Proceedings of the 2000 |EEE
International Conference on Robotics & Automation
San Francisco, CA April 2000

A Formalism for the Composition
of Concurrent Robot Behaviors

Eric Klavins

Daniel E. Koditschek

Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109

Abstract

We introduce tools which help us to compose con-
current, hybrid control programs for a class of dis-
tributed robotic systems, assuming a palette of con-
trollers for individual tasks is already constructed.
These tools, which combine the backchaining of con-
tinuous robot behaviors with Peiri Nets, expand on
successful work in sequential composition of robot be-
haviors. We apply these ideas to the design and veri-
fication of a robotic bucket brigade and to simple, dis-
tributed assembly tasks as are found in auvtomated fac-
tories.

1 Introduction

Large distributed networks of robots and computers
form the basis of modern manufacturing systems. It
is desired that these systems be rapidly reconfigurable
and easily programmable. These goals, however, are
seldom achieved in practice. A main cost of designing
or reconfiguring these systems is in programming low

level controllers and control logic, challenging because -

of the complexity that hundreds of interconnected,
concurrently operating robots necessarily incurs. The
programming process can be ad hoc and frequently
results in a large fraction of the control code being
“exception handler code”. Unless a principled design
method for these systems is developed, this cost will
be felt in terms of expensive programming projects,
incompletely understood factory behavior, and delays
in the introduction of new products.

Burridge [1] et al., introduced backchaining as a
way to sequentially compose closed loop robot behav-
iors in a safe and formal fashion. We believe that
for this method to be useful in distributed robotics
applications, it should be generalized to concurrent
situations. The generalization should allow for decen-
tralized control, modularity, resistance against distur-
bances both physical and logical, and ease of design.

0-7803-5886-4/00/$10.00© 2000 IEEE

Our goal is to develop such generalizations and
use them to produce distributed control programs au-
tomatically from high level descriptions of assembly
tasks. Although we believe the formalism developed
here will prove applicable to a broad range of automa-
tion settings, our notion of assembly is more immedi-
ately inspired by the high flexibility, low volume set-
ting targeted by the “Minifactory” of Rizzi et al. [12].
There, decentralized general purpose robots accom-
plish all the factory’s parts transport and -assembly
operations in fluidly choreographed transactions. For
example, a complex subassembly task requiring four
or six coordinated degrees of freedom can only tran-
spire in such a Minifactory when some subgroup of the
decentralized robots “agrees” to collaborate in form-
ing the specialized “machine” (the higher degree of
freedom coordinated mechanism) suited to the specific
task at hand. Of course, that alliance must be tempo-
rary, since each of the participating agents is required
to play different roles in other machines, both prior
and subsequent to the instantiation of the one in ques-
tion. The burden of keeping track of and regulating
these threads of machine-intermingled agents as they
form and dissolve is rendered particularly problematic
by the absence of any centralized processing capabil-
ity. The formalism we develop here provides a means
of specifying, verifying, and then situating in robotic
hardware, a decentralized decision making program of
this kind. ’ »

It must be stressed that this formalism pre-
supposes an infra-structure of tunable and switchable
feedback controllers for which the methods developed
here merely serve as “glue.” Such a palette of con-
trollers is relatively easy to build for environments
well described by generalized damper dynamics [7),
but becomes challenging when dynaimcal dexterity
is required. For example, in [1], substantial “hand
building” affords deployments of controllers whose do-
mains of attraction explicitly include portions of the
forward limit sets of their neighbors. Here, we sim-
ply assume that these “dynamical systems details”

3395

have been worked out via parametrized families of
regulators, and focus on the logical coordination and
scheduling problems that follow.

We address the problems of concurrency and -com-
position of behaviors by introducing a formalism
which subsumes, the work in sequential composition.
We define a way in which simple Petri Nets can con-
tain a form of concurrent backchaining robot behav-
iors. We call the resulting nets Threaded Petri Nets,
or TPNs. We also describe a simple net composition
method which lends itself well to the kinds of decen-
tralized assembly tasks encountered in manufacturing
systems. This method allows us to compose many
single robot programs into decentralized, concurrent
programs for groups of robots which are guaranteed
not to deadlock. Finally, we give several examples of
how this formalism may be used to automatically con-
struct provably correct distributed robotic systems: a
robot bucket brigade, a simple assembly arrangement,
and a factory compiler.

