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ABSTRACT

This paper characterizes the homotopy properties and
the global topology of the space of positions of vehicles
which are constrained to travel without intersecting on
a network of paths. The space is determined by the
number of vehicles and the network. Paths in the space
correspond to simultaneous non-intersecting motions
of all vehicles. We therefore focus on computing the
homotopy type of the space, and show how to do so in
the general case. Understanding the homotopy type of
the space is the central issue in controlling the vehicles,

. as it gives a complete description of the distinct ways
that vehicles may move safely on the network. We ex-
hibit graphs, products of graphs, and amalgamations
of products of graphs that are homotopy equivalent to
the full configuration space, and are far simpler than
might be expected. The results indicate how a control
system for such a network of vehicles (such as a fleet of
automatically guided vehicles guided by wires buried
in a factory floor) may be implemented.

INTRODUCTION

The computational intractability of motion planning
in high dimension configuration spaces is well known.
Configuration spaces which incorporate the geometry
of manipulators and the environment have both metric
and topological properties.

In the present paper, we study configuration
spaces of points, not geometric figures. Points repre-
sent position of vehicles. This allows us to concentrate
on the topological properties of the space without the
added complexity of metric properties. While it may
seem that such spaces are not of practical interest, this
is not true, since such spaces can be used to represent
configurations of vehicles. There is growing interest
in controlling large number of vehicles, and the meth-
ods herein may find application in this area. Also, the
methods used in the sequel are of interest in their own
right, since they lead to a very simple description of
the topological properties of interest.

The particular application we study is that of ve-
hicles constrained to follow fixed routes, such as auto-
matically guided vehicles (AGVS) guided by energized
wires in a factory floor. Our characterization of the ho-
motopy type of the global configuration space is as a
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union of products of cubes and graphs. In the special
case where the graph has a single node, the associ-
ated space is again a graph. In this space the homo-
topy classes of paths with given endpoints represent
the possible safe (i.e., collision-free) motions of vehi-
cles with given initial and final configurations. Hence,
the motion planning problem for coordinated vehicles
becomes a graph search. Furthermore, this charac-
terization of safe can be used to implement reactive
scheduling of vehicles.

Related Work

This paper was motivated by [GhKo98]. In that work,
the authors consider the problem of safely coordinat-
ing the motions of mobile vehicles on fixed routes.
“Safely” means avoiding collisions at route intersec-
tions. They focus on the problem of developing local
collision avoidance strategies that can be integrated
into the vehicles’ controllers, so that a global specifi-
cation of the required movements of the vehicles can be
perturbed into safe movements. By using vector fields
to specify the motions of the vehicles on the network of
paths, the tools of dynamical systems theory are avail-
able to study the safety of the control laws realized by
the vector fields. In particular, a “circulating” vector
field on the configuration space of a three-way inter-
section is exhibited, and proven to guarantee that two
vehicles will not cross the intersection simultaneously.

In contrast, we examine the structure of the global
configuration space of an arbitrary number of vehicles
on any network. At the conclusion of the paper, we
will explain how the understanding of the global struc-
ture can be used in controllers to address the same
problem of resolving potential collisions considered in
[GhKo98].

Approach

The configuration space of the vehicles on the f3xed
network is replaced by a smaller, homotopy equiva-
lent space, for which the fundamental group can be
easily determined. The construction is in two stages.
The network is represented as a graph in the obvious
way, with nodes corresponding to path intersections
and edges to non-intersecting portions of paths. The

This work was supported by the Laboratory Directed Research and Development program of Sandia National
Laboratories, a multiprogram laboratory operated by Sandia Corporation for the United States Department of
Energy under Contract DE-AC04-94AL85000.



DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the

United States Government nor any agency thereof, nor any

of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof.
opinions of authors expressed herein do
state or reflect those of the United States
any agency thereof.

