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Abstract

This work looks at the stiffness matrix of some sim-
ple but very general systems of springs supporting a
rigid body. The stiffness matriz is found by symbol-
ically differentiating the potential function. After a
short example attention turns to the general structure
of the stiffness matriz and in particular the principal
screws introduced by Ball.

1 Introduction

There has been much previous work in the area of
compliance and stiffness in robots. Most of the work
has taken a straightforward approach to the subject,
postulating a stiffness or compliance matrix and often
a centre of compliance and compliance frame.

A more sophisticated approach was initiated by
Loncarié¢ [5] who studied simple systems, a mass sup-
ported by a number of different springs. Loncari¢ dis-
cussed the potential energy function of the system but
does not seem to have used it to compute the stiffness
matrices which are the main subject of his work.

Later, Huang and Schimmels [4], pointed out that
not all stiffness matrices could be formed from the sim-
ple spring systems studied by Loncari¢. They found
a simple condition on the trace of part of the stiffness
matrix which, if satisfied, guarantees that the matrix
can be realised by a system of simple springs. As
part of the proof an algorithm was given to find a sys-
tem of springs which realise the matrix. Most recently
Roberts [7] has sharpened this algorithm to find the
minimal number of springs needed.

In all of this work the models used for the springs
are very simple, they obey Hooke’s law and are always
unstretched. That is the distance between the end-
points of the spring is always the natural length of the
spring. Hence the position studied is always an equi-
librium position of the system. Griffis and Duffy [3]

noted that, away from equilibrium configurations the
stiffness matrix can be unsymmetrical. This is not
too surprising since the stiffness matrix is only a sym-
metric tensor at equilibrium configurations. In the
classical mechanics literature it is not usually defined
for other positions.

Zefran and Kumar [9], showed how to construct a
symmetric tensor field which restricts to the stiffness
matrix at an equilibrium point. However, the physical
significance of this tensor field is far from clear, espe-
cially as it depends on a choice of a connection for the
group of rigid body motions.

In this paper the potential function for a simple
systems of stretched springs is studied. The result-
ing wrench is derived by differentiating the potential.
This also gives conditions for equilibrium of the sys-
tem. Differentiating again we obtain the stiffness ma-
trix, so long as the position is an equilibrium.

There are several advantages of using stretched
springs. In particular there is a greater flexibility for
the designer. When using stretched springs, if the
deflections are not too large we can use ‘one-sided’
springs which can only pull, say.

To first order, an unstretched spring can only pro-
duce forces along its length, stretched springs can pro-
duce forces perpendicular to their length. This effect is
used in trampolines, for example, where the stretched
springs are parallel to the bed but the main forced
produced is perpendicular to the bed.

The analysis for stretched springs can be reduced,
very simply, to the case of unstretched springs.

2 Differentiation along a screw

We need to be able to find the gradient of a po-
tential function on a manifold and also the derivative
of a vector field. We do this by differentiating along
vector fields. In particular, since the manifold is a Lie
group, we use elements of the Lie algebra thought of a



left invariant vector fields. To differentiate using the
vector field we move the function a little way along a
path tangent to the vector field and look at the limit of
the difference between values of the function at neigh-

bouring points.
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=(0 1)

Let:
be a Lie algebra element or screw given in the 4 x 4
representation. The 3 x 3 anti-symmetric matrix Q =
ad(w), corresponds to a vector w. So that, Ox = wxx.
The notation ad() refers to the adjoint representation
of the rotation group.

If M is a group element written in the 4 x 4 repre-
sentation, then the action of S on M, is given by the
left translation,

M(t) = e M

This takes M along a path tangent to the vector field
defined by S. Taking the derivative along the path
and then setting ¢t = 0 gives,

dsM = SM

3 Springs

Consider a rigid body supported by a system of
springs, assume that the springs obey Hook’s law and
can both push and pull. The spring constant of the
i-th spring will be A; and its natural length ;. Let
al' = (a], 1) be the points where the springs are at-
tached to the ground or frame, and b? = (b? 1) the
corresponding attachment points on the rigid body
when the body is in some standard ‘home’ configu-
ration. If the body undergoes a rigid motion the at-

tachment points will move to,
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which we will abbreviate to 152 = Mb;.
Let us write,

pi = (Rb;+t—a;) and P; = pi/|pi

for the vector and unit vector along the ith spring.
We can then write the extension of the :th spring as,
e; = p; — l;pi.