2 Related Work and Specific Contri-
butions

Preimage backchaining was introduced into the mo-
tion planning literature in {10] as a method of sequen-
tially composing motion strategies. In [1] this method
was extended to dynamically dexterous robot manip-
ulators in work that serves as the basis of our current
research. The idea is to start with a palette of con-
trollers @1, ..., ®, for a robot. Suppose ®; has domain
Dy and goal G. Order the palette by setting ®; > ®;
(read ®; prepares ®;) whenever G; C D;. If the palette
is suitably designed, then a switching strategy may be
obtained which drives the robot to a goal from any
initial condition in (JI., D;. In this paper we expand
these ideas (see Def. 3.4) to include the notion of con-
current composition of behaviors for the case of several
robots in a shared workspace.

The approach to assembly in [7], for simple situa-
tions, introduces an automatic method for construct-
ing a control law which guides a single robot to as-
semble a product from its parts based on the notion
of an artificial energy landscape wherein the configu-
ration of least energy is the one in which the prod-
uct is assembled. This method is impractical when
applied to the problem controlling an entire factory.
Thus, in this paper we take the view that the product
assembly graph (PAG) of a product corresponds to a
discrete and parallelized version of the energy land-
scape. The steps of the assembly — the nodes in the
assembly graph — may be given by artificial potential
field controllers, but the logic of the assembly is given
by the PAG. This allows us to use multiple robots, as
in a high volume factory setting, and to design in a

modular fashion.

Hybrid systems combine a discrete state and a con-
tinuous state into the same model, as in [3] where the
hybrid automaton is used to model a hybrid system.
A hybrid automaton is a finite automaton with con-
tinuous dynamics at the nodes and conditions on the
state of the dynamical system which provide a switch-
ing rule between nodes. In [3], when the node dy-
namics are simple, the authors can use modal logic to
prove properties about their hybrid models. In [13],
controllers for a given hybrid model are synthesized by
computing the avoidable set of states of the automa-
ton. We take a somewhat different approach here. In-
stead of finite automata, we use Petri Nets. Our com-
positional method is similar to those found in work
on bottom-up synthesis of Petri Nets, especially [9]
where simple Petri Nets are combined along paths and
invariants of the resulting net are obtained from the
constituent nets. We are also inspired by the modu-
lar construction of control policies introduced in [8] in
which finite state supervisory controllers are combined
to form more complex controllers. In the present work,
the dynamics for nodes are taken from a well under-
stood palette of controllers where we backchain the
domains and goals of the controllers to get concurrent
transitions. Most importantly, we intend to automati-
cally synthesize systems instead of modeling and then
controlling a given system.

In summary, the chief contributions of this work
are exhibited in Definitions 3.2 and 3.4. The first
definition (Threaded Petri Net or TPN), introduces
a formalism for keeping track of how the degrees of
freedom in a large factory couple and decouple over
time and what role each particular degree of freedom
plays in a well specified sequence of controllers defin-
ing its trajectory. The second definition (the firing
rule) situates in explicit physical terms the otherwise
traditional (abstract) Petri Net firing rules. The “sym-
bols” used to write the preconditions and postcondi-
tions of these rules — the “goals” and “domains” -
are precisely defined by the robots’ sensory and actu-
ation signal streams. Specifically, they represent sub-
sets of the robot’s state space whose interpretation
via concretely sensed events is built into the known
properties of the associated closed loop regulator and
state estimator. Thus, assuming the palette of con-
trollers as described above, these firing rules can be
implemented by automatically generated predicates
involving the robot’s intrinsic sensory signals. In con-
sequence of these definitions, we are able to formal-
ize in Definition 3.6 a simple but effective compo-
sition technique for combining together single cycles
of such Threaded Petri Nets and then, in Theorem
3.2, to give a formal proof of liveness of the compli-
cated physical factories that result. A pair of exam-

3396

ples, for which animated simulations are available at
http://www.eecs.umich.edu/~klavins/mf/, concludes
the paper. .