The views and
not necessarily
Government or



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



. .

first step is to construct the configuration space for ve-
hicles on a single “element” of the network, where an
element is a single node and its incident edges. This
space is determined by the number of incident edges
and the number of vehicles in the element. In general,
the dimension of the resulting configuration space is
very large, so methods of constructing a simpler space
are desirable. As homotopy is the critical property of
the space in this application, the simpler space must
be homotopy equivalent to the full space. We present
methods for constructing such a space, and character-
ize its fundamental group.

The second step is to glue together the fundamen-
tal groups so obtained, each representing a network el-
ement, to obtain the fundamental group for the entire
network. We describe each construction in turn, af-
ter summarizing the relevant topological concepts and
facts.

The rest of this paper is organized as follows. The
necessary topological concepts are introduced in the
next section. The construction of a space homotopy
equivalent to the configuration space of a single net-
work element is given in the third section. The fourth
section describes how these spaces are glued together.
The final section discusses applications to controllers.

TOPOLOGICAL PRELIMINARIES

The following concepts and facts are fundamental to
the sequel, since we are concerned with paths through
the space of vehicle configurations. In particular, ho-
motopy is the basic topological concept describing
when paths are equivalent. More detail can be found
in any number of books; good references are [Ma91]
and [Ma96].

The configuration space of k-tuples of points in
X, ck (X), consists of all ordered k-tuples of points
(ZI, Z2,..., xh) xi E X with no two the same, i.e.,
x~+xjifi+j.

The deleted symmetric product of k-tuples of
points in X, DPk (X), consists of all unordered k-
tuples of points (xl, X2, . . ., xk) xi E X with no two
the same, i.e., xi # Xj if i #j.

Two continuous maps j, g : X -+ Y ai-e said to be
homotopic if they can be continuously deformed into
one another; i.e., if there exists a continuous function
F : lxX + Y such that F(O, Z) = f(z) and F(l, x) =
g(z) for all x C X.

If x c X, a loop based at x is a continuous map
u :1 + X such that u(O) = u(l) = x. Loops at a fixed
base point break up into equivalence classes under the
relation of being homotopic by homotopies which fix
the base point.

These equivalence classes of loops form a group,
the ~undamental group of X based at Z., TI (X, so).
The group structure is obtained by defining the prod-
uct of two loops as their concatenation, and a loop’s
inverse as “running it backward”. Note the sensitivity
to base point in the definition of fundamental group.

The fundamental group of a graph is a free group
and the number of generators is one minus the Euler
class of the graph.

A subspace Y of X is a deformation retract of
X if there is a homotopy I+: 1 x X +- Y so that
(1), H(t, y) = y for all y E Y, (2) H(O, Z) = x and
II(1, x) E Y for all x c X. If there is a deformation
retraction from X to Y then Y has the same homotopy
type as X, so ml(X, yo) = ml(Y, ye).

CONFIGURATION SPACE OF A NETWORK ELEMENT

The main result of this section is that the configuration
space of a network element is homotopy equivalent to
a bipartite graph. We will show how to compute the
number of generators of this free group as an explicit
function of the number of edges incident on the node
and the number of vehicles in the network element, as
well as describing the generators themselves.

We construct the space of k vehicles on a network
X by taking the deleted symmetric product DPk (X).
This effectively makes each vehicle anonymous, and
reduces the combinatorics of the analysis by a factor
of k! as distinguished horn the case where the k-tuples
are ordered. Certainly the number of individual config-
urations is reduced by this factor; but also, the funda-
mental group of the configuration space of ordered k-
tuples is a normal subgroup of the fundamental group
of DPk (X), with index k! and there are explicit al-
gorithms for constructing its generators from those of
7rl(DPk(x)).

