3 O btaining Symmetric Positive-Definite Matri- 

ces from Experimental Data 

A typical experiment for estimating the cornpliance of a mechanical systern might be 

to apply a wrench G to the system when it is in equilibriurn, and then to measure 

the resulting twist T from equilibrium. R e d 1  that w' was defmed in the previous 

chapter as a vector of forces/torques in ray coordinates and was defined as a 

vector of translations/rotations in axis coordinates. The column vectors of repeated 



measurements can be gathered into matrices, so for a constant compliance matrix C 

at  the equilibrium configuration the wrenches can be assembled into a matrix w and 

the corresponding displacements can be assembled into a rnatrix T. The individual 

relations = CG can thus be expressed as T = Cw. 

As previously discuçsed, the compliance matrix C must be symrnetric and positive 

definite. However, when obtaining experimentaily rneasuring twists and wrenches. 

there wiU inevitably be noise in the measurements. Estimating C as 

will not necessarily produce an estimated compiiance matrix C that is symmetric 

and positive-dehite. Thus in general, a symmetnc positive-definite approximation 

to the experimental matrix must be found. Two approaches have been proposed 

for the solution of the symmetric positive-definite mat* problem: find the nearest 

symmetric positive-semidefinite (SPSD) matrix to the given matnu. or find some 

SPSD matrix that minimizes the residuds of the modeled system (i.e. that minimizes 

llCw - TIIF). (1 - ( I F  represents the Frobenius norm which is calculated as 

for m a t e  B. 

Let A be an arbitrary matrix and let P be an SPSD matrix (P E S: where S$ - 

is the set of SPSD matrices in PX"). Higharn [16] proposed a method of finding the 

SPSD matrix P nearest to A by minimizing the Frobenius norm of their difference. 



which is fùiduig P such that: 

This method was based on the matrix 2-nom approximation method reported by 

Halmos [13], which found the mat* 2-nom distance to a set of positive approximants 

for a given matrix A. The 2-nom of a matrix was dehed as the square root of the 

spectral radius of a given matrix: 

The spectral radius p of a mat* B is defined as the maximum magnitude of the 

eigenvalues of B. 

Higham's solution provides a unique solution P for the positive approximation. 

The approximant is obtained by setting the negative eigenvaiues of the matrix -4 to 

zero. Higham's approximation method is described in greater detail in Chapter 3. 

Section 3.2. 

Minimization of residuals for a modeled system was first presented by Brock [5] 

in 1968. Brock proposed a method of minimizing the Frobenius n o m  of the residuals 

of a modeled linear system by setting the tirst-derivative of the function in Equation 

(2.12) to zero, so that 

where C E S: represents an n x n symmetric positive-definite rnatrk. w E WX and 



T E WXm represent system force and displacement data respectively. and Z E Px" 

is a diagonal scaiing matrix. For the solution of systern stiffness or cornpliance. the 

identity matrix was used for 2. The trace of a matrix "tr" is defined as the siim 

of the eigenvalues of the matrix. -4s demonstrated in 1996 by Woodgate [39]. this 

method does not guarantee a positive definite solution for a penurbed systern. nor 

does it guarantee the existence of a solution. 

Allwright [II presented a solution for the minimization problem introduced by 

Brock that determined a SPSD approximant using an iterative projection method 

and least-squares approximation. Candidate matrices for the minimization of the 

residual were constrained to lie in conical hulls to ensure definiteness of the solution. 

Woodgate [40], [39] presented two iterative algorithms for minimization of the 

Frobenius n o m  of the residuals. The algorithm proposed in his first paper [40] used 

a least-squares or quasi-Newton iterative approach to solve for a SPSD matr~u  over a 

convex solution space. The constraints were specified in order to guarantee a positive 

semidefinite solution. No measure of efficacp of the dgorithm waç reported in the 

paper. He later reported [39] that the efficiency and accuracy of these solutions 

obtained using the least-squares algorithm depended on the initial estimate for C. In 

this latter paper an dgorithm was presented that used a modified Newton's method 

to find a positive semi-dennite matnu in a non-convex space. This method relied on 

constraints in the algorithm for convergence. Woodgate claimed this method offered 

greater efficiency and better convergence properties than did his previous algorithm 

[4O], but these daims remain unsu bstantiated. 

The most recent reference to the residual-minimization problem in the open lit- 

erature is by .Andersson and Elfving (21. They presented a s w e y  of the theory 



and reported a numericd study comparing the convergence properties of gradient- 

projection algonthms, a modified parailel-tangent method and a method presented 

by Han and Lou [Ml. The gradient-projection algonthms included the methods de- 

veloped by Woodgate [40] and Allwright [II. .hdersson and Elfving observed thot the 

gradient-projection algonthms exhibited sensitivity to starting-rnatrix condition val- 

ues. The residuai error decreased monotonically for the gradient-projection methods. 

although error for the pardel-tangent method was not consistent for high iteration 

values (Le. near convergence). The method of Han and Lou proved sensitive to 

step length and initial conditioning of the problem. Of the three methods investi- 

gated in this study, the authors preferred the gradient-projection methods because 

they were more consistent in convergence and l e s  sensitive to selection of step size 

than the other methods. However, Andersson and Elfving concluded fast and robust 

algorithms for convergence of the residual minimization problem have not yet been 

developed. 



Chapter 3 

Determining the System 

Cornpliance Matrix 

This chapter contains a discussion of the process that was used to obtain the system 

compliance matrix given twist and wrench data for an arbitrary mechanical system. 

Consideration was given to the situation when experimentally gathered twist and 

wrench data may be contaminated with noise. When this is the case, the cdculated 

system compliance matrix is rarely symmetric and positive semi-dehite. -4 SPSD 

matrix approximation method, presented in this chapter, is intended to ensure that 

the compliance matrix is physicdy meaningful. Error-corrective measures. which 

included system over-detemination and SPSD approximation. were implemented and 

evaluated for efficiency in reducuig compliance matrix errors. The results of these 

evaiuations are presented at the end of this chapter. 
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3.1 Determining the Compliance Matrix for a Me- 

chanical System 

Given perfect data, the cornpliance matrïx C of a system configuration can be deter- 

mined given applied force (wrench. w ) and resulting displacement (twist. T) data. C 

can be isolated in T = ~ C W  to obtain 

In Equation (3.1), both T and w must be elements of RFxn: m = n = 6, and 

ensures that twists and wrenches are in consistent notation. In Equation (3.1). the 

twists T were given in axis coordinates and wrenches w were in ray coordinates. In 

order to reduce the effect of noise and ensure that w is of full rank, the system is 

generdy over-determined and n > 6. When n > 6, w is not directly invertible. 

There are two possibilities for obtaining the inverse of W. 

3.1.1 Isolating the Compliance Matrix in Over-determined 

Systems 

The simplest means of isolating C entails post-rnultiplying both sides of Equation 

(3.1) by wT to obtain square matrices TwT and wwT. In so doing, square invenible 

matrices are obtained provided that the matru< is non-singular (i.e. det (wwT) # 0). 

C c m  then be estimated as 
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If wwT is not invertible, then the pseudo-inverse of the w matrix c m  be obtauied 

using singular value decomposition (SVD). The SVD of a matrix A E Px" is a 

decomposition of A into three constituent components: two orthogonal matrices Lr E 

IPxm and V E PX", and a diagonal matrix of singular values C E 8"" as 

One important property of orthogonal matrices is that the transpose is equd to the 

inverse (Le., [U]-' = [UIT and = [VIT). The inverse of a diagonal matrix is 

1 obtained by taking the reciprocal of the diagonal elements of the matrix, so = ,. 

In the case where og = 0, the reciprocal is artificidly set to zero. Taking the SVD of 

w in Equation (XI), results in 

C can be estimated as 

3.2 Determining the Cornpliance Matrix from Ex- 

perimental Data 

Whenever data is collected experimentally, there will be enor associated with the 

measurements. Noise may int erfere constnictivel y or destructively with the magni- 

tude of the electrical signal, resulting in increased or decreased magnitude of the 
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measurement. This measurement error can propagate through calculations involving 

the experimental data and affect the results such that they will not make sense when 

applied to  real systems. The calcdation of the compliance mat* based on exper- 

imentally acquired twist and wrench data is vulnerable to the propagation of such 

errors, so the resulting compliance matrix is rarely SPSD. 

-4s discussed in the preceding section, the SPSD requireement must be met for red 

systems. When a compliance matrix does not meet these conditions. an approxima- 

tion must be found that preserves the information provided by the experimentally 

determined compliance matrix C,, but &O meets the SPSD criteria. In the preced- 

h g  chapter. two methods of obtaining a SPSD compliance matrix were presented. 

Higham's method [16] was selected for SPSD approximation based on its conciseness 

and its guarantee of a SPSD solution. In Higham's method, the SPSD matrix "near- 

est" to the experimentally determined matrix was found by minimizing the R o  benius 

norm of the residuds. This "nearest" rnatrix can be defined as  a linear function Ca,, 

that yields resuits that are very similar to results obtained with C,, when applied 

to an arbitrary vector of independent variables, (i.e. C )  The 

matrix Cam is obtained by minimizing the residuais of the elements of the Ce, and 

C,,, matrices in 

Higham's method was based on an approximation method presented by Halmos [13] 

in 1972. Halmos' approximation method resulted in a non-unique solution for the 

SPSD matrix problem. Halmos used the 2-nom to spec* the distance from C,, to 

a SPSD approximant Cam. The Pnorm of a matrix was defined as the square-root 
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of the spectral radius of a given rnatrix: 

The spectral radius p of a matrix B is d e h e d  as the maximum magnitude of the 

eigenvaiues of B. Halmos defined the distance from C,, to a symmetnc positive 

semidefinite matrix Cam as the 2-nom of (C, -Cam). There is an analogy between 

the distance between SPSD and non-SPSD matrices, and the distance between a 

complex number N = a + bi and a positive, reai approximant R as ilIustrated in 

Figure (3.1). The positive real approximant R of N is the real component a of N. 

The distance £rom R to N is the magnitude of the imaginary component JbJ of Y. 

The 2-nom distance between C,, and Cam, is the distance from the C,, matrix 

to a set of ail positive approximants, implying there may be more than one within 

that distance from C-. This suggests that the 2-nom method rnay not locate the 

''neamst" matrix. 

In 1988, Higham [16] presented a method by which a unique. nearest SPSD matrix 

to a real matrk could be found by using the Frobenius norm to limit the range of the 

search and identified a unique solution. The Frobenius norm is defined as 

Cm,, the SPSD approximant to C-, is found by minimizing l lC~ -Co , [ [ ~ -  Higham 

first decomposed C, into a symmetric part D 
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Figure 3.1: Real approximation of an imaginary nurnber. 

and a skew-symmetric part E 

Because D + E = Ce,, 

The problem is thus reduced to one of finding a symmetnc positive semidefinite 

(SPSD) approximation for the symmatric component, D. 



D can be decomposed into constitutive components using the singular-value decom- 

position, so that 

where A is a diagonal matrix with elements 1AJ and Z is an orthogonal matrix. 