3 Formal Ideas

In this section we introduce the formal ideas that
support this line of research. Because space is lim-
ited, we state properties without proof. The reader is
referred to [6] for the details.

We adopt the following definition of a: Petri Net,
also called a condition/event net, found in [4].

Definition 3.1 A Petri Net is a pair (T, P) where
T is a finite set of elements called transitions and
P C 2T x 2T whose elements are called places.

In a graphical representation of a Petri Net, such as
in Figure 2, places are represented by circles and tran-
sitions by squares. In our research, a place represents a
controlled dynamical subsystem of the entire system in
question. Transitions represent discrete changes in the
dynamics of subsystems. If {{ay, ..., a;}, {b1,...,b;}} €
P, we write [a1,..,0ib1,..,05) € P. Hp =
[a1,...,ai; 01, ..., b;] then left(p) is the set {ay,...,a:}
and right(p) is the set {b1,...,b;}. A marking of a
net (T, P) is a set m C P. The flow relation F of
a Petri Net (T, P) is the relation where (t,p) € F if
t € left(p) and (p,t) € F if t € right(p). The preset
of an element z € TUP isset {y | y F z} and is
denoted *z. The postset of = is the set {y | z F y}
and is denoted z*. These and other Petri Net basics
can be found in introductory texts, such as [11].

Suppose we have a collection of robots and parts
whose continuous state can be given- by x =
(1, ...,2,) and whose global dynamics is simply x =
u. The dynamics of components of x are almost in-
dependent of each other. For example, 27 might cor-
respond to the position of a robot on a guidepath,
while (zaz, £a3) might correspond to the position of a
part on an altogether different location of the factory
floor. However, robots and parts do interact for short
periods of time, as during a parts mating operation,
so that the dynamics of certain components of x may
occasionally be tightly coupled.

To describe how couplings change and which dy-
namics are operating on which components of z, we
introduce the Threaded Petri Net, or TPN. It is essen-
tially a Petri Net with information added to keep track
of how these couplings change. Every place will cor-
respond to a control mode which we will have chosen
from a palette of such modes. Thus, for each place p
there is an l,-dimensional system given by y = F,(y)
where y is an [p-dimensional vector and F}, is cho-
sen from the palette of controllers that we assume is

already constructed. The mode has domain of attrac-
tion D, and goal set G,. Let N = {1,...,n} be the
index set for the components of x = (zy, ..., z,).

Definition 3.2 A Threaded Petri Net (TPN) con-
sists of

1. a set T of transitions;
2 aset P coT x 2T of places;

3. for each p € P, dimension, dynamics, domain
and goal l,, Fy, Dy and Gy;

4. for each ¢ € T a bijective function
de : U {p} X {1’ '"’Ip} - U {Q} X {11 '--110}
PE ®e g€e®
called the redistribution function of e;
subject 1o the condition that for eache € T,

Zl:Zlq

PE ®e g€e®

(so that it is possible for d. to be bijective).

Note that the difference between a TPN and a condi-
tion/event net is not only the additional information
associated with each place. We have also added the
redistribution functions, d, for each ¢ € E, which de-
fine what happens to each degree of freedom as mode
changes occur. Figure 1 illustrates the redistribution
function for a transition e in a sample net.

@«
[4

92
93

Figure 1: A redistribution function of a transition can
be represented by lines from components of the preset
to components of the postset. In this net fragment,
de(p2,1) = (g2,2) for example.

Definition 3.3 A marking is a pair (m, fn) where
mC P and

fm: U} x {1, 1} = N

pEmM

which specifies which degrees of freedom of the system
each mode is operating on. A legal marking is one
where f, ts bijective. We will be concerned only with
legal markings in what follows.

3397

A legal marking (m, fm) of a TPN says, for each
p € m, which components of x F, is acting on and
what the dynamics of each component of x are. Thus,
we can say how the state of the system is changing
given a particular marking (m, f,). Givenj € N, sup-
pose that f71(j) = (p,%). That is, under the marking
(m, fm) the jth component of x is changing according
to the ith dimension of the mode dynamics of p:

.‘EJ =T O Fp(xfm(p,l)l ey zfm(P:IP))

where m; gives the ith projection of the l,-dimensional
vector function F,. This is valid until some mode
changes, which leads us to a definition of how events
are triggered.