We begin
node, A, with

with the basic case where X = Xm is a
m edges,

*

Here the center is A. (Formally, X~ is given as the
identification space made out of the disjoint union of
m copies of the unit interval, where we identify all the
origins with a single base point *:

In the literature, this’ construction is also called the
wedge product or one-point union).
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To characterize the number of generators of
T1(Dpm (Xn)), we need to define the following coef-
ficients:
Notation: Let (al, az,. . . , am) be an ordered parti-
tion of k by m elements. By this we mean, first, that
the ai ~ O for each i and second ~~ a; = k. (Note
particularly that O’s are allowed.) We say that the
length of the ordered partition (al,. ... am) is s if and
only if exactly s of the a; are greater than O. Then
we set P(m, k,s) equal to the number of partitions
of k by m elements of length exactlg s. Note that
P(m, k,s) = O ifs > min(k, m). We now put

M(m, k) = ~ P(m, k,l)(l – 1),
l<m

P(m, k) = ~P(m, k,l)
l<k

We can now state the main result of this section:
Theorem: The fundamental group ml(DPk (X~)) is
the free group on Lf(m, k) –P(m, k – 1) + 1 generators.

Before proving this theorem, we give two exam-
ples of its application. Three lemmas needed in the
proof are also given.
Example 1: Fix k = 2, and let m vary. Then
P(m, k, 1) = m, P(m, k, 2) = (~) = + so

ml (DP2 (Xm)) is the free group on

m(m – 1) m+l=(m-l)(m-2)

2– 2

generators. It turns out that we can also describe the
generators themselves. Assume that the base point in
X3 is given as the pair of points, (a, b) where a is the
vertex of the first edge and b is the vertex of the second.
A generator for ml(DP2 (X3)) = Z can be given as the
following sequence of moves:
(1) the point on the first edge moves down it, through

the node, and into the third edge:

va b

t

a

(2) the point in the second edge moves down to the
node and the up to the position formerly occupied
by the first point in the first edge.

v b

t

a

(3) the first point, now on the third edge moves up
the second edge to the position formerly occupied
by the second point.

Y
a

a

More generally, this type of move, using any one
of the the m – 2 free edges for the place to park a
while b moves to the position originally occupied by
a gives m – 2 of the generators, (assuming the same
kind of basing condition). The remaining generators
are obtained by moves where first we move the point in
the first edge into the s-edge, s # 1,2, and then move
the point in the second edge into the t-edge, t# 1,2,s,
and from there, move the point in s to 2 and the point
in t to 1.

Example 2: Fix k = 3. Then ml(DP3 (Xm)) is free
on

()2:
()

+m(m–1)– ~ –m+l = ‘(m – l~(2m+3)

generators. We will see, however, in the proof of the
theorem, that the genesis of these generators is not
essentially different from those in TI (DP2 (X~)).

We now state the needed lemmas.

Lemma 1: Let I be the half-open unit interval. Then
DPm (I) is piecewise linearly homomorphic to the
simplex Om with all but one face deleted.
Proofi The simplex am is given as the set of m-tuples
of points am = {(tl, t2,....&Jlo<tl<t 2<”””<

tm < 1}.This is clearly identical to a specification of
the configuration of m points on I, which is DPm(I).
The deleted faces are those containing a vertex corre-
sponding to the missing endpoint, or points describing
configurations where two points are at identical posi-
tions. 9
Lemma 2: Suppose that X is i$hedisjoint union of
m copies of the (half-open) interval. Then DPk (X) is
the disjoint um”on of products of the form DPk’ (11) x
DP~’(12) x . . . x DPkm (Im), such that ~ ki = m, and
ki >0.
(Evident.) m

Example: If k = 2 and m = 3, the portion of
DP2 (X) that does not include configurations with
one vehicle at A is the disjoint union of three copies
of DF’2 (1), one for each edge, and three copies of
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DP1 (I) x DP1 (I), one for each unordered pair of dis-
tinct edges. DP2(I) is the simplex a2 (a triangle)
missing one edge, and the closure of DP1 (1) x DP1 (1)
in DP2 (.X) is a rectangle missing two edges and the
point (O,O) common to the closures of the two edges
present.