Now we can write the potential energy of the system

as,
1
o = 5 Z )\ieiTei

Notice that this function is defined on the group of
rigid motions, as R and t change the potential will
vary.

To find the wrench due to the springs we differ-
entiate the potential. In general a wrench is a 6-
dimensional vector of forces and torques,

0

where 7 is a moment about the origin and F is a force.
Notice that wrenches are not Lie algebra elements but
elements of the vector space dual to the Lie algebra.
Usually the force due to a potential is given by its gra-
dient. The same is true here, in terms of the exterior
derivative d we have, W = —d®. Pairing the wrench
with an arbitrary screw S gives,

W(S) = —d®(S) = —0s®

see [8, §. 4.20] for example.

To find the derivative of the potential with respect
to an arbitrary screw S we first look at the derivative
of the unit vector p; = (p!'p;)~'/?p;. We obtain the
result,

. 1
Ospi = W((P?pi)h - (pipiT))aSpi

The derivative of the potential energy is thus,

l; l;
05 = Ne] (Is - mh + W(Pz‘P?)) dspi

Evaluating the derivative at the home position gives,

dspi = (B Is) (w)

\%

After simplification we obtain,
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which could also have been deduced from elementary
mechanics. The point is that these methods do indeed
agree with more fundamental methods.

In the following it will be more convenient to use
the equivalent formula for the wrench,

_ 21 )\iai X €e;
W= ( 21 Ai€;

since the a;s are fixed. Equilibrium positions are de-
termined by the vanishing of this wrench. The result-
ing pair of vector equations are very difficult to solve
symbolically.

Problems concerning the existence of solutions do
not arise when using unstretched springs. If all the
springs are unstretched in the home position then e; =
0 for all ¢ and so home is an equilibrium position.



Figure 1: A Rigid Body Suspended by a Pair of Springs

4 The Stiffness Matrix

Here, we derive the stiffness matrix from the po-
tential given above. That is, we look at the lineari-
sation of the the system of springs. An infinitesimal
displacement of the body is represented by a screw.
Here we prefer the six-dimensional representation of
screw, sT = (wT, vT), where w is an angular displace-
ment and v a linear one. The wrench produced by a
displacement s is given by W = K's, where K is the
stiffness matrix.

The stiffness matrix is the hessian of the poten-
tial function, that is its matrix of second order partial
derivatives, see [1, Ch 5]. This is only valid at an
equilibrium position.

Above we saw that,
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To find the second derivative we only need to know
Ose; which we have already derived. If we write,

1 A A
Then the stiffness matrix, K = <f:T 5) can be
written as,

The apparent asymmetry here is accounted for by the
fact that we have not imposed the condition that the
position of the body is an equilibrium configuration.
This is a necessary condition for the stiffness matrix
to be a symmetric matrix and hence to be physically
meaningful. To see this notice that in the home posi-
tion p; = b; — a; and so we can write,
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Hence if we take the difference between = and its
transpose we get,
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when the home position is an equilibrium position.
This shows that = is symmetric, T is clearly symmetric
and a similar argument shows that I' =T

Notice that if we set |p;| = I; we recover the stiffness
matrix for unstretched springs.

5 An Example

To illustrate the above theory we look at a very
simple system consisting of a symmetrical pair of
springs, see fig. 1. We sidestep the difficulties in find-
ing an equilibrium position, the symmetry of the set-
up makes it clear that the position shown is an equi-
librium.

Using i for the unit vector in the z-direction, we
have, pr = —(l+e)i, |pr| = !+ e and on the left side
pr = (I+e)i, |pr| = l+e. From this we can calculate,

1 0 0
Xp=Xr=10 l_%e 0
0 0 =
Now since,
0 0 0
AR:—AL: 0 0 —(1+l+€)
0 (1+l+e) 0

we get that AgXr = —Ap X where,

0 0 0
ArXr= 1|0 0
0 e(l+ ) 0



and ARXRBg = ALXLBLT giving,

0 0 0
ApXpBE =10 e(l+ %) 0
0 0 e(1+ )

So for this very simple system the stiffness matrix has
blocks,

0 0 0
= = [0 2 e(1+ ) 0
0 0 2xe(1 + )
22 0 0
T = 0 225 0
0 0 2X\;%
and I' = 0.