Because Z is orthogonal it can be used to transform a matriv to a similar matrix. 

This is useful here because if A = ZTBZ then 11411F = I I ~ B Z ~ ~ ~ .  Applying Z to 

D - C,,, of Equation (3.12) gives 

w here 

and 

The expansion of Equation (3.14) using the definition of the Frobenius n o m  gives 

and al1 yii 3 O since Y must be symmetric positive semidefinite. There is thus a 

unique solution for the problem of approximating a diagonal matrix Y which consists 
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of the diagonal elements. Xi for al1 Ai 2 O and O for dl Ai < O. The rationale for 

setting A, = O for Xi < O was that O is closer to A, < O than IXJ. A straightforward 

means of systematically eliminating the negative diagonal elements is 

where F = Zdiag(lAi l)F. The eigenvalues of C,,, are (A i (D)  + A, (F)) /2. Higham 

[15] took advantage of the relation of polar decomposition to singular value decorri- 

position to obtain the symmetric SPSD matrix, F. For the square compliance matrix 

C,, let the symmetric component D have the polar decomposition D = QF, where 

Q is an orthogonal r e d  matrix (QTQ = 1) and F is a symmetric positive-definite 

matrix (F E S;). From the relationship between the polar decomposition (PD) and 

singular value decomposition. 

The positive approximant, Cam,, was given in Equation (3.18) as (D + F ) / 2 .  The 

eigenvalues of F are IXi (D) 1. The averaging effect of Equation (3.18) results in can- 

cellation of the negative eigenvalues of D and the resulting Ca,, rneets the SPSD 
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requisement S. 

Positive semidefinite approximation may provide meaningfd results for a real sus- 

tem. The following section on error-rninimization evaluates the effectiveness of over- 

determination of the mechanical system, and of SPSD approximation. in reducing the 

error associated with the experimentally determined compliance macris. The effec- 

tiveness will be further evaluated for specific matrices in the computer simulations 

contained in the foiiowing chapter. 

Raw data do not necessarily conform to the requirernents of the physical system as 

was discussed in the preceding section. Inaccuracy of the cornpliance matrices rnay 

arise from noise in force and displacement measureinents. non-collocated reference 

frames, and violation of experimental assumptions. These error sources can provide 

indefinite and non-symmetnc compliance matrices. This section details the proce- 

dures implemented to reduce error and contains a discussion of their efficiency. 

3.3.1 Agreement with Twist "Small Angle" Requirement 

In the section on screw theory in the introduction. the three angles of rotational 

deformation of the twist were represented by a vector. r. of rotations about the x. 

y and z axes. These angles rotate the rigid body from its initial orientation to its 

final orientation. In order to correctly represent these displacements as a vector. the 

rotations must be order-independent. Order-independence is true of "smdl" angular 

&placements, but how s m d  is "smdl"? A Matlab function was written to perfom 



CHAPTER 3. DETERMINING THE SYSTEM COnAPLrACE M A T U  43 

a Monte Car10 simulation of angular displacernents. The hnction first randomly 

generated three angles between O and a user-specified maximum value in degrees. 

These three angles were used to constnict a rotation matrix. R' using the s-z-y Euler 

angle notation. R was then decomposed using six distinct Euler angle notations to 

obtain the individual rotations about each of the x, y and z axes. The calculated 

rotational values were then compared with the original values of rotation. The Euler 

decomposition method most sensitive to error was the y-z-r Euler angle notation. 

which is the opposite order of the one used to constnict the R matr~x. 

The data were repeatedly examined for irtcreasingly large maximum angular val- 

ues. It was determined that if al1 angles were less than 2 degrees the order-independence 

assumption was valid with a mean error of 0' and standard deviation of +O.la" 

(*7.5%) - 

3.3.2 Over-det erminat ion 

In order to investigate the effect of over-determining the system? a Matlab simulation 

program was written to generate a 6 x 6 random matrix B from a uniform distribution 

between zero and one. The singular value decomposition (SVD) of the random matrix 

was obtained. and a symmetric positive semi-definite matrix C was calculated as 

where VB was an orthogonal matrix whose columns represent the eigenvectors of B=B 

and ZB was the diagonal matrix obtained by SVD. Next, a random 6 x n  wrench 

matrix, w ,  was created. where 6 5 n 5 360. By combining the C and m in Equation 

(1.7), a corresponding 6 x n  twist matrix: T, was obtained. The exitries of the  m 



and T matrices were perturbed by a s m d  amount k that represented noise in the 

measurements of the wrenches and twists. The maximum amount of noise added to 

each entry of the twist and wrench matrices was determined by p. the noise rneasured 

as a percentage of the signal. as specified by the user. For the computer simulations. 

5% 5 p 5 20% was used to examine the stability of the estimation process. The value 

of noise added to the signal was thus 

where r was a raadom number from a normal distribution with standard deviation 

of 1 and rnean of O. km, had a value of p percent of the signal. The perturbed twist 

and wrench matrices were denoted w,, and T, respectively. Using the perturbed 

matrices, the compliance matrix, C,, was calculated to be 

as described in the preceding chapter on determination of the compliance matris. The 

relative error of C,, with respect to the original symmetric positive-definite matrix 

C was calculated as 

where II - I l F  indicates the Frobenius nom.  This error rneasurernent allowed evaluation 

of the efficacy of over-determinacy for error-reduction. 

Figures (3.2)-(3.4) display the results of the simulations with varying percentage 
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of perturbation included in the T and w matrices. Figure (3.2) displays the results 

obtained for a spectmrn of 1000 randomly generated compliance matrices. In Fig- 

ures (3.3) and (3.4), the results were obtained from a cornpliance matrix representing 

systems with one and six DOFYs respectively. The abscissa of the graphs refers to 

the number of twists or wrenches used to calculate the compliance matri . .  and the 

ordinate refers to the correspondhg relative error between C,, and the original corn- 

pliance matrix. For each point on the gaph,  1000 repetitions were performed to 

ensure that the wrench, twist, and perturbation matrices sufficiently sampled the 

population. The Frobenius noms of the residuals were averaged over these 1000 

trials. 

The graphs in Figure (3.2) for the randomly generated compliance matrices demon- 

strate a trend of decreasing error with increasing over-deterrninat ion of the system. 

The residual error was decreased to 0.52 & 0.09% for 5% noise content: 1.07 I 0.19% 

for 10% noise content: and a mean error of 1.37 k 0.75% for 5-20% noise content. 

Results obtained for controlled ill-conditioned and well-conditioned compliance matri- 

ces representing systems with 1 and 6 degrees of freedom respectively were similar to 

those obtained for the randomly generated matrices. The results for an ill-conditioned 

(condition value of 250) compliance matrix are shown in Figure (3.3) ; those for the 

well-conditioned compliance matrix (condition value of 8) are shown in Figure (3.4). 

This indicates that Higham's SPSD approximation method is reliable regardless of 

the condition number of the  mat^. 

In al1 cases, the Frobenius norm of the residual and the standard deviation de- 

creased with increasing over-determination, which indicated that over-determination 

was effective in reducing error due to noise. Because residual errors for twen-five 



Figure 3.2: Frobenius nom of residuals of the compliance matrix obtained from raw 
twists and wrenches vs. randomly generated compliance matrices with noise contam- 
ination of twists and wrenches of 5%-20% and varying system over-determination. 
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Figure 3.3: Frobenius n o m  of the cornpliance rnatrk obtained from raw twists and 
wrenches vs. the onginal cornpliance matrix for a 1 DOF system with noise contam- 
ination of twists and wrenches of 5%-20% and vaqring system over-determination. 
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Figure 3.4: Frobenius n o m  of residuds of the compliance matrix obtained from raw 
twists and wrenches vs. the original compliance matrix for a 6 DOF system with 
noise contamination of twists and wrenches of 5%-20% and varying system over- 
determination. 
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times over-determined. or 150 observations. corresponded to 2.5% or less for 10% noise 

content, 25 times over-determined systems were used for dl simulations performed in 

t his t hais. 

3.3.3 Symmetric Positive Semidefinite Approximation 

The third method of error reduction applied to the simulated and esperimental re- 

sults waç symmetric, positive semidefinite approximation of Ce,. Approximation 

was done to ensure the compliance matrix conformed to the SPSD requirement of 

real mechanical systems. The approximation method used here was presented in the 

preceding chapter. 

The efficacy of the SPSD approximation was examined in a similar manlier to 

that discussed in the preceding section on over-determination. Again. simuiations 

were performed in which randomly generated twist and wrench matrices. based on a 

symmetric positive-definite cornpliance rnatrix, were perturbed and a SPSD approx- 

immt was calculated. The measure of success of the algorithm was two-fold: first 

that a SPSD matrix was obtained, and second that the approximation improved the 

residual error with respect to the original cornpliance matrix. 

Results showed that the SPSD approximation was effective in consistently pro- 

ducing a symmetric positive semidefinite matrix that met the criteria for red systerns 

as outlined in the previous chapter. Results obtained for the residual errors are pre- 

sented in Figures (3.5)-(3.7). -4s in the preceding section on over-determination. 

simulations were performed for one thousand randorn matrices. one lDOF matrix 

and one 6DOF matrix. Approximation of the SPSD matrix was performed as a con- 

tinuation of the evaluation of over-determinati~n~ and the same çompliance. twist and 
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wrench matrices were used at this stage. 

These graphs are similar to the graphs in Figures (3.2)-(3.4). This result implies 

that the majority of the error-reduction is achieved by over-determination of the 

system. For closer examination of the effect of approximating the symmetric positive 

semidefinite compliance matrix, the percentage ciifference in error for C, to C,, 

(equivdent to Caw,) was cdculated. The results are reported in Figures (3.8)-(3.10). 

As can be seen from Figures (3.8)-(3-IO), SPSD approximation of the compliance 

rnatrix provides a statistically àgnificant improvement of the residual error obtained 

for noisy data. These figures also indicate that SPSD approximation çonsistently 

irnproves the estimate of the system compliance rnatrix. 

-411 t hree error-reducing methods discussed in t his section were implemented in 

the simulations for real systems described in the following section. 
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Figure 3.5: Frobenius n o m  of residuals of the approximant vs. randomly generated 
cornpliance matrices with noise contamination of twists and wrenches of 5%-20% and 
varying syst em over-determination. 
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Figure 3.6: Frobenius n o m  of the approxhant vs. the original cornpliance rnatrix 
for a 1 DOF system with noise contamination of twists and wrenches of 5%-20% and 
varying system over-determination. 
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Figure 3.7: Frobenius n o m  of residuals of the approximant vs. the original cornpli- 
ance rnatrix for a 6 DOF system with noise contamination of twists and wrenches of 
5%-20% and varying system over-determination. 
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Figure 3.8: Percentage reduction in the Frobenius noms  of the residuals for C., vs. 
C,, for randody generated cornpliance matrices with noise contamination of twists 
and wrenches of 5%-20% and varying systern over-determination. 
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Figure 3.9: Percentage reduction in the Frobenius n o m  of the residuais for C., vs. 
C,, for a 1 DOF system with noise contamination of twists and wrenches of 5%-20% 
and varying syst em over-det ermination. 
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Figure 3.10: Percentage reduction in the Frobenius nom of residuals for C,, vs. C,, 
for a 6 DOF system with noise contamination of twists and wrenches of 5%-20% and 
varying system over-determination. 