Definition 3.4 Let (m, f,;,) be a legal marking. e € T
is m-enabled with respect to ¢ € R™ if

1. *eCmande*Nm=20;
2. for each p € *e, (T4,.(p,1)s - Ltn(pily)) € Gp;

3. for each q € e, (‘”j,,.od;"(q,l)’""zj,.,od:‘(q,l)) €
D,.

Notice that condition (1) is just the usual definition
of m-enabled for condition/event nets. The second
two conditions impose the restriction that the dynamic
systems in the preset of the enabled event must be in
goal states and the systems in the postset must all
be prepared. These two conditions do not affect the
logical dynamics of the underlying net — they simply
require that the control modes be designed so that
events can become enabled.

A set of events G is called detached if whenever
e1 and ey are distinct events in G, *e; N *ez =e1* N
e2®* = 0. Suppose we have a marking (m, fm). The
follower marking (m/, f,/) with respect to G C E
is calculated as follows. As with condition/event nets
m' =(m— *G)UG"*. [y is the function given by

N_{ fn(p,j) if pem—*G
S (p,3) -{ fm od;Y(p,j) otherwise }

where e is the single event in p* N G. We write
(fm,m) =G (fmr,m') when (fnr,m') is the follower
marking of (f, m) with respect to G. Since legal mark-
ings (m, f) are such that f,, is bijective, we can be
sure that every component of x is accounted for when
the system is in the set of modes given by m. We
would also like that only legal markings be reachable
from given legal markings, so that once the distributed
process is underway, there is no point at which some
part of x is not acting under a mode of the net. The
following easy lemma gives us this.

Lemma 3.1 Say (m, frn) is a legal marking, that G
is a detached set of events, and that G is m-enabled
(with respect to some x). If (m, fm) =€ (W', fm),
then (m/', finr) is also a legal marking.

The most important property of TPNs is that any
subprocess corresponding to a particular component of

 x is completely sequential. This can be stated formally

as follows.

Theorem 3.1 Let

(m01fmo) —’Gl .. —"Gk (mk»fmk)

be a run of @ TPN (T,P). Giveni € N, let p; € P
be the place in m; such that fr,(pj,l) = i for some
1. Then there is a t; € Gj41 such that p; € °t; and
t; € *pj41 for each j € {0,...,k~1}.

A proof of this theorem is beyond the scope of this
paper so we refer the reader to [6]. The main conse-
quence of Theorem 3.1 is that if we would like to prove
that a particular part, corresponding to a particular
component of x, is moved from its parts feeder, all
the way through the factory, and finally into an out-
put buffer, we simply examine the sequential subpro-
cess of the TPN corresponding to the dynamics of the
part. We will illustrate this in Section 4.

As mentioned, we intend to compose TPNs into
factories. We present a simple type of composition to
complete this section. It is based on the idea of a cyclic
subprocess, which we call a gear, and which we use as
the basic building block of our nets. A gear represents
the simplest thing a robot in a factory can do, besides
remain idle: cycle repeatedly through some set of be-
haviors. A robot might, for example, (1) pick up a
part at a parts feeder, (2) bring the part to a station
to be glued to another part, (3) take the result to a
manipulator to be added to some other subassembly,
and then start the sequence again. Formally, we have

Definition 3.5 A k-gear is a net (T, P) where T =
{to,...,tk...l} and P = {[ti;ti+1] |ie Z[k}. mC P is
a legal marking for a k-gear if |m| = 1.

(We ignore the dynamics and redistribution functions
for now.) A gear for a robot models only what the
single robot in question is doing while, in fact, the
robot must coordinate with the controllers of other
robots. Thus, the gear of the robot must be synchro-
nized with the programs of other robots. Of course,
the programs of other robots are also given by gears.
What is needed is a way to compose gears, so that
control modes are synchronized. Furthermore, it is
important that, before entering the mode, each robot
involved in a control mode wait for the other robots
involved. With these constraints in mind, we are led
to a definition of a gear net as a certain union of gears.

3398

" waity

hold,

waity

waits

Figure 2: An example of a Threaded Petri Net. This TPN, corresponding to a three robot bucket brigacie, is

discussed in detail in Section 4.1.
Definition 3.6 A gear net is defined recursively:
1. A gear is a gear net.