This result shows clearly the difference between
stretched and unstretched springs. The unstretched
case can be found by setting e = 0. Notice that in
the case of stretched springs a deflection in the y-
direction produces a force in the y-direction. A small
twist about the y or z-axes will also produce a torque
about the corresponding axis. But no twist about the
z-axis, the direction of the springs, will produce any
torque.

We can make our simple example a little more gen-
eral by considering the effect of rigid motion on the
springs. Suppose that we subject the springs, that is
their attachment points a; and b; to a rotation R fol-
lowed by a translation 7" = ad(t). From the relation,
W = Ks and the transformation properties of screws
and wrenches, we can deduce that the effect on the
stiffness matrix K is given by,

K =HTKH™!

R 0. . .
where H = (TR R) is the 6 x 6 matrix which trans-

form a screw. In this way we can build-up the stiffness
matrix for complicated arrangements of springs from
springs aligned with the coordinate axes.

Notice that, after a translation we will have T" # 0,
even if it was zero to begin with.

6 The Trace Condition

Huang and Schimmels [4] showed that for un-
stretched springs the stiffness matrix satisfies the trace

condition’, Tr(KQp) = 0 where, Qy = <IO I(i)
3

TThis condition also appears in a footnote in Lonéarié [5]

The condition is equivalent to Tr(I') = 0 and was a
consequence of the fact that for unstretched springs
the contribution to the stiffness matrix from the i-th
spring is proportional to W,WI' where W is a pure
force directed along the i-th spring. This is not the
case for stretched springs as we have seen above, how-
ever, the trace condition still holds since,

s
1) = 3 (2 pd — 1) T4+
P Pl
Ail;
% Tr((a; x pz‘)PiT)> =0
i
This vanishes because A; is antisymmetric, and by
the cyclic properties of the trace operator, Tr((a; X
pi)p; ) = pi-a; X p; = 0.
The condition is invariant with respect to rigid
transformations. A simple computation shows that

HQoH" = Qo and so,

Tr(K'Qo) = Te(H TKH'HQoHT) = Tr(K Qo)

The matrix Q. = (8 IO> also satisfies
3

HQowHT = Q4 and hence Tr(KQ,) is another in-
variant. This invariant is equivalent to Tr(Y) and was
also found by Loncarié¢ [5]. For our stretched springs
we get,

Te(T) =) N Tr(X;) = ZA" (3 - 2li>

|Pz‘\

K2

7 Normal Forms

A rigid change of coordinates will transform the
stiffness matrix according to,

K'=H"KH

this is the inverse of the active transformation we met
in section 5. In terms of 3 x 3 submatrices the trans-
formation can be written as,

=" = RTZR+ R'TTR - R'rT — RTTYTR
" = R'TR-R'TYR
Y = RTYTR

In [5] Loncarié¢ showed that it is always possible to
translate the coordinate frame to a position where I’
is symmetric, provided det(Y — Tr(Y)I5) # 0. Then a
rotation can be found which will diagonalise I'. So in
Loncari¢’s normal form = and Y are symmetric and I"



is diagonal (and traceless for stretched springs). How-
ever, the final rotation could have been chosen to di-
agonalise = or Y. There are also alternatives to sym-
metrising I'; so there are many different possible nor-
mal forms for the stiffness matrix.

The advantage of the Loncari¢ normal form, ac-
cording to [5], is that the frame “maximally decouples
rotational and translational aspects of stiffness.” To
understand what this might mean we look at the exis-
tence of centres of compliance and compliance frames.
These ideas are much used in practical work but there
does not seem to be a great deal work on the condi-
tions for the existence of centres of compliance. In the
literature there are several different definitions of the
centre of compliance.

One definition of the centre of compliance is, a point
at which a pure force produces a pure translation in
the same direction. If we write the centre as the point
c then have the following equation,

(7 2)(0) =2 ()

The equations is required to hold for any vector v, the
constant (3 is arbitrary. The relation I'v = B¢ x v tells
us that, I' = Bad(c) = SC an anti-symmetric matrix.
The second relation, Yv = v means that T = (13,
this is T is proportional to the identity matrix. Now
translating by ¢ we can make I' symmetric. In fact, in
this coordinate frame I" = 0. This coordinate frame is
clearly the Loncari¢ frame and the centre of compli-
ance is the origin in this frame.

We can do the same with torques and rotations, if
the compliance centre is defined as the point where
and pure torque results in a pure rotation about the
same axis we obtain the equation,

(7 2)(eXe) = (3)

In the Loncari¢ frame we have I' = 0 and = = als.
So the rotation axes will all pass through the origin of
the Loncari¢ frame.