Chapter 4 

Experimental Procedure and 

Results 

This chapter contains a description of the experimental procedure and the results 

obtained for the cornputer simulations conducted to evaiuate the viability of using 

compliance matrices derived fiom experimental data to characterize mechanicd sys- 

tems. 

4.1 Experimental Procedure 

Computer simulations were conducted for fifteen system cornpliance matrices. The 

majority of the matrices were diagonal matrices constmcted to represent systems of 

varying numbers and magnitudes of DOFs. Four of the matrices were extracted from 

Patterson and Lipkin [29]. These four matrices represented cornpliance of a parallei 

manipdator, a finger of the Stanford/JPL robot hand, an  elastically suspended ngid 

body and a six DOF robot performing a grinding operation. The fifteen cornpliance 



matrices M n e d  in conditioning from 4 to 1060. The condition number of the ma- 

trix is the ratio of the l a r g e  singular value to the srnadest singular value obtained 

from singular value decomposition. The conditioning of a matrix is a measure of its 

sensitivity to error. P!ows and columns associated with the largest values are most - 

susceptible to error arising h m  noise and other perturbations. 

The computer simulation consisted of randody generating a rnatrix of 150 menches 

and calculating the corresponding twist matrix using one of the compliance matrices. 

Noise was added to the twist and wrench matrices. The noise levels used for the 

simulations were 5%, 10% and 20%. An intermediate compliance matrix was calcu- 

lated ushg the perturbed twist and wrench data according to the method described 

in the preceding chapter. The SPSD approxïmant was obtained for the intermediate 

matrix using Higharn's method as described in the preceding chapter. -4t this point, 

the SPSD approximant was compared to the original system matrix. The error for 

the approximant was obtained by calculating the Frobenius n o m  of the residuals of 

the approximant and the system matrix. and normalizing this value with respect LO 

the Frobenius n o m  of the system matrix. 

Once a SPSD approximant was obtained, eigenscrew decomposition was performed 

according to the method described in the theory section of the introduction. The 

eigenscrew directions, pitches and eigenvaiues of the approximant were calculated 

and compared to the eigenscrew directions, pitches and eigenvalues of the system 

matrix. Because calculation of the rotational and translational compliance is based 

on ratio and multiplication of the eigenvalues and pitches. it was deemed sufficient 

to measure the error in the latter two values and the eigenscrew direction in order 

to evaluate the impact of error in the approximant on conclusions about the system 
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drawn from eigenscrew decomposition. 

The simulations were repeated 1000 times at 5%, 10% and 20% for each compliance 

matrix. .Ail points on the graphs in this chapter represent the mean error d u e  and 

standard deviation of 1000 trials. Cornputer simulations were used to evaluate the 

utility of cornpliance-matrix analysis in experimental characterization of mechanical 

systems. The fifteen cornpliance matrices examined were of three kinds: 

0 One matrix that represented a hinge joint. The matrix was constmcted anal-yt- 

ically to have high rotational compliance about a single axis. low translationai 

cornpliance along the hinge axis, and low compliance dong and about al1 other 

axes. This was an initial validation matrix. for which the compliant axis was 

known and results were clearly interpreted. 

Four matrices from literature, al1 representing physical systems with varying 

degrees of fkeedom and cornpliances. These matrices were secondary validation 

matrices, for which the compliant axes were established through peer review. 

Ten diagonal compliance matrices. representing systems with varying cornpli- 

ance States. The results could be validated by cornparing the estimation with 

the model' and no other validation was available due to the paucity of thr 

literature on this subject. (See Appendix A.) 

The four matrices previously reported were taken from the work of Patterson and Lip- 

kin [29], correcting obvious typographical errors in their article. These four matrices 

represented the cornpliances of: a parallel manipulator [26]; a Bnger of the Stan- 

ford/JPL robot hand [8]; a rigid body elastically suspended by a set. of six springs: 

and a six DOF robot performing a grinding operation. Condition numbers of the 
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fifteen compliance matrices Mned from 4 to 1060. 

In each computer simulation 150 wrenches were generated, with each of the six 

wrench values drawn from a normal distribution between -1 and +l and multiplied by 

a scaling factor which ensured that the s m d  angle condition would not be violated. 

For each wrench, the ideal twist was calculated as the matrix-vector product of the 

compliance matrix and the wrench. In order to simdate effects of sensor noise. a 

"noise" component of magnitude MW was added to each element of the wrench vector. 

Each noise component was drawn fiom a normal distribution between -il&,, and +il&,, , 

where MW represented a specified percentage of the element of the wrench veçtor. The 

twist vector was similarly and independently contaminated with unifomly distributed 

variates scaled to the element of the twist vector. 

The noise levels used for the simulations were 5%, IO%, and 20% of the relevant 

wrench element. The vectors were gathered into matrices that simulated time series 

of measurements, and for each twist/wrench pair the intermediate compliance matrix 

was calculated from the perturbed twist and wrench data using the method described 

in the preceding chapter. The SPSD approximant to the compliance matris was 

obtained using Higham's method, also described in the preceding chapter. 

Each SPSD approximant matrix was compared to the original system m a t r k  

The error for the approximant was obtained by calculating the Frobenius norm of 

the residuals of the approximant and the system matrix, and then normalizing this 

value by dividing it by the Frobenius n o m  of the system matrix. This error value 

represented an overall measure of the efficacy of the approximation. 

For each SPSD approximant the eigenscrew decomposition was also obtained. as 
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described above. The eigenscrew directions, pitches and eigenvdues of the approxi- 

mant were calculated. Differences in eigenscrew directions between the approximant 

and the onginal system were calculated as angles, using the standard definition that 

the cosine of the angle between two unit vectors is the dot product of the vectors. 

Because rotational and translational cornpliances are functions of the eigenvdues and 

pitches, errors in the elementary values of eigenvalues and pitches were calculated 

rather than calculating errors in the derived values. These error values represented 

specific performance cnteria of the approximation. 

For each compliance matrix, 1000 sets of 150 wrench vectors were generated and 

the corresponding twist vectors were calculated. Vectors in each set were contami- 

nated with no noise and with 5%, 10%: and 20% noise as described above. 3fean 

errors and standard deviations of errors were calculated for evaluation. 

4.2 Results of Computer Simulations 

The following four examples rere included to help iilustrate the procedure described 

in the preceding section and to present a sample of the results obtained for the fifteen 

system cornpliance matrices. 

4.2.1 Example 1: A Stiff Hinge 

In order to v e e  that the analysis of rigid-body motions based on screw theory 

produced useful and accurate information regarding the constraints of real mechanical 

systems, the results for simulations of real systems were investigated extensivelv. The 

following example is a simple diagonal matrix representing the compliance matrix of 
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a s t 8  hinge with one rotational DOF. 

Figure 4.1: The compliance of the stiff hinge in this figure was modeled by Chingc. 

The compiiance matrix of the hinge was based on the system iilustrated in Figure 

(4.1). The rotational degree of freedom occurred in the direction of the longitudinal 

axis of the hinge, 2. h compliance matrix for a stiff hinge was calculated as 

where kt*. c m n l ~  represent the translational and rotational compliance of the hinge 

material, respectively, and Chinge is the rotationai compliance of the hinge. The antici- 

pated results for the eigenvalue and eigenvector decomposition of Chingc were that the 

largest eigenvalue should correspond to the x-direction and the pitch of the hinge axis 

should be very small, indicating large rotational compliance and small translational 



CHAPTER 4. EXPERIMENTAL PROCEDURE AND RESULTS 

compliance. 

The value of Chinge, was A, and the values of h 4 t ~  and h t ~  in ail directions 

' The wrench matrix was raadomly generated and the twist matriv was were ,,,,,. 
obtained £iom the equation of compliance. Computation of the eigenvectors and 

eigenvalues of the Chingc matrix was performed for non-noisy and noisy data. 5%. 

10% and 20% noise were added to the twist and wrench matrices that were generated 

for the hinge compliance matrix. The matrix of eigenvecton obtained for data with 

0% noise content was 

Each column of the e matrix represents one eigenscrew. The direction of the eigen- 

vector was given by the Brst three components of the eigenscrew. The corresponding 

eigenvalues were 

The pitches of the eigenscrew axes were 



From the eigenvalues and the eigenscrew pitches. the rotational compliances were 

calcdated as 

The translational compiiances were also obtained using the eigendue and pitch for 

each of the eigenscrews. These were 

From the eigenvalues, eigenscrew directions and eigenscrew pitches it was determined 

that the system consisted of three orthogonal compliant eigenscrews. Eigenscrew 

pairs 1 - 6, 2 - 5, and 3 - 4 formed compliant axes. Compliant axes 2 - 5 and 3 

- 4 had very small rotational compliance and 1 - 6 had 100 times larger rotational 

compliance. From the rotational compliance and translational compliances. it waç 

easy to determine that the system had only one degree of rotational compliance and 

was highly constrained in translation. Compliant axis 1 - 6 corresponded to the x- 

axis of the hinge as was expected. The pitch of the 1 - 6 axis was calculated to 

be +/- 0.1 which implies that for every unit of translational motion, there will be 

10 units of rotational motion. Cornbining the pitches with the eigenvalues of the 

hinge axis, a rotational compliance of 5.0 x 10-3 and a translational compliance of 

5.0 x1oW5 were obtained. These results implied that the 1 - 6 compliant axis is 

resistant to translational motion. The compliance results were in agreement with the 

mode1 of the hinge. The condition number of the compliance matrix was 100, which 

is moderately iil-conditioned. 
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5%, 10% and 20% noise were added to the twist and wrench data and the errors 

relative to the original cornpliance matrix, and the eigenscrew decompositions were 

calculated for 1000 trials. Figure (4.5) presents the error of the approximant rela- 

tive to the original hinge matrix for each of the 1000 trials. Error reduction of the 

approximant appears to be effective. 

Figure (4.2) contains the results of angular enor for each of the eigenvectors for 

increasing noise levels. Errors for each of the corresponding eigenvalues are presented 

in Figure (4.3). Errors in the eigenscrew pitches are displayed in Figure (1.4). Each 

data point in these two figures corresponded to the average of a sarnple population 

of 1000. As can be seen Born Figure (4.2) the eigenvector directions for 2 - 4 and 3 - 

5 compliant axes were very sensitive to noise. However, the eigenvector direction of 

the 1 - 6 compliant axis was very stable. This suggested that the x-axis of the hinge 

will be correctly identified to within one degree when 20% was added to the twists 

and wrenches. The eigenscrew pairs 2 - 4 and 3 - 5 were confined to lie in a plane 

orthogonal to the 1 - 6 compliant ais ,  but their directions could not be reliably 

determined within the plane because these two compliant axes were not distinct. 