Because of these lemmas, we may conclude that
the configuration space of a network element having
no vehicle at the central node A is the disjoint union
of products of simplices. Products of simplices are
homomorphic to balls. To incorporate configurations
having a vehicle at A, we must consider what happens
when a vehicle leaves an edge to go to A. The answer
is very simple; there is now one less vehicle on that
edge. Therefore the ball corresponding to a configura-
tion with m vehicles on the edge has on its boundary
a ball corresponding to the configuration with m – 1
vehicles on this edge and the same number of vehicles
on each of the other edges as was originally the case.

In one of the balls of DPk (Xm – {A}), there will
be several such boundary pieces, one for each of the
edges with one or more vehicles on it.

The next lemma gives us the key step required
to transform DPk (Xm) into a graph while preserving
homotopy.

Lemma 3: Suppose that D~-l, . . .. D~-l are clis-
joint balls on the boundary of the ball Dn. Let M be
the mid-point of D“, Ml be the mid-point of D~–l,
1 <1 < j, and suppose that deformation-retractions
from the identity to Ml are given on each D~–l. Let
V be the graph which consists of the lines connect-
ing the mid-point of D“, M, to the Ml. Then the
deformation-retractions on the D~-l extend to a de-
formation retraction from the identity on D“ to V.

Proofi Define a deformation retraction $ : I x
(Dn, V) + (Dn, V) as follows. ~ agrees with each
given deformation retraction of the D~–l, (which are
identified with subsets of the boundary of Dn). It is
then extended to the cones from the center M to these
D~–l in the obvious way by just mapping the line be-
tween d c D~–l and M linearly onto the line between
~(t, d) and M. Finally, the points in the remainder of
D“ move towards the line between the center of the
nearest D~–l at the same time that they move towards
the center M. u

We now prove Theorem 1 in the special case of
DP2(Xm). The proof of the general case is not essen-
tially different, and we will discuss the minor changes
needed after the proof.

Proof of Theorem 1: The configuration represented
by a point in DP2 (Xm) either contains the node A

or it doesn’t. Therefore DP2 (Xm) consists of two
sets: the first of points containing A, which we denote
DP2 (Xm)A; and its complement, consisting of all the
points of DP2 (Xm) which do not contain A. Now,
DP2 (Xm)A is clearly just the disjoint union of copies
of the half-open intervals Ij – {0}, and the second of
them is DP2 (Xm – {A}). As discussed in the exam-
ple following Lemma 2, this set consists of the disjoint
union of rectangles indexed by pairs of disjoint sides,
and one simplex ff2 in case both points are in a single
half open edge.

In order to apply lemma 3 in the present case,
we must observe that each edge consisting of points
containing A is in the boundary of m – 1 rectangles
and one simplex (corresponding to a vehicle transiting
from one arm to another). Therefore we must ensure
that the presence of these edge identifications, which
amount to taking the closures of the rectangles and
the simplices, do not interfere with the deformation
retraction indicated in the proof of lemma 3.

Notice that the closure of a rectangle in DP2 (Xm)
does not contain the point (O,O) since thk would re-
quire two points to be at the vertex A simultaneously,
and this is not allowed. Thus, in the closure, the two
half open edges that are added on to the rectangle are
disjoint. Consequently, we can apply Lemma 3, and
replace the rectangle by a single line segment from the
middle of the first added edge to the midpoint of the
rectangle, together with a line segment from the mid-
point of the second added edge to the midpoint of the
rectangle:

Similarly, when we consider the simplexes, they only
add one edge in the closure, and hence can simply be
replaced by the mid-point of this edge up to homotopy
equivalence.

Since in each closure the deformation retraction
to the graph can obviously be made to agree on the
common edges from Lemma 3, we find that the entire
space DP2 (Xm) deformation retracts to a bipartite
graph given in the following way.

(1) There are (~) vertices corresponding to the rect-
angles,

(2) m vertices corresponding to the common edges,
and

(3) from each vertex corresponding to a rectangle



there are exactly two edges going to two distinct
vertices corresponding to the common edges.