2. If (T, P) is a gear net and (S,Q) is a gear then
(TUS, PUQ) is a gear net as long as the following
conditions hold:

(a) let (T1, Py), ..., (Tk, Pi) be the set of gears in
(T'US, PUQ) which intersect (S,Q). Then
Nicy i = {[a;8]} and Vi, T = {a,b} for
some transitions a and b;

(b) there exists a transition ¢ € S — T such that
[c;a] € Q.

A legal marking for a gear net is one in which each
gear in the net is marked ezactly once.

Since all places in a gear net are of the form [z; y], gear
nets are a kind of marked graph, a class of nets which
have been extensively studied. (See {2], for example.)
Note that a legal marking gives the state of every gear
in the gear net. This corresponds to the fact that each
robot is in exactly one state in its program. Condi-
tions (a) and (b) require that gears be added with a
“standard interface”.

We can show the following properties about gear
nets, The first says that the gears we add in the com-
position are the only cycles in the net.

Proposition 3.1 If (T, P) and (S, Q) are as in Def-
inition 3.6 and (S',Q') is a gear contained in (T'U
S, PUQ), then either (S',Q") = (5,Q) or (5,Q") is
contained entirely within (T, P).

The next property gives us that each gear can be
marked exactly once.

Proposition 3.2 Every gear net has a legal marking.
The last property is that all gear nets are deadlock

free. Thus we are assured that systems we build up
from gear nets are live, logically conflict free processes.

Theorem 3.2 Gear nets are deadlock free under legal
markings. ‘

To combine gear nets with TPNs to get factories, we
need parts feeders and output bins. Suppose we have
a gear net (T, P). We may add a special parts feeder
place, p = [0,1] to the net to get (T, P U {#}) where
t € T is a transition occurring in exactly one gear of
(T, P). We assume that p is always marked except
when t* is marked (to eliminate contact). Thus, a
parts feeder node is a variation on the idea of a source
node, commonly used in the Petri Net literature.

Similarly we may add an output buffer place, § =
[s,8) to the net where s € T is also unique to a single
gear. We suppose that § absorbs parts so that it is
never present in a marking. Thus, an output binis a
variation on the idea of a sink. These notions can be
added to the dynamics of a Petri Net by adding special
conditions, to the definition of follower marking, for
parts feeders and output bins. In general, a factory
arising from a gear net, -with ¢ parts feeders and j
output bins, will have the form

(T’ PuU {ﬁl’ "')ﬁi'{aly)6]})

The addition of sources and sinks to gear nets does
not alter the fact that they are deadlock free.

When we add dynamics to a gear net with feeders
and output buffers, we simply define the dimension of
a parts feeder to be 1 and the dynamics to be F3(y) =
0 with D5 = G5 = R. Thus, whether the transition
after a parts feeder node is énabled under a marking
does not depend on the state of the dynamics of 5. A
similar definition is made for output bins.

4 Examples

In this section we describe two examples that
demonstrate the above formalism. The first, the most
simple, nontrivial example, is what we call a bucket
brigade. It includes: task level information, where we
specify a palette of controllers, which correspond to

3399

places in a TPN; task switching and concurrency; and
a simple notion of product flow. Second, we describe a
simple assembly process in terms of three robots. Sim-
ulations of these and other examples can be viewed at
http://www.eecs.umich.edu/~klavins/mf/.

4.1 The Bucket Brigade

Bucket brigades correspond to individual lines in
an assembly process. We expect their analysis to con-
tribute to our understanding of more complicated fac-
tories. Figure 2 shows the TPN we will use to model
a brigade.