Figure (4.3) shows the computations of the eigenvalues for the compliant axes were 

robust with respect to added noise. Figure (4.4) indicates that the eigenscrew pitches 

were reliably determined for each of the compliant axes. Table (4.1) contains the 

values of the data used to constmct these figures. 

Table (4.1) presents the mean errors and standard deviations of the results for 

eigenscrew angular error, eigenvector error and eigenscrew pitch error for each eigen- 

screw with increasing noise content. The cornpliant auis had the largest error distri- 

bution in pitches. The large errors in direction were attributed to (a) ill-çonditioning 
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Figure 4.2: Mean errors of eigenscrew directions for hinge mode1 averaged over 1000 
trials at 5%, 10% and 20% noise content. 
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Figure 4.3: Mean errors of eigenvalues for hinge mode1 averaged over 1000 trials at 
5%, 10% and 20% noise content. 



Figure 4.4: Mean errors of pitches for hinge mode1 averaged over 1000 trials at 5%, 
10% and 20% noise content. 
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Figure 4.5: Error of the approximant with respect to the hinge cornpliance matrix. 

F-Nom Residuai Enor of the Approximant 
4.5 r I 

of the matrix and (b) algebraic multiplicity of the small eigenvaiues. It was also 

observed that. in spite of the large angular error distribution. the eigenscrews corre- 

sponding to constrauied directions remained in a plane orthogonal to the direction 

of the most cornpliant eigenscrew axis. This is to be expected, because eigenvectors 

wit h distinct eigenvalues must be orthogonal. 

4 

1 
- i 
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J 

Eigen- 5% 0.0f 0.1 1.Ek25.5 -6.6*24.8 
screw 10% 0.0&0.2 1.8k27.3 -10.4A125.4 

4 - .  

Eigen- 
values 

(%) 

L J 

Pitches 5% O.OrtO.0 0.0*0.0 0.0&0.3 
(9%) 10% O.O&O.l 0.0fO.i 0.1*0.5 

5% 
10% 
20% 

1 Noise 

Table 4.1: Mean errors and standard deviations of eigenscrew direction. pitch and 
eigenscrew for each of the eigenscrews of the hinge mode at 5%. 10% and 20% noise 
content. 

Pitches ( 5% 

4 
-4.8I24.4 
-1.5k27.0 

Eigen- 
screw 

' 1  1 

4.2.2 Example 2: A Finger of the Stanford/JPL Robot Hand 

t 1 I 

5% 
10% 

O.O*O.O 
-0.I=t0.2 

Eigen- 
valu- 

The paçsive cornpliance matrix of one finger of the Stanford/JPL robot hand was 

' O-Of 0.0 
-0.1k3.1 
-0.5*6.0 

0.0k0.3 

5 
0.8I24.9 
-0.6&27.2 

5% 
10% 

given by Cutkosky etd [8] as 

J 

6 
O-OIO. 1 
-0-2it0.2 

O.Of 0.0 
-0.1I0.2 

O-Of 0.0 
-0.1zt0.2 
-0.3f 0.6 

O-Of 0.0 

- - -  - 

0.OkO.O 
-0.2*3.1 

O.O*O.O 
-0.1f0.2 
-0.3f 0.6 
O.O*O.O 
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This matrix was ill-conditioned with a condition number of 964. -4s in the preceding 

stifF-hinge example, the eigenscrews and eigenvalues were calculated based on the 

cornpliance matrix. The norrnalized eigenscrews were 

The corresponding eigenvalues were 

= 1-0.98 -0.33 -0.02 0.02 0.33 0.98 X 1 0 - ~  J 
The eigenscrew pitches were 

h = -0.08 -0.09 -1.00 1-00 0.09 0.08 i 1 
The rotational compliances of the eigenscrews were 

The translational compliances of the eigenscrews were 
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Due to the non-coUinear eigenscrews, there were no cornpliant axes for the Stan- 

ford/JPL finger in this posture. This result was not expected for this manipulator. 

The small rotational and translational cornpliances reveal that the finger was ve- 

stin. The lack of complimt axes could be attnbuted to the high stifiess of the 

manipulator that may have made decouplhg of the irnposed transiations and rota- 

tions impossible. Past experience indicated that this result may also be attnbuted to 

erroneous reporting of the cornpliance matrix in the literature. 

The error of the approximant relative to the cornpliance matrix in Equation (1.3) 

was calcdated for twists and wrenches containing 5%, 10% and 20% noise. The 

results of these calculations are presented in Figure (4.6). These results are very 

similar to those obtained for the hinge example. 

F-Nom Residual Error of the Approximant 
4.5 t 

% Noise 

Figure 4.6: Error of the approximant with respect to the cornpliance matrix of the 
finger fiom the Stanford/JPL robot hand. 



1 Noise 

. , 1 II I I 1 

1 
0.1IO-8 
0.1I1.7 

O.ki3.2. 
1.2&3.2 

- -  -0.2~t5-9 

Eigen- 
screw 

D~P'(o) 
Eigen- 
values 

Table 4.2: Mean errors and standard deviations of eigenscrew direction, pitch and 
eigenvalue for each of the eigenscrews of a finger of the Stanford/JPL robot hand at 
5%. 10% and 20% noise content. 

5% 
10% 

' 20% 
3% 
10% 

Pitches 

I (%) 

6 
0.7&0.5 
1.2H.1 

h 

. . 
Eigen- 
d u e s  

(%) 
1 Pitches 

-4ngular deviation of the eigenscrew directions. error in the eigenvalues and error 

in eigenscrew pitches were calculated for each of the eigenscrews for varving noise 

content. The results of these calculations are presented in Table (4.2). Error distri- 

butions were large, especially for the eigenscrews corresponding to the smallest values 

of compliance, 3 and 4. because of the nearly singular condition of the matrk. Be- 

cause the compliance values of 3 and 4 were nearly 0, large error offsets and i m a g i n q  

values in the eigenscrews were occasionally obtained. 

2 
O.Ok2.0 

-0.1&4.0 
O~k7.5 

-6.4k9.8 
-3.Oj~13.2 

33.0&79.5 
36.9*92.8 
36.8I76.8 

3 
-3.3-0.3z*18-9 

1.6-.7~&30 
5-5-0.62~k40 
-100-O*O-O 
-100.0*0.0 

5% 
10% 
20% 

32.6k84.1 ] 
t 

33.6I8 1.5 
34.3I82.3 

5 
1 .6f  1.1 
2.6A2.9 

5% 
' 10% 
20% 
5% 

34.3*81.2 
33kt85.1 
33.0&88-8 

4 
15.3-0.2if 13.0 
21.3+0. lki23.2 

1 Noise 
Eigen- 
screw 

-lOO1O*O.O 
-100.0*0.0 
-86.1*85.3 
33-6333.7 

5% 
10% 

-7.0&9.2 
-2.2*13.4 
-3.5&18.6 
36.3I84.8 

l 

-1.O~t3.5 
-5 .7~tO.O 
-0.YI10.4 

36.6~t82.3 
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4.2.3 Example 3: A ParaIlel Manipulator 

The cornpliance matrk for a paridiel rnanipulator was gWen by Patterson and Lipkin 

This rnatrix is ill-conditioned. with a condition number of 864. 

The normaiized eigenscrews of the scaied compliance matrix were 

where each column of e represents an eigenscrew. The corresponding eigenvalues were 
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The pitches of the eigenscrews were 

The rotational cornpliances were 

The translational cornpliances were 

r 

The eigenscrews and e i g e d u e s  presented here were consistent with the  results re- 

ported by Patterson and Lipkin [29]. The eigenscrews and eigenvdues a t  0% noise 

revealed that the system had three pairs of eigenscrews that met the criteria of corn- 

pliant axes (eigenscrew pairs 1 - 6, 2 - 5, and 3 - 4). These three cornpliant axes 

formed an orthogonal system with axes coinciding with the x-, y- and z-directions 

of the parallel rnanipulator's coordinate frarne. Calculation of the rotational and 

translational cornpliance for each of the eigenscrews revealed that the s-directed and 

y-directed cornpliant axes had high translational cornpliance, whereas the z-directed 

cornpliant axis had high rotationai compiiance. These results suggest that this is a 

3-DOF system. 

5%, 10% and 20% noise was added to the twists and menches. The relative errors 

in the approximant were comparable to those obtained in the other examples. 

Mean errors and standard deviations of errors are presented in Table (4.3). The 
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Figure 4.7: Error of the approximant with respect to the compliance matnu of the 
pardlel manipulator. 

F-Nom Residual Error of the Approximant 
4.5 I 

eigenscrews corresponding to the large diagonal elements were especially susceptible 

to noise, and poor results were obtained. Again. the two largest eigenvalues were 

equd and the matrix was ill-conditioned. This is a situation similar to the stin-hinge 

example and the results are similar to those obtained for the hinge. 

It should be noted that Patterson and Lipkin multiplied the values of the matris by 

IO4. This magnification factor calls into question the effect of scaling on the estimation 

of the compliance matrix. The original matrix calculated by Merlet [26] used units of 

Newtons and millimeters, with the matrix having a condition nurnber of 864. These 

units are inconsistent ulth SI usage. When units of Newtons and meters were used to 

calculate C. the condition nurnber was 24 000, which is essentidy a singular matrix. 

When Patterson and Lipkin reported their results in Newtons and millimeters they 

4 

i 

- I - 
i 
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I I  

did not scale angular measurements accordingly, hence the change in the condition 

number of the matrix. For both the scaled and unscaled compliance matrices the 

eigenscrew directions and eigenvalues were the same, but the magnitude of the picch 

changed substantiaily because the angles were not reported in miiii-radians to ensure 

consistency between the units. The effect of scaiing and unit consistency m-as nor 

thoroughly investigated in this work, but the decrease in the condition number of 

Merlet's compliance mat* suggested that a mate ' s  sensitivity to error. can be 

improved by astute selection of units. Care must be taken to ensure consistency in 

the units for a correct eigenscrew decomposition to be obtained. 

4.2.4 Example 4: A 6 DOF Robot for a Grinding Operation 

The passive compliance matrix for a SLY-DOF robot used in grinding operations was 

reported by Patterson and Lipkin [29] as 



Table 4.3: Mean errors and standard deviations for eigenscrew direction. pitch and 
eigenvalue of each eigenscren of the parallel manipulator at 5%. 10% and 20% noise 
content. 