The Euler class of the resulting graph is thus m – (~)
and the proof for k = 2 is complete. n

The proof in the general case is not essentially
different. The lemmas above guarantee that we can
deformation retract in the general case in exactly the
same way in which we did it above with the rectangles.
The major difference being that here there are as many
as m disjoint faces in each product of simplices which
are in the closure. I

It remains to describe the structure of the gener-
ators of the fundamental groups for one of the spaces
-DP”(X~). Again, let us start with the case where
n = 2. We begin by constructing a maximal tree
in the graph above, which is homotopy equivalent to
DP2 (X~). We start with the vertex (1). This con-
nects with the vertices (1, 2), (1, 3) to (1, m). Next
(1, i) connects to i, 2< i < m. Then (2) connects
with (2, i), z z 3, while (3) connects to (3, i) i z 4
and so on. This gives the maximal tree. The remain-
ing edges are in one to one correspondence with the
generators of the fundamental group.

The tree for DP2(X4)

For example, consider the first edge not in this list
—the edge connecting (3) to (2, 3). Since we assumed
that our base point was in (1,2) we have that (2,3)
represents the following edge path:

(1,2) +(1)+(1,3)+(3)+(2,3)-+(2)--+(1,2).

Clearly, this is represented by first moving the particle
in (2) to (3), then moving the particle in (1) to (2),
and finally moving the particle which is now in (3) to
(l). This is the sequence of moves given in our first
example.

Next, consider the generator associated to the
edge connecting (4) to (3, 4). This is represented by
the sequence of edges:

(1,2) +(1)+(1,4)+(4)+(3,4)+(3) (4_ loop)

--+(1,3)-+(1)+(1,2)

which means first move the particle in (2) to (4), then
the particle in (1) to (3), then the particle in (4) to (1)

and finally the particle in (3) to (2) – the sequence of
moves given in the second type of example.

If we change the base point to (1, 4), then the
associated loop is

(1,4) +(4)--+(3,4)+(3)+(1,3)+(1,4)

which is a loop of the three move type in our first
example, and the loop of 4–loop is obtained by base
point change, using the edge path (1, 2)+(1)+(1, 4).
An easy genertilzation of this construction shows that
for DP2 (Xm), and more generally DPn (Xm), when
we allow base point changes every generating loop can
be chosen to be of the three move type.

CONFIGURATION SPACE OF THE ENTIRE NETWORK

Let X be a general graph corresponding to the entire
network, with nodes Al, ..., Am These nodes and their
incident edges correspond to the network elements.
Some edges are connected to a single node only; these
correspond to paths at the edge of the network. Sup-
pose that there are exactly bi edges incident on Ai,
with bi > 3 for all 1 < i < m (if b = 2, then there
is only one path into and out of the node, so it is not
an intersection). A certain number, s, of the edges
of X have both endpoints at nodes. A vehicle tran-
sits from one network element to another by crossing
the midpoint of one of these edges. For this reason, we
distinguish the midpoints of theses edges calling them
Bl,..., B., respectively (in the case where X is a tree
we can renumber so that Bi lies on the line connect-
ing Ai with Ai+l, and there will be exactly m – 1 of
the Bi). The basic idea of the construction is to link
configurations of network elements (whose structure
we now understand) with the configurations resulting
from a vehicle crossing one of the Bi. We do this by
defining a series of subsets of DPn(X) as follows.

Definition: Fz(DP”(X)) c D.P”(X) is the subspace
where at least 1 of the n unordered coordinates are
contained in the set {Bl, . . ., BS}.

This sequence of subsets (also called a filtration)
has the following properties:

F.(DP”(X)) c F,_l (DP”(X)) C ...C Fo(DP”(X))

U fi(DP”(X)) = DP”(X)
0<1<s

Furthermore, FZ–Fz+l consists of those configura-
tions having exactly 1vehicles in the set {Bl,..., B,}.
It consists of disjoint unions of products of configura-
tion spaces of single nodes:

DPil (Al) X DPi2 (AJ X 0.. X DPim (Am)
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where ~~ ij = n – 1, and the disjoint union is taken
over all partitions of n – 1 into m subsets, with O’s
allowed. By the second property of the filtration, we
know that

(J (q(DP”(x)) - fi+,(DP”(x)))= DP(X).
0<1<s

So we need only take the union of these sets, whose
structure we already know, to determine DPn (X).