Putting these definitions for the compliance centre
together we get the definition given in [6, §6.1.2] for
example, a point at which a pure force produces a
pure translation in the same direction and pure torque
results in a pure rotation about the same axis. Now it
is not hard to see that the conditions for such a point
to exist are that the stiffness matrix must have the
Loné¢arié normal form,

al 0
<=0 4n)

where « and (§ are constants. Moreover, the position
of the centre of compliance is the origin of the coordi-
nate frame. In more general coordinates, this stiffness
matrix has the same shape as the inertia matrix of a
spherically symmetric object.

Notice that it is not too difficult to design such a
stiffness matrix using stretched springs. One possibil-
ity would be to use pairs of identical springs stretched
so that their lines of action all pass through a common
point. (We must necessarily have § = Tr(Y)/3.)

8 Ball’s Principal Screws

In his famous treatise [2] Ball described what he
called principal screws of potential. A principal screw
is a displacement which produces a wrench with the
same pitch and axis as the screw. They are solutions
to the following eigenproblem,

Ks = pQos

In general we get six eigenvalues p, the solutions to
the characteristic equation,

det(K — pQo) =0

and a principal screw or eigenscrew s, corresponding
to each eigenvalue. This is very similar to the stan-
dard eigenvalue problem and many of the standard
theorems apply directly or can be modified slightly
for the present situation. For example, if the eigenval-
ues are all different and non-zero we have that a pair
of different eigenscrews s; and s, will satisfy,

sTQpso =0 and sTKs, =0

In the first relation we say the screws are reciprocal,
this is the analogue of the eigenvectors being orthog-
onal. Ball called screws obeying the second relation,
conjugate screws of potential.

From this we can say something about the principle
screws. For example, is it possible for an eigenscrew
to be a pure translation? The equation,

(7 1) (0) ()

shows that this can only happen if T is singular. A
similar argument shows that a principal screw can only
be a pure rotation if = is singular.

Is it possible to have two different principal screws
with the same direction? Let two such screws be,

w w
S1: y 52:
ry X w—+ mw ro X W+ mTow



The relation SITQOSQ = 0 reduces to (7 + m)w - w =
0. Hence this can only happen if the pitches of the
principal screws are equal and opposite.

Can two principal screws have axes which pass
through the same point? Consider the screws,

w1 w2
S1 = ) S2 =
r X w4+ mwq r X Wy + Towo

Now the fact that the screws must be reciprocal be-
comes, (m; + ma)wi - wa = 0. So two principal screw
which pass through the same point are either parallel
with opposite pitches or orthogonal.

Another standard result which we can modify is the
expansion of the matrix in terms of its eigenvectors.
It is not hard to see that if a stiffness matrix K has
eigenvalues p; and corresponding eigenscrews s; then
we can expand the matrix as,

2(411‘

6
1
K= z; - v Qosis; Qo
p

For the partitioned form of the matrix we can write,

- 6
= Iy Z i vivl viw?l
rr 2w; - v; \wivl wiwl

i=1

From this we can see that the invariants of section 6
can be written in terms of the eigenvalues and the
pitches of the eigenscrews m; = w; - v; /w; - wy,

6 6

1 1 .

Tr(T) = 3 E w; and  Tr(Y) = 3 E Z—
i=1

i=1 "t

Finally, notice that in the Lonc¢ari¢ normal form,
since I' is symmetric we can derive the following rela-
tion for the principal screws,

6 1L
4
E w; XViZO
; Wi'V‘
i=1

K3

9 Conclusions

The principal screws and their eigenvalues are the
key structures which characterise the stiffness matrix
of a system. The constraint Tr(T') = 0, satisfied by
systems of stretched springs, seem quite mild, imply-
ing only that the eigenvalues sum to zero.

One reason for looking at systems of stretched
springs was to explore simple but physical, models for
the desired compliance between a robot and its en-
vironment in an active stiffness control scheme. The

stretched spring systems cover a wide variety of forms,
most of which are not considered in standard control
schemes.

A complication introduced by these systems is the
problem of finding equilibrium positions. In many
cases we can avoid this problem by considering sym-
metrical designs which have an obvious equilibrium
position.

Since stretched springs can produce forces that are
not just along their lengths, does this mean that we
need fewer stretched springs to produce the same stiff-
ness matrix than could be designed with unstretched
springs? This question has not been studied yet.
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