1 Noise 1 
-3.0f 26.4 
-1.6~t26.9 
0.3I32.1 
0.W5.3 

-0.2*10.5 
0 .4 f  18.7 

0.5*0.7 
1.7rt2.6 
7.0*8.8 

4 
-0. lf 0.3 
-0.lztO.6 
-0.3f 3.0 
- 0 - l f  0.4 
-0.5k0.9 
-2.OI2.1 
-0.0&0.4 
-0.2I0.9 
-4.5f 38.1 

Eigen- 
screw 

D ~ ( o )  
Eigen- 
values 

(%) 
Pitches 

(%) 

5% 
10% 

' 20% 
5% 
10% 
20% 
5% 
10% 
20% 

2 
-2.1f 26.5 
O.O~t27.1 
1.4I39.1 
-0.135.2 

-0.5I10.3 
-5.6I24.7 

O-43~0.7 
2.1I2.9 

15.7&26.8 
5 

2.2I26.5 
1.0dz27.2 

-0.8I34.4 
-0.1I5.3 

-0.5H0.3 
-3.0+22.0 

0.4~k0.7 
2.2I3.8 

11.8&17.9 1 

3 
-0.1*0.3 
-0.2~t0.6 
O.Odz11.8 
-0.1=t0.4 
-0.4H.9 
1.4&11.1 
0.0&0.4 

-0.ktO.8 
-67.3I227.7 

6 
-L6f  26.6 
-3.6st26.8 
-2.i131.7 ' 

-0.2d15.4 
-0.3k10.5 
0.2H9.4 
0.5*0.8 
1.8~t2.8 
7.2k8.7 

1 Noise 
Eigen- 
screw 

  if ' ( O )  

Eigen- 
values 

(%) 
Pitches 

(%) 

5% 
10% 
20% 
5% 
10% 
20% 
5% 
10% 
20% 



The system eigenscrews were 

The corresponding eigenvalues were 

The pitches of the eigenscrews were 

The rotational cornpliances were 

The translational cornpliances were 

Eigenscrew decomposition of the cornpliance matriv in Equation (4.7) revealed the ex- 

istence of one cornpliant axis collinear with the x-axis of the system coordinate frame. 
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The 1 - 6 pair of eigenscrews formed the compliant mis. The other four eîgenscrews 

were perpendicular to the compliant &. Calculation of the eigenscrew compliance 

revealed that the compliant axis was predorninantly rotationally compliant. Eigen- 

screws. 2. 5. 3 and 4 were l e s  rotationally compliant. Translational compliance also 

decreased for the 2, 5, 3 and 4 eîgenscrews. 

The compliance matrix in Equation (4.7) was cdculated fiom noise! contaminated 

twists and menches. The approxirnant was compared to the original matrix with 

the errors presented in Figure (4.8). 

F-Nom Residuai Enor of the Approxirnant 
4.5 I 

i 

O/O Noise 

Figure 4.8: Error of the approximant relative to the cornpliance matris of the 6 DOF 
robot for grinding operations. 

Eigenscrew directional error, eigendue error and eigenscrew pitch error were 

calculated for 5%, 10% and 20% noise. The results of these t r ia ls  axe presented in 

Table (4.4). The distribution of the errors in eigenscrew directions were srnall. The 
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error distribution for the eigenvalues and pitches were larger, as expected for a poorly 

conditioned matrix. The relatively s m d  errors in eigenscrew directions is because al1 

1 Noise 

eigenvalues were distinct. 

Table 4.4: Mean errors and standard deviations of eigenscrew direction? pitch and 
eigendue associated for each of the eigenscrews of the robot performing a grinding 
operation at 5%, 10% and 20% noise content. 

1 
O . l f  0.4 
0.2&0.9 
O . l f  1.9 
0.0f 2.2 

-0.1&4.3 

Eigen- 
screw 

D ~ ( o )  
Eigen- 
d u e s  
(%) 

Pitches 
(%) 

5% 
10% 

. 20% 
5% 
10% 

' 20% 
5% 

10% 
20% 

2 
d . 8 f  0.9 
- 0 1 . 7  
-0.2I3.8 
-0.lf 2.1 
-0.5*4.3 

3 
O.5f 1.4 
0.7zi2.9 
1.8I6.4 

-0.4f 4.1 
-1.7I8.0 

1 Noise 

-5.1116.7 
0.2k3.5 
0.8f 6.8 

3.5-tl4.6 
6 

-0.lf 0.4 
-0.2k0.8 
-0.3f 1.8 
-0.lf  2.2 
-0.3f 4.3 
-0.3f 8.4 

-1.3f8.4 
0.0*0.4 
0.0f 0.7 

-0-151.4 
4 

Eigen- 
screw 
DP(*) 
Eigen- 
values 
(%) 

Pitches 
(%) 

-2.lI8.2 
0.1k1.8 
0.4I3.6 
0.9k7.1 

5 
5% 

10% 
20% 
5% 

10% 
20% 
5% 

10% 
20% 

0.1k3.4 
0.8t6.9 

3.6I14.1 

0 - l f  1.5 
0.3k3.0 
0.9I6.5 
-0.2f 4.0 
-Mf 8.0 

-5.4rt16.0 

-0.1M.9 
-0.13~1.7 
-0.2I3.7 
-0.2f 2.1 
-0.8f 4.2 
-2.03~ 8.4 
0.1k1.8 
0.4I3.5 
0.8k7.6 

-0.0k0.4 
0.0f 0.7 

-0.13~1.4 
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4.2.5 Example 5: An Elastically Suspended Rigid Body 

The cornpliance matriw of an elastically suspended rigid body was reported by Pat- 

terson and Lipkin [29] as 

The normaiized eigenscrews of C were 

The corresponding eigenvalues were 

r 
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The eigenscrew pitches were 

The rotational compliances were 

The translational cornpliances were 

There were no cornpliant axes in this system because there were no equal values of 

compliance. The eigenscrews formed an orthogonal system and demonstrated that 

the compiiance behaviour of the rigid body could not be decoupied. The errors for 

eigenscrew direction. pitch and eigenvalue are presented in Table (4.5). The mean 

errors and standard deviations were small as was espected because of the condition 

nurnber of 13.4 of the compiiance matrix. 

4.3 Summary of Results of Computer Simulations 

The results for the remaining ten compliance matrices investigated were consistent 

wit h the results presented in the examples. 111-conditioned matrices consistent ly 

yieided large error distributions ( H O %  to I25%) for eigenvalues and eigenscrew 

pitches. The eigenvalues were more sensitive to ill-conditioning than the eigenscrew 

pitches. When matrix ill-conditioning was combined with non-distinct eigenvalues, 
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Table 4.5: Mean errors and standard deviations for eigenscrew direction. pitch and 
eigenvalue for each of the eigenscrews of an elastically suspended rigid body ar 5%. 
10% and 20% noise content. 

1 Noise 1 1 
( -&Of 0.3 
1 -0.0f 0.6 
1 -0.0I1.1 
( -0.1M.4 

Eigen- 
screw 

D~?'(o) 
Eigen- 

5% 
10% 

' 20% 
5% 

2 
-0.0f 0.4 
-0. I f  0.9 
-0.H 1.7 
-0.M 0.4 

values 
(%) 

Pitches 
(%) 

3 
0.0f 0.5 
0.0f 1.0 

-0.lf 2.0 
-0.110.4 

-0.2I0.8 
-1.0I1.6 
-0.0zt0.4 
-0.0f 0.7 
0.0f 1.4 

5 
-0.0dz0.4 
-0.lf 0.9 
-0.lf 1.7 

-0.3f 0.8 
-0.9f 1.6 
0.0*0.4 
-0.0k0.8 
-0.0f 1.6 

6 
O.Of 0.5 
0.0f 1.0 
-0.lf 2.0 

10% 
20% 

5% 
10% 
20% 

1 -0.23~ 0.8 
1 -1.0f 1.5 

0.0~f10.3 
-0.0f 0.7 

1 -0.lf 1.4 

1 4 
( -0.0A0.3 
1 -0.0f 0.6 
( -O.of 1.1 
1 -0.lf 0.4 

1 Noise 

-0. lf  0.4 
-0.2f 0.8 
-1.0~t1.6 
-0.0f 0.4 
-0.0~k0.7 
0.0f 1.4 

Eigen- 
screw 
D~P(O) 
Eigen- -0.lf 0.4 

-0.3f 0.8 
-0.9f 1.6 
0.0f 0.4 
-0.0f0.8 
-0.0f 1.6 

5% 
10% 
20% 
5% 

values 
(%) 

Pitches 
(%) 

10% 
20% 
5% 

20% 

1) -0.2I0.8 
11 -1.0f 1.5 
11 0.0f 0.3 

lO%II-0.0f0.7 
11 -0.lf 1.4 
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F-Nom Residual Enor of the Approxirnant 
4.5 

Figure 4.9: Error of the approximant relative to the cornpliance mat& of the elasti- 
c d y  suspended rigid body. 

the eigenscrew directions were poorly determined. When a matriu was weil con- 

ditioned. the error distributions were reduced for all cnteria examined. M'hen there 

were no cornpliant axes. it was difficult to determine the number of degrees of freedom 

of the system. 



Chapter 5 

Conclusions, Recommendat ions 

and Future Work 

This thesis addressed the question. "1s it possible to determine the number. directions 

and magnitudes of compliance of a system for which there is no a prion knowledge of 

the system geometry?" While exploring the possible methods of solving this problem. 

an intermediate goal became the accurate determination of the system coni pliance ma- 

trix. The primary contribution of this thesis was the presentation of a viable solution 

for descri bing the st atic properties of any mechanical or biomechanical system. This 

chapter contains a discussion of the success of this project in meeting the goals of 

this thesis. and of remaining work to improve the current solution technique. 

5.1 Conclusions 

The results of the cornputer simulations reported in the preceding chapter demon- 

strated that it was possible to determine the compliance matrix of a systeni based on 



the experimental wrench and twist data, regardles of the extent of knowledge of the 

çystern geometry. Higham's SPSD approximation method was successful in reducing 

error incurred by noisy data and obtaining a SPSD matrix. The normaiized Frobenius 

n o m  of the residuals of the approximant reveded that the compliance matris could 

be determined to within 4% of the actual system compliance mat& when 20% noise 

was added to the twist and wrench data. The success of the eigenscrew decomposi- 

tion in determining the number, direction and magnitude of the degrees of freedom 

of the system was difficult to mesure, because the accuracy of the information ob- 

tained through eigenscrew decomposition was dependent on matrix conditioning and 

algebraic multiplicity of the compliance matrix. 

5.1.1 The Effect of Matrix Conditioning 

The condition number of the compliance rnatrix was a good indicator of the accuracy 

of the results obtained with eigenscrew decomposition. III-conditioned cornpliance 

matrices exhibited increased sensitivity to noise when the eigenscrew decomposition 

was applied. Large errors in eigenvalue and pitch magnitudes were associated with 

iU-conditioned matrices. When the compliance matrix was ill-conditioned. the results 

obtained with eigenscrew decornposition were unreliable. 

5.1.2 Algebraic Multiplicity 

Algebraic multiplicity posed problems in detection of eigenscrew direction when this 

situation was combined with ill-conditioning. Algebraic multiplicity oçcurred when 

two or more cornpliant axes bad equal compliance magnitudes. When four of six eigen- 

screws had equal magnitude of compliance, these four eigenscrews were constrained 
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to lie in a plane orthogonal to the direction of the rernaining two eigenscrews. When 

noise was added to the twists and wrenches, the directions of the four eigenscrews re- 

mained confined to the plane orthogonal to the two remaining eigenscrews. but their 

directions within the plane could not be reliably determinecl. 