Figure 3: A simple, three robot bucket brigade

A simplistic, three robot bucket brigade consists of
three robots, R, Ry and R3, a parts feeder and an
output buffer arranged in a line as in Figure 3. The
task is for R) to pick up parts, one at a time, and
transfer them to Ry, which transfers them to R3. R3
deposits the parts in an output buffer. The robots
have width 2r where 0 < » < 1. The workspace is
defined to be the closed interval of the real line [0, 3].
The robots have continuous state variables, z1, 5 and
z3, corresponding to their positions on this line. We
assume that the range of each robot is restricted, so
that z; € [i — 1,4} only and also that robots can not
inhabit the same place at the same time. That is, the
distance between any two robots must be greater than
2r. Each robot also has a discrete state, correspond-
ing to whether or not it is carrying a part, denoted
by, by, b3 € {0,1}. (b; = 1if R; is carrying a part and
b; = 0 otherwise.) Finally, there is a supply of parts
with state variables 2, The physics are not entirely
realistic: the velocity of the robots is directly control-
lable (£ = u); parts move with the robots they are
near (so that when b; = 1, z; = z; for some part with
index k); and part transfers happen instantaneously
as long as the robots involved are close together.

First we specify the palette of controllers. There are
nine: Fyick, Farop, Fuwait; and Fproa; for i € {1,2,3},
Firans,,, and Firgns, ,. The use of these controllers
is summarized in Table 1. Note that controller goals
are given by a point z* in the table but we usually
consider them to be a set, Be(z*) = (z* —€,z* +¢€).
We will describe each of them qualitatively. In simple
situations, we have implemented such controllers (see
the web site mentioned above).

Fpick is a two-dimensional controller. One dimen-
sion corresponds to the position R; and the other to
the position of the kth part, which we assume is sta-
tionary in the parts feeder (so zx = 0). There is a
single attracting equilibrium point at 0 where R, is
next to the parts feeder with a part. The parts feeder
operates by proximity: if by = 0 and ||z1]| < ¢ then

by will eventually become 1. In the brigade, when

by =0, Ry will run &3 = Fpicx (1) until by = 1. Since
the controller does not affect the part, zx = 0.

Fyr0p controls R3 to drop off a part at the output
buffer. It is used when b3 = 1 and eventually results
in b3 becoming 0.

Fuais;, for each i, is a one-dimensional controller
with attracting equilibrium point ¢— 15 It is used when
R; needs to wait for another robot, the parts feeder
or the output buffer, essentially driving the robot to
a safe place in the workspace and keeping it there.
Frog, 1s the same except it is two dimensional and
used when the robot is waiting and holding a part.

Firans, , is a three-dimensional controller for R; to
hand R, a part, the position of which we assume to
be given by z;. It has attracting point (z1,z2) =
(1 = 7,1+ r) (implying that z; is attracted to 1 —r)
and thus drives R;, Ry and the part to a configuration
where the robots are touching. When (b1, b2) = (1,0)
and ||zg —~ z1]| < € for some ¢, the state instanta-
neously becomes (by,b2) = (0,1) and z = 3. Note
that according to our notion of controller, Firans, , is
being run asynchronously: half by R; and half by Rj.
That is, R; obtains an estimate of £; of z; via its sen-
sors and an estimate £ of z2 via the commurnication
system and runs the feedback controller

z) = Ty © Ftrans;,g(iml; 5:2)

concurrently and asynchronously while R, runs m3 o
Firans, ,- While the controller is running, the change
in the part’s position is the same as that of the robot
that is holding it. Firans, , is similar.

With the controllers specified, we construct pro-
grams for each robot. The first robot repeatedly re-
ceives parts from the parts feeder and hands them to
the second robot. Thus, R; runs the program

While True
Ifoy =0
Wait for parts feeder
Run £; = Fpick(z1) until b =1
Else
Wait for Rz to be ready
Run £1 = 71 0 Firans, o(%1,22) until b =0
EndIf
End While

The other two robots have similar programs. The
second robot receives parts from the first and hands

3400

Table 1: Table of controllers used in the bucket brigade example

Dimension of Domain Goal

Name Robots Config. Space (for robots) Point Function

Fpick R, 2 o =7) 0 R1 picks up part

Farop R3 2 2+ 7,3] 3 R3 drops of part

Fuait; R;,i€{1,2,3} 1 [f—14rdi~7] i—- 1 R; waits in safe place

Fhota; R;, i€ {1,2,3} 2 f-14ri~r] i- R; waits in safe place with part
Firans, ; Ry, R 3 [r1}x[1,2~7) (1-r,1+7) R; transfers part to Ry

transy s Ry,R3 3 M+nr2]x[2,3-7] | (2-72+7) R, transfers part to R3

them to the third. The last robot receives parts from
the previous robot and deposits them in the output
buffer. Notice that any line in a program that says
“wait for ...” has the meaning “run Fj,,;;, until the
robot (or feeder or buffer) is in it’s goal set” and pre-
sumes some simple communication system that we do
not describe in any detail here.