5.1.3 S ystem Coupling in the Cornpliance Matrix 

Non-zero off-diagonal elements of the cornpliance m a t m  indicated coupling in the 

system. When the systern was cornpliant. the cornpliance mat rix was diagondizable 

by trançforming the -stem to a new reference frame. However, non-diagonalizable 

matrices existed ( e g  Example 5 in Chapter 4) in which there was extensive cou- 

pling. In these situations, more information about the system could be gained from 

examination of both the compliance matrix coupling and the eigenscrew analysis. 

For this reason. it is very important to consider the compliance matrix as well as the 

eigenscrew decomposition when analyzing system DOFs. Due to the possibility of 

extensive coupling within the system, al1 six DOFs of the system must be measured 

until it is possible to determine that fewer DOFs exist. The extent of coupling may 

indicate the existence of skew axes. 

5.2 Recornmendations and Future Work 

The work presented in this thesis in no way exhausts the breadth of topics to  be inves- 

tigated with regard to compliance matrices. This section contains a bnef description 

of a few of the topics that remain to be explored. 
s 
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5.2.1 Improving the Compliance Matrix Approximant : SPD 

Matrices 

Higham's method of obtaining a SPSD mat* approximant was used in this thesis. 

but a second approach to the problem of obtaining a SPSD matrix was discussed in 

the review of relevant literature (Chapter 2). This alternate approach was posed as 

a problern of minimising residual errors. The error-reducing capabilities of each of 

these methods shodd be compared. 

One short-coming of Higham's approximation method is that it returns a semi- 

definite approximant. This approximant can be singular or ill-conditioned. producing 

difEculties in performing the eigenscrew analysis as discussed above. Restricting the 

approximant to a symmetric, positive-definite (SPD) solution would improve relia- 

bility of the results obtained with the eigenscrew analysis and possibly improve the 

residual error of the approximant as well. 

5.2.2 Opt imizat ion of Matrix Condit ioning via Scaling 

Compliance matrices can be divided into four quadrants. based on the units in each 

quadrant, so 

where A has units of length over force (F), B and BT have units of uni& over force 

(k), and D has units of unity over force times length (&). By caseful selection 

of the units of length (e-g.. mm, m, km) it is possible to change and improve the 
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condition number of the compliance matrix. This was demonstrated by Merlet [26] 

for the cornpliance of a pardel  manipulator in Example 2 of Chapter 4. Further 

investigation into the effect of scaling on matrix conditioning and eigenscrew analvsis 

would be useW. It may be possible to optimize the condition number of the matrix 

by carefid selection of scaling. 

5.2.3 Minimization of the System Coupling 

It may be possible to select a reference frame that diagonalizes the compliance ma- 

t*, or that minimizes the off-diagonal values in the compliance matrix. Loncaric 

[24] described how to trsnsform stifhess and compliance matrices into other coor- 

dinate systems. Finding the optimal transformation (rotation and translation) that 

diagonalizes the matrix may prove to be challenging. 

5.2.4 Application t O Mechanical and Biological Systems 

The methods of DOF analysis presented in this thesis have not been applied to real 

systems. The application of compliance matrix evaluation and eigenscrew decom- 

position to mechanical and biological systems is the next obvious step. The results 

obtained from the computer simulations were prornising for potentially deterrnining 

the compliance matrk for any multi-body system. .i\ccording to the computer simu- 

lations, it should be possible to analyze the DOFs based on experimental wrench and 

twist data. It should be noted that care should be taken to collocate the reference 

frames of the twists and wrenches. The condition and rank of the wrench matrix 

should also be monitored in order to ensure the richness of the data. Inertial effects 

within the system should be avoided when rneasuring the applied wrenches in order to 
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ensure the equilibrium cnterion. Finally signal conditioning should be used to elirn- 

inate as much noise as possible from the twists and wrenches without compromising 

the qudity of the measurements. 

This work originated hom a biomechanical problem for which the magnitude and 

direction of the passive constraints of the human knee were required. The knee is 

a complex three-body system with passive motion constrained by Ligamentous soft- 

tissue and bone-on-bone contact. There is redundancy in the constraints of the knee 

because the failure of one ligament does not result in an unconstrainad range of 

motion. Each knee is geornetrically unique which means that the location of the 

insertion sites of the ligaments vary slightly from knee to knee. The stiffness of the 

ligaments and the density of the bone &O vary depending on the age of the tissue, and 

quaiity of the tissue which degrades in the presence of joint disease such as arthritis. 

For these reasons, finding the constrained directions of motion of the knee and the 

amount of constraint are not easily determined using conventional methods where 

geometry and material properties are known and constant. 

The results of this work suggest that the number. directions and magnitudes of 

constraint can be determined for any mechanical system. The methods of analpis 

here could be usehl as a tool for design and analysis of prosthetic joints, the diagnosis 

of human joint instabilities and the detection of unwanted constraint or cornpliancc 

in robot manipulators as they interact with their environrnents. 
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Appendix A 

Ten Diagonal Compliance Matrices 

The results of the cornputer simulations for ten different diagonal compliance ma- 

trices are summarized in this appendix. The matrices were constructeci to sirnulate 

the compliance matrices of stiff mechanical systems with varying numbers and mag- 

nitudes of DOFs. For each matrix, 1000 trials were performed at  3 noise levels (5%. 

10% and 20 %). For each trial, 150 samples of twists and wrenches were generated 

and contaminated with noise. The compliance matrix was reconstmcted from the 

twists and wrenches, and the SPSD approximant was calculated. The eigenscrew 

decomposition of the compliance matrix was performed in which the eigenscrew di- 

rection and pitch. the eigenvalues. and the rotational and translational compliance 

were calculated. Mean errors and standard deviations of the eigenscrew directions. 

eigenvalues and eigenscrew pitches are presented in the tables for each matrix. The 

results were discussed in Chapter 1. 
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A.1 One Rotational DOF System 

The cornpliance matrix is 

The nomalized eigenscrews of 9 were 

The corresponding eigenvalues were 

r 

The eigenscrew pitches were 
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The rotationai compliances were 

The translational compliances were 

The cornpliance matrix had three orthogonal cornpliant axes. two of which were wry 

stiff. The condition number of the matrix was 250 which is moderately il1-conditioned. 

There was no dgebraic muitiplicity. Figure A.1 summarizes the results obtained for 

the residual error of the approximant. Table A.l  contains a summan- of the enors 

obtained for the eigenscrew directions. the eigenvalues and the eigenscrew pitches for 

increasing noise level. 
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1 Noise 

Table -4.1: Mean erron and standard deviations for eigenscrew direction. pitch and 
eigenvalue for each of the eigenscrews of Cl at 5'%, 10% and 20% noise content. 

1 
0.0f 0.1 
O.OM.3 
0.0f 0.5 
0.0f 2.6 
O-Sf 4.7 
-0.8f 9.8 
0.0f 0.3 

-0.lf  0.5 
-0.5f 1.0 

Eigen- 
screw 
DP(o) 
Eigen- 
values 
(%) 

Pitches 
(%) 

5% 
10% 
20% 
5% 
10% 
20% 

5% 
10% 
20% 

2 
0.0I0.3 
0.0f 0.6 
0.0f 1.5 
O.Of 0.0 

3 
-0.lf 0.2 
-0.lf 0.5 
-0.lf 1.5 
0.0f 0.1 

I Noise 6 
0.0f 0.1 
0.0f 0.3 
O.Of 0.5 
-0.lf 2.7 
-O.kt 4.7 
-0.lf 9.8 
0.0f 0.3 
-0.lI0.5 
-0.5I1.0 

4 
0.010.2 
0.0f 0.6 
0.0f 1.5 
O.Of 0.0 

-0 . l f  0.2 
-0.5f 0.7 
O.Of 0.0 
O.OI0.1 
0.2f 0.6 

Eigen- 
screw 
DP(") 
Eigen- 
values 

(%) 
Pitches 

(%) 

-0.lf 0.1 
-0.5f 1.0 
O-Of 0.0 
0.0*0.1 
O.lf 1.0 

5 
0.0f 0.3 
0.0f 0.6 
0.0f 1.5 
O.Of 0.0 
-0.lf 0.1 
-0.5f 1.1 
O-Of 0.0 
0.ifO.l 
0-lf 1.0 

5% 
10% 

' 20% 
5% 
10% 
20% 
5% 
10% 
20% 1 

-0.lf 0.2 
-0.5f 0.7 
O.Of 0.0 
0.0f 0.1 
0.231 0.6 
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F-Nom Residual Error of the Approxirnant 
4.5 

Figure A.1: Error of the approximant relative to compliance rnatrix Ci. 

A.2 Two DOFs System: Collinear Rotational and 

The system compliance matrix was 
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The normalized eigenscrews of C2 were 

The corresponding eigenvalues were 

r 

The eigenscrew pitches were 

The rotational compliances were 

The translational cornpliances were 
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The system had three compiiant axes and no algebraic multiplicity. The condition 

number was 167. Two of the directions were very stiff- The translational and rota- 

tional compliance of the x-direction was correctly identified. Figure X.2 presents the 

residud errors of the approximant for increasing noise. Table A.2 presents a summaxy 

of the errors in eigenscrew direction, eigenvalues and eigenscrew pitches. 

F-Nom ResiduaJ Enor of the Approxirnant 
4.5 I I I 

% Noise 

Figure A.2: Error of the approximant relative to compliance matrix C2. 



APPENDIX A. TEN DIAGONAL COMPLLANCE MATRICES 

~ i 8 " ( 0 )  20% -0.2f 0.6 O f  0.8 -0.2I1.1 
Eigen- 5% -0. lf  0.4 0.010.1 -0.1I0.1 

. . I I 

Pitches 5% 0.0f 0.4 O . O f  0.0 O . O f  0.0 
(%) ' 10% 0.0f 0.7 O.l* 0.1 O . l f  0.2 

Noise ' Eigen- 5% 
1 

Ok0.2 
-0.lf 0.3 screws 

1 

[ Eigen- 1 5% 1 0.0f 0.1 1 0.0f0.1 1 0.lfO.l 1 

10% 

2 
O=tO.l 
O f  0.3 

1 20% -0. l f  1.5 

3 
OzkO.1 

-0.1h0.4 

0.2f 0.9 
5 1 Noise 

screws 
D~P~(*)  

Table A.2: Mean errors and standard deviations for eigenscrew direction. pitch and 
eigenvalue for each of the eigenscrews of CZ at 5%. 10 % and 20% noise content. 

0.2f 0.6 
6 1 4 

- .  