The dynamics of the bucket brigade we have con-
structed can be modeled by the tools we presented in
Section 3. Figure 2 shows the resulting TPN. There
are three gears, one for each robot. Gear two corre-
sponds to the program of Rj, for example, and con-
sists of transitions {t1,%2,%4,%5} and places waity
[t5,t1] trans; > = [tl,t2] hold, = [tz,t4] transy 3
[t41 t5]

As an example, we supply one redlst;nbutlon func-
tion in detail, namely, d;,. Fpoq, expects a robot po-
sition and then a part position, in that order. Fyait,
expects a robot position. Firans, , expects the posi-
tion of the sending robot, the receiving robot and the
part in that order. Then we have:

Wi

di,(holdy, 1) = (trans;z,1)
di,(hold1,2) = (transyz,3)
di (waity, 1) = (transis,2)

The rest of the redistribution functions should now be
apparent from Figure 2.

Let p = [0,13] and § = [t7,0]. The initial marking,
(mo, fm,) 1s given by my = {wait;, waits, waits, p}
and

i

fmo (waitl, 1)
Jmo(waity, 1)
Fmo(waits, 1)

fmo(P,1)

for-some k. Note that the addition of parts feeders
results in our having to expand and contract the index
set N. N will always include {1,2,3} and, depending
on what parts are present in the brigade and the parts
feeder, may also include some set {ki, ..., k;} of part
indices. In our “toy” factory compiler, these programs
are constructed automatically.

i
X W N

il

Now we can show two things. First, the bucket
brigade never deadlocks by Theorem 3.2. This follows
from the fact that its underlying structure is a gear
net and because the domains of each place include the
goals of the places that precede it. As an example, con-
sider trans; 2. Its domainis Dirans, , = [r,1]%x[1,2~7]
according to Table 1 (we ignore the part position
since it is the same as one of the robots).. Now,
*transy p = {hold;, wait,} and

1 3
Gholdl X gwait: = Be(i) X Be(g)g ’Dtran.n,g~

Second, we can deduce from Theorem 3.1 that the
parts move from one end of the brigade to the other.
Suppose that at some marking (m;, fm,) that pick €
m; and fim, (pick,2) = k. That is, suppose that R; has
picked up part k. Then we know there is a sequence
of places that control part £. In fact, the sequence is

< pick, holdy, transy a2, holds, transsy 3, holdz, drop > .

Now if we trace the position of the robot carrying the
part in the goals of these controllers from pick to hold
(see Flgure 1 again), we see that the initial state of
the part is z;x = 0 and the final state is 2z = 3.

Notice that control is decentralized as we required
in our statement of the problem. Communication is
kept low: each robot need only communicate with at
most one other fobot at a time. And the dimension
of the control laws is limited. We could, in princi-
ple, build bucket brigades with an arbitrary number
of robots, yet we would not have to build anything that
is fundamentally different from what we already have.
Thus, for our simple situation, the method-scales.

4.2 Assembly

We may also use our formalism to model simple as-
sembly processes. In this example, three robots per-
form this task on a T-shaped guidepath. The first
two pick up parts at their respective parts feeders and
then, in a synchronized operation with the third robot,
attach the two parts together and place the resulting
assembly on the third robot. The third robot drops
the assembly into a parts bin. Figure 4 shows how the
robots are.arranged.

3401

Figure 4: Factory setup for a simple mate operation.

There are wait; and hold; operations as before,
two pick operations corresponding to the two differ-
ent parts, and one drop operation. New to this ex-
ample is the mate operation. It controls two robots,
each carrying a part, and a third robot to meet at the
intersection of the guidepaths. Once there, the assem-
bly of the two parts occurs, and the result is place on
the third robot. The TPN we use to model this small
factory has three gears connected at a single interface,
which represents the mate operation. Two parts lines
originate at parts feeders, meet at the mate operation
and end up at an output buffer. We can show that this
system does not deadlock using the properties of gear
nets. We can also show that the two types of parts
progress through the factory using the properties of
TPNs.

5 Toward a Factory Compiler

A main goal of our research is to use the TPN for-
malism and gear composition to generate distributed
factory programs automatically from product assem-
bly graphs. We have developed a simple compilation
procedure which, given a PAG, can generate a toy
factory [5]. To each operation in the PAG, we as-
sume that a template controller is already built over
an “ideal workspace”. We also suppose the existence
of template controllers for picking up parts at parts
feeders and dropping them off at output buffers. To
compile, we annotate the PAG with Petri Net frag-
ments (which represent the template controllers) and
then connect them so as to create a gear net. We know
that the resulting net is live because it is a gear net.
To date we have experimented only with simple lay-
out procedures which embed the union of the “ideal
workspaces” into a single instantiated workspace.

We expect to be able to optimize the resulting
net for robot reuse (reallocating tasks so that one
robot alternates between tasks formerly assigned to
two robots) and for parallelization of tasks. This leads
to TPNs that are not based on gear nets but which do
have a regular structure. We are also working on ap-
plying these ideas to a factory design tool for use with

the Minifactory — a modular, rapid response manufac-
turing system currently in development [12].

Acknowledgments

Thanks to Bill Rounds and Al Rizzi for their ad-
vice and suggestions regarding this research. Eric
Klavins is supported in part by the Charles DeVlieg
Foundation Fellowship for Manufacturing and Dan
Koditschek’s contribution to this work was supported
in part by the NSF under Grant IRI-9510673.

References

[1] Robert R. Burridge, Alfred A. Rizzi, and Daniel E.
Koditschek. Sequential composition of dynamically dex-
terous robot behaviors. International Journal of Robotics
Research, 1998.

[2] F. Commoner, A.W. Holt, S. Even, and A. Puneli. Marked
directed graphs. Journal of Computer and System Sci-
ences, 5:511-523, 1971.

{3] T. Henzinger, P.H. Ho, and H. Wong-Toi. HYTECH: A
model checker for hybrid systems. Software Tools for Tech-
nology Transfer, 1:110-122, 1997.

[4

L}

Ryszard Janicki. Nets, sequential compositions and con-
currency relations. Theoretical Computer Science, 29:87—~
121, 1984.

[5] Eric Klavins. Automatic compilation of concurrent hybrid
factories form product assembly specifications. In Hybrid
Systems: Computation and Control Workshop, Third In-
ternational Workshop, Pittsburgh, PA, 2000.

[6] Eric Klavins and Daniel Koditschek. A formalism for the
composition of loosely coupled robot behaviors. Technical
Report CSE-TR-412-99, University of Michigan, 1999.

[7] Daniel E. Koditschek. An approach to autonomous robot
assembly. Robotica, 12:137-155, 1994.

[8] Jana Koseckd. A Framework for Modeling and Verify-
ing Visually Guided Agents: Design, Analysis and Ezper-
iments. PhD thesis, University of Pennsylvania, March
1996.

[s] B. H. Krogh and C. L. Beck. Synthesis of place/transition
nets for simulation and control of manufacturing systems.
In 4th IFAC/IFORS Symp. Large Scale Systems, pages
661-666, Zurich, 1986.

[10] Tomdas Lozano-Perez, Matthew T. Mason, and Russell H.
Taylor. Automatic synthesis of fine-motion strategies for
robots. The International Journal for Robotics Research,
3(1):3-23, 1984.

[11] Wolfgang Reisig. Petri Nets: An Introduction. Springer
Verlag, 1985.

[12} A. A.Rizzi, J. Gowdy, and R. L. Hollis. Agile assembly ar-
chitecture: An agent based approach to modular precision
assembly systems. In Proceedings of the 1997 IEEE Inter-
national Conference on Robotics and Automation, pages
1511-1516, Albuquerque, NM, April 1997.

[13] Claire Tomlin, John Lygeros, and Shankar Sastry. Com-
puting controllers for nonlinear hybrid systems. In Frits W,
Vaandrager and Jans H. van Schuppen, editors, Hybrid
Systems: Computation and Control, Lecture Notes in
Computer Science 1569, pages 238-255. Springer, 1999.

3402