10% 
20% 

Eigen- 
screw 
(%) 

Pitches 

O.OI0.3 
0.0f 0.8 

0.0*0.4 
0-0f  1.2 --- - 

-0 . l f  0.4 
-0.3f 0.8 
-0.911.7 
0.0f 0.4 

5% 
10% 
20% 
5% 

I 

O. 110.3 
O . 3 f  0.5 

-0.lf 0.1 
- 0 2 f  0.2 
-0.7f 0.8 

O.Of 0.0 

0.0f 0.1 
-0.2f 0.2 
-0.7f 1.1 

O - O f  0.0 
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A.3 Two DOFs System: Non-coIlinear Rotational 

and Translat ional 

The system cornpliance matrix was 

The normalized eigenscrews of C3 were 

The corresponding eigendues were 
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The eigenscrew pitches were 

The rotational compliances were 

The translational compliances were 

.4gain, there were three cornpliant axes and no algebraic rnuitiplicity. The condition 

value of the matrùr was 250. Eigenscrew decornposition identified the non-collinear 

translational and rotational cornpliance. The residual errors of the approxirnant are 

summaxized in Figure -4.3. Table A.3 summarizes the errors in the eigenscrew direc- 

tions, the eigenvalues, and the eigenscrew pitches. The stiff axis had large errors in 

eigenscrew pit ch values. 



APPENDIX -4- TEN DIAGONAL C O M P U N C E  MATRICES 

1 Noise 1 2 3 

II 
- - w r Eigen- 1 5% 11 0.0f 0.3 O.Of 0.2 1 -0.3H0.6 1 

Eigen- 1 5% 
screw 

D~PS(O) 
Eigen- 
values 

(%) 
Pitches 

(%) 

0.3~k10.7 
10% 
20% 
5% 

10% 
20% 
5% 

10% 
20% 

Table .4.3: Mean errors and standard deviations for eigenscrew direction, pitch and 
eigenvalue for each of the eigenscrews of C3 at 5%, 10 % and 20% noise content. 

1 Noise 

screw r 10% 

(%) 
Pitches 

O.Ok0.2 
-0.2*19.5 
-1 .0&25.8 
0.03t0.9 

-0.2*2.4 
-3.8kX1.8 

3.3&5.0 
9.9&11.3 

24-7&22.7 

-0.1k0.5 
-0.3~t1.2 
-0.1&0.1 
-0.2*0.2 

D ~ P Y )  
Eigen- 
values 

0.0*0.3 

4 

20% 
5% 

10% 
' 20% 

5% 
10% 
20% 

5 I f i  

I 

O.OEi.3 
1-3&24.7 
-0.1I2.5 
0.4~t8.1 

14.8*26.9 
-0-l&0.3 
-0-3kO.6 
- 1 0 1 6  

-0. l f  7.2 
-0.7~t38.7 
-0.1&2.5 
0.4I7.2 

1 
- -  - 

-0.1*0.5 
-0.2I1.2 
O.O~t0.1 

-0.2&0.2 
-0.73~0.8 

76.4&97.2 
100.8&100.0 

98.4*99.8 

- 

-0.5f 18.5 
0.8=t20.2 
0.0*0.9 

-0.6*4.6 
1 

- - 

-0.7f 0.8 
76.4f 97.2 

lOO.8f 100.0 
98.4f 99.8 

4.2*18.7 
-0. l f  0.3 
-0.3f 0.6 
-1.0I1.5 

-10.0I16.9 
3.3d5.1 

10.lf  11.8 
23.8~k21.5 

' 



APPENDIX A. TEN DIAGONAL COMPLLANCE MATlUCES 

F-Nom Residual Error of the Approximant 
4.5 i 

% Noise 

Figure -4.3: Error of the approxirnant relative to compliance matriv C3. 

A.4 Two Rotational DOFs System 

The compliance matrix was 
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The normalized eigenscrews of C4 were 

The corresponding eigenvaiues were 

The eigenscrew pitches were 

The rotational cornpliances were 

The translational cornpliances were 

The rotational cornpliance in the x-direction and in the y-direction were correctly 

identified by eigenscrew decomposition. There were three cornpliant axes, of which 



one was very stift The condition number of the rnatrix mas 250. The residual errors 

of the approximant are surnmarized in Figure A.4. Table A.4 presents a summary of 

the errors resulting from increasing noise level in the eigenscrew decomposit ion. 

F-Nom Residual Enor of the Approamant 
4.5 r , a ï 1 

Figure .4.4: Error of the approximant relative to cornpliance matriv Cd. 
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1 Noise 

Table A.4: Mean errors and standard deviations for eigenscrew direction. pitch and 
eigenvalue for each of the eigenscrews of C4 at 5%. 10 % and 20% noise content. 

1 
0.0I  4.0 
0.3*9.2 

1.0f 16.0 
-0.1I2.5 
0.2&4.7 
0.9I9.4 

-0.4~t0.7 
-1.9I3.3 
-5.7f 7.2 

4 
0.0f 0.3 

-0 . l f  0.6 
-0.3f 1.5 
-0.1I0.1 
-0.2f 0.2 
-O.?'& 0.8 
O.Of 0.0 
O.lIO.2 
0.2f 0.6 

Eigen- 
screw 

~ i p ( ' )  
Eigen- 
values 
(%) 

Pitches 
(%) 

5% 
10% 
20% 
5% 

10% 
20% 
5% 

10% 
20% 

2 
0.2316.9 

0.7I15.0 
1.1325.0 
-0. 1I1.5 
-0.7*2.9 
-1.4&7.0 

0.6=tl.l 
2.6I4.0 
6.kt 8.0 

5 1 Noise 

3 
-0.1k0.3 
-0.13~0.6 
-0.3f 1.4 

Eigen- 
screw 

~ i f  ' ( O )  

Eigen- 
values 

(%) 
Pitches 

(%) 

' 

5% 
10% 
20% 
5% 

10% 
20% 
5% 

10% 
20% 

-0.lf 6.9 
-0.5f 15.1 
0.3125.2 
-0.23~ 1.5 
-0.6*2.8 
-2.1k6.2 
0.6f 1.2 
2.6I4.2 
6.6f 7.9 

-0.1k0.1 
-0.2d~0.2 
-0.7&0.8 
O.O&O.O 

O. lf 0.2000 
0.2I0.6000 

6 
0.2I4.2 

-1.2I9.4 
-1.lf 16.2 

0.2*2.5 
0.4k4.8 

-0.lf 10.5 
-O.& 1.3 
-2.W3.8 
-5.81t7.4 
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A.5 Two Rotational DOFs System: Equal Magni- 

tude 

The cornpliance mat* was 

The normalized eigenscrews of CS were 

The corresponding eigenvalues were 
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The eigenscrew pitches were 

The rotational cornpliances were 

The translational compliances were 

The compliances of the rotational DOFs were correctly identified by the eigenscrew 

decomposition. The eigenscrew decornposition yielded three orthogonal cornpliant 

axes for the system. This matrix approaches the condition of algebraic multiplicity 

for the x-direction and the y-direction. The condition number of the matriv was 250. 

The residual errors for the approximant are summarized in Figure -4.5. The errors 

for the eigenscrew direct ions, the eigenvalues and the eigenscrew pitches for the  t rids 

including noise are summazized in Table A.5. 
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1 Noise 

Table -4.5: Mean errors and standard deviations for eigenscrew direction. pitch and 
eigenvalue for each of the eigenscrews of Cg at 5%. 10 % and 20% noise content. 

1 
0.2k5.0 

0.3f10.1 
-0kt18.8 

O - l f  2.0 
0.2f 4.0 

-1.0f 9.5 
0 .M 0.3 
0.5&1.0 
1.0f 2.8 

4 
0.0f 0.3 

-0.1I0.6 
-0.3rt1.6 
-0. l f  0.1 
-0.2f 0.2 
-1.0I1.0 
O . O f  0.0 
O . 1 f  0.2 
O.3f 0.8 

Eigen- 
screw 
D~P(o) 
Eigen- 
values 

(%) 
Pitches 

(%) 

5% 
10% 

' 20% 
5% 

10% 
20% 

5% 
10% 
20% 

2 
0.0I4.1 

-0.6f8.4 
-1.831 16.5 
-0.3I2.4 
-0.8f 4.7 

-0.5f 12.0 
-0.lf  0.3 
-0.5f 0.9 
-1.3f 2.7 

3 
0.0f 0.3 

-0.1f0.6 
-0.4f 1.5 
-0.lf 0.1 
-0.2f 0.2 
-0.9d~1.0 
O . O f  0.0 
O . 1 f  0.2 
O.3f 0.7 

1 Noise 
Eigen- 
screw 

D~P'(o) 
Eigen- 
values 

(%) 
Pitches 

(%) 

5 
O.3f 4.1 
0.8I8.6 

-0.9I16.7 

5% 
10% 
20% 
5% 

10% 
20% 
5% 

10% 
20% 

6 
-0.2~t5.0 
0.6I10.3 
O.OI18.8 

-0 . l f  2.5 
-0.5&4.6 

-0.4f 11.6 
-0. l f  0.3 
-0.5kl.O 
-1.3I2.8 

0.kt2.0 
0.2I3.8 

-0.6&10.0 
O . l f  0.3 
O.5f 1.0 
O.9f 2.8 
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F-Nom Residual Error of the Approximant 
4.5 1 1 

I 

% Noise 

Figure A.5: Error of the approxkant relative to compliance matrix Cs. 

A.6 Two Translational DOFs System 

The compliance matni %*as 
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The normalized eigenscrews of Cg were 

The correspondhg eigenvalues were 

The eigenscrew pitches were 

The rotational compliances were 

The translational compliances were 

There were three cornpliant axes identified for the system. The translational DOFs 

were correctly identified using eigenscrew decomposition. The condition value of the 



rnatrix was 250. The residual errors for the approhant are presented in Figure -4.6. 

The errors in eigenscrew directions, pitches and eigenvalues are summarized in Table 

-4.6. 

F-Nom Residual Error of the Approximant 
4.5 

Figure .4.6: Error of the approximant relative to cornpliance matris C6. 



1 Noise 

1 Noise 
Eigen- 1 5% 

1 . . ,  Il I 1 1 

( Eigen- 1 5% 11 -0.lf 0.1 1 0.0I2.0 1 0.0I0.9 1 

1 
O . l f  1.3 
0.0&2.9 
0.0f  6.3 
0.0&0.8 
O . O H . 7  

-0.3f 3.9 
0.0&0.3 

-0.23~ O.? 
-0.6k3.3 

Eigen- 
screw 

~ i f '  ( O )  

Eigen- 
values 

(%) 
Pitches 

(%) 

- 
screw 

D ~ ~ ( O )  

L - - I 1 1 

Pitches 1 5% 11 0.0f 0.1 1 O.3f 0.5 1 0 - 0 f  0.3 1 

5% 
10% 
20% 
5% 

10% 
20% 
5% 

10% 
20% 

4 
0.0I0.2 

Table A.6: Mean errors and standard deviations for eigenscrew direction. pitch and 
eigenvalue for each of the eigenscrews of Cs at 5%, 10 % and 20% noise content. 

2 
0.2f 3.5 

-0.2317.4 
-0.6f 13.7 
-0.2h2.0 
-0.kt4.0 
-0.7~t7.9 

0.3k0.5 
1.2f 1.4 
4.0I4.4 

3 
0.010.1 

-0.ktO.3 
-0.2îz0.5 
-0.ld~0.1 
-0.2zk0.2 
-O.% 1.0 
0.0*0.1 
O.kt0.2 
0.4&0.8 

5 
O . 3 f  3.5 

0.0k3.0 
0.0f 6.4 

L I 

6 
-0. l f  1.4 

10% 
' 20% 

-0.1&0.3 
-0.23~ 0. 

0.0H.6 
- l A f  14.0 



-4PPENDlX -4. TEN DIAGONAL COMPLMCE hL4TlUCES 120 

A.7 TwoTranslationalDOFsSystem: EqualCom- 

The cornpliance matrix was 

The normalized eigenscrews of C7 were 

The corresponding eigenvalues were 
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The system had three orthogonal compüant axes. Eigenscrew decornposition correctly 

identified the two translationdy cornpliant axes. The third cornpliant axis was stift 

The condition number of the m a t e  was 250. The cornpliance rnatrix approaches 

algebraic multiplicity. The residual errors for the approximant were presented in 

Figure A.7. A surnmary of the errors in the eigenscrew directions. the eigenvalues 

and the eigenscrew pitches is presented in Table A.7. 
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1 Noise 
Eigen- 1 5% 

. ,  , I I  ! 1 
- - -  

Eigen- ( 5% 11 -0.1k0.1 / -0.lh2.1 1 0 .0 f  1.2 1 

1 
O . l f  1.2 

1 . ' ,  

1 Noise 
Eigen- 1 5% 

0 .0 f  1.2 
0 1 2 . 1  
-0.2f 4.3 

Eigen- 
values 

(%) 

Table A.7: Mean errors and standard deviations for eigenscrew direction. pitch and 
eigenvalue for each of the eigenscrews of C7 at 5%, 10 % and 20% noise content. 

2 
0 .0f  2.2 

5% 
10% 
20% 

Pitches 
( %  

4 
0.0I0.1 

values 
( )  

Pitches 

3 
O.OTtO.1 

0.0k 2.1 
-0.4k4.1 
-0.9*7.3 

- 0 . l f  0.1 
-0.3L-0.3 
-1 .3f  1.4 

5% 
10% 
20% 

5 
-0 .3I2 .1  

J 

6 
-0 .2 f l . l  

IO% 
20% 
5% 

0.0k0.3 
O . l f  0.5 
0.43~1.3 

-0.3*0.3 
-1.2f 1.3 
0.0*0.1 

0.1I0.3 
0.4k0.6 
1.6*1.5 

0.0I0.1 
0 - l f  0.3 
0.6k1.0 

-0.1I4.1 
-1. lf 7.3 
0.1I0.3 

-0.lzt2.2 
-0 .6f  4.3 
0.0*0.3 
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F-Nom Residual Error of the Approximant 
4.5 l r 

Figure -4.7: Enor of the approximant relative to compliance matrix C7. 

A.8 Three Rotational DOFs System: Two Equal 

Cornpliances 

The compliance matr~v was 
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The nomalized eigenscrews of Cs were 

The correspondhg eigenvdues were 

The eigenscrew pitches were 

The rotational compiiances were 

The translational cornpliances were 

Again the system has three compliant axes and approaches the condition of dgebraic 

rnultiplicity. Eigenscrew decomposition correctly identified the compliant axes and 
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the magnitudes of rotational and translational cornpliance. The condition number 

of the mat* was 250. The residud errors of the approximant are surnnmrized in 

Figure 6 .8 .  The errors in eigenscrew directions, pitches and eigenvalues are presented 

in Table A.8- 

F-Nom Residual Error of the Approximant 
4.5 1 

Figure A.8: Error of the approximant relative to cornpliance matr~u Cs. 
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1 Noise 

Table A.8: Mean erron and standard deviations for eigenscrew direction. pitch and 
eigenvalue for each of the eigenscrews of Cs at 5%, 10 % and 20% noise content. 

1 
-0.lf 5.6 

-0.3it11.2 
O.4f 22.0 
0 - l f  2.0 

-0.4f 5.5 
-6-4&13.0 

0 - l f  0.3 
0.0f 2.7 

-3.6f 8.3 
4 

-0.8f 7.8 
O.O~k17.7 

-1.4f 31.0 

Eigen- 
screw 
DP(o) 
Eigen- 
values 

(%) 
Pitches 

(%) 

5% 
10% 
20% 

5% 
10% 
20% 

5% 
10% 
20% 

2 
O . l f  6.1 

-0.8f 15.0 
O.3f 30.3 
-0.lf 2.4 

O . l f  5.9 
6.1I14.3 
-0.6k0.8 
-2.0I2.7 
-3.1I5.6 

5 
-0.lf 6.1 
0.6I15.4 

3 
-0.7I7.7000 

-1.9117.5 
-2.7k32.4 
-0.3&1.0 
-0.4k3.2 
0.2~k13.5 
0.7d~1.2 
2-9314.5 
7.8&8.3 

6 
O.lzt5.5 

-0.5&11.5 

1 Noise 

-0.2f 1.5 
-0.4&5.5 
O . l f  12.5 
0.7f 1.2 
2.9I4.6 
7.4f 8.0 

0.5f 29.0 1 0.3k22.3 

Eigen- 
screw 
D~P(O) 
Eigen- 
values 

(%) 
Pitches 

(%) 

5% 
" 10% 
20% 

5% 
10% 
20% 
5% 

10% 
20% 

O.lrt2.4 
O.lk5.7 
6.2I15.2 
-0.6k0.8 
-2.OI2.7 
-3.055.3 

O.S=G?.O 
-0.1*5.5 

-7.3f 14.4 
O. 1dz0.3 

-0.2d~3.8 
-3.5I8.5 
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A.9 Three Rotational DOFs System: Equal Mag- 

nit ude 

The cornpliance matrix was 

The norrnalized eigenscrews of Cs were 

The corresponding eigenvalues were 
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The eigenscrew pitches were 

The rotational compliances were 

The translat ional compliances were 

There were three cornpliant axes in the system. The rotational degrees of freedom were 

correctly identified by the eigenscrew decomposition. This systern contains algebraic 

multiplicity The condition number of the matrix was 250. The residual errors of the 

approximant are presented in Figure -4.9. X summary of the errors in the eigenscrew 

directions. the eigenvalues and the eigenscrew pitches are presented in Table A.9. 
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II Noise II 1 I 2 1 3 1 
Y 1 

D~I?(o) 
Eigen- 
values 

Eigen- 
screw 

(%) 
Pitches ' 

1 I I - r Eigen- 1 5% 11 -1.4~t25.2 1 -O.?'& 27.1 

- 
-3.5I25.0 
-4.3I25.0 

5% 
10% 

4 

I ? 

20% " -0.9f 23.2 -0.6332.4 -3.8I30.2 

(%) 

-0.3f 11.6 
-0.6f 17.0 

5% 
IO% 

-0.lk27.1 
-0.8f 28.3 

L 

screw 
~ i r ~ '  (O) 

Eigen- 

Table A.9: Mean errors and standard deviations for eigenscrew direction. pitch arid 
eigenvalue for each of the eigenscrews of Cg at 5%. 10 % and 20% noise content. 

-1l .gf 10.0 
-1O.8f 11.5 

O.6f 9.7 
0.1*0.3 

20% 
5% 

0.53~0.9 0.0&1.3 
1.63~2.6 0.4dI2.9 

10% 
20% 

(%) 
Pitches 

(%) 

--- - 

15.4k15.3 
O.OI0.40 

-13.3I14.6 
-0.1*0.4 

s 

-0.5I1-2 
-2.2I3.4 

1 Noise 

-0.lf  2.6 
0.2k4.7 

4 

-0.3f 16.8 
-0.3I 23.4 

-11.7-tl0.0 

b I 

l4.3f 10.5 
12.lf11.6 

10% 
20% 

-15.0I14.7 
-0.1dI0.4 
-0.4+1.2 

1 

20% 
5% 

' 10% 

-1.2I24.7 
O.6f 30.0 

5% 1 

-1.7k28.4 
-0.1I33.6 

l7 .3f  16.8 1 -3.6I9.8 
O.OI0.4 

O 

l6.Of 11.7 

0.110.3 
0.5I1.1 

-l& 2.1 
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Figure A.9: Error of the approximant relative to compliance matrut Cg. 

A.10 Six DOFs System 

The compliance matriv was 
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The normalized eigenscrews of Cie were 

The corresponding eigenvdues were 

The eigenscrew pitches were 

The rotational compliances were 

The translational compliances were 

The cornpliance matrix had three cornpliant axes. A11 six DOFs were correctly iden- 

tified by eigenscrew decomposition. The condition number of the matr~v was 8. The 
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residud errors for the approximant are sttmmmed in Figure A.10. The errors in 

the eigenscrew directions. the eigenvalues and the eigenscrew pitches are presented in 

Table -4.10- 

F-Nomi Residual Error of the Approximant 
4.5 r 1 

I 

5 10 15 20 25 
% Noise 

Figure -4.10: Error of the approximant relative to cornpliance matris Cl& 
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n Noise II 1 I 2 I 2 I II I - r Eigen- 1 5% (1 0.0f 0.3 ( 0.0f 0.3 
screw 

o if^(') 
Eigen- 
vdues 

(%) 
Pitches 

(%) 

-0.2f 0.5 
-0.2A1.1 
0.0f 0.5 
-0.3f 0.9 

b 

10% 
' 20% 
5% 
10% 

Table A.lO: Mean errors and standard deviations for eigenscrew direction, pitch and 
eigenvalue for each of the eigenscrews of CIO at 5%, 10 % and 20% noise content. 

' 20% -0.9f 1.7 

C 

10% 
20% 

J ! 

(%) 
Pitches 

1 

5% 

I 
- 

n Noise 
0.0f 0.3 
0.0f 0.6 
-0111 
-0.lf 0.5 
-0.3f 0.9 

Eigen- 
screw 
DP(o) 
Eigen- 
values 

0.0f 0.6 
-01.1 
0.0f0.4 
-0.2f 0.8 

0.0f 0.4 
-1.0f 1.7 
0.0f 0.4 

0.0I0.7 
0.131 1.4 

5% 
10% 
20% 
5% 
10% 

0.010.7 
0.0f 1.3 
0.0f 0.5 
-0.2~ 0.9 

-1.0f 1.7 
0.0f 0.4 

4 - 

O.Oi0.3 
0.0f 0.7 
0.0f1.2 
0.0f 0.4 
-0.3f 0.9 

20% 
5% 

0.0f 0.7 
0.0f 1.4 

- 
0.0f 0.3 
0.0f 0.6 
0.lfl.l 
0.0f 0.4 
-0.3f 0.8 

-1.031 1.6 
0.0f 0.4 

] -1.0f 1.7 
1 0.0I 0.4 

- 

0.0f 0.7 
0.0iz1.4 

5 

- 

-0.9I1.6 
0.0f 0.4 

fi 
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