To make the resulting structure reflect the paths
between various configurations, we “thicken” the F1
by allowing the points at the Bj to move slightly away
towards either node. This replaces Fl – Fl+l by the
product 11 x (Fz – Fz+l), O < 1 < s, and allows us
to build up DPn (X) as a union of l-cubes producted
with disjoint unions of products of the DP~ (XW ). For
example, if we have a tree with two nodes (so s = 1),
one gets the following picture for n = 5:

(5,0) (4, 1) (3,2) (2, 3) (1,4) (o, 5)
● ●

(in this and subsequent figures, (xl,. . . . Z.k) means
that X3 vehicles are in the jth network element, 1 <
j < k).

Likewise, if X is a tree with three nodes (sos = 2),
and again 5 points then one gets the following picture:

(5,0,0) (4,1,0) (3,2,0) (2,3,0) (1>4,0) (0,5,0)
● ●

(4,0,1) (3,1,1) (2,2,1) (1,3,1) (0,4,1)
● I)

(3,0>2) (2,1,2) (1,2,2) (0,3,2)
6 I)

(2,0,3) (1,1,3) (0,2,3)
4b

4
(1,0,4) (0,1,4)

1(0,0,5)

The interior of each rectangle corresponds to a sin-
gle component of the level two filtration (which is
F2 (DP5(X))), where one vehicle is at BI and the other
is at B2. The remaining points are distributed among
the three network elements. A closer look at one of

the rectangles, pictured below, shows what each node,
edge, and rectangle describe:

(3, 1,1) (2, 1,1) (2,2, 1)

I I

(3, o, 1) (2,0,1) (2, 1,1)

& &
(3, o, 2) (2, o, 2) (2,1,2)

The vertical edges represent the single components in
the filtration that have one vehicle at B2 and the re-
maining four points distributed as follows: (3, O,1) and
(2, 1,1) while the horizontal lines represent the single
components in the filtration having one vehicle at I?l
with the remaining four vehicles distributed as (2,1,1)
and (2,0,2).

When the graph is not a tree we first consider a
maximal tree contained in it, and then adjoin, one at
a time, the remaining edges with both ends at nodes.
This allows us to construct the fundamental group one
step at a time, first the group for DPk (X) with X a
tree, and then the groups as we add successive edges.
The key tool in this construction is the Van Kampen
theorem, which states that the fundamental group of
two intersecting spaces is given as the amalgamated
product of the two spaces. This theorem and its appli-
cations are the subject of Chapter 4 of [Ma91].

This is applied more or less directly as we build up
the maximal tree. The result here is a group generated
by the 3-moves at the various nodes, with the relations
generated by the requirement that it does not matter
in which order we do moves at different nodes.

The groups that result when we adjoin the re-
maining edges are somewhat more complex, because
of the loops they introduce. A single new generator is
adjoined for each such edge, and the resulting group
is of a type called a Higman, Neumann, Neumann (or
HNN) extension. See ([MKS76], p. 403) for details
and references about HNN extensions.

CONTROL IMPLEMENTATION

The natural question to ask now is how to exploit the
characterization developed above in a control system
for vehicles on a fixed network. We sketch an answer
in the following.

There are two levels of control: the global and
the per-node. They correspond directly to the two
levels of homotopy characterization given in the pre-
vious section. A path through the global homotopy
graph corresponds to the global control. Each node in
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that graph represents a placement of vehicles on the
various paths in the network. Moving from one edge
to another in the global homotopy graph requires that
one or more vehicles go through intersections in the
network, and how this is done at each intersection is
determined by the per-node controllers. These use the
fundamental group computed as indicated above to
determine how the intersection crossings should take
place. Whether per-node control is implemented as a
stand-alone system, or distributed among the vehicles,
is a question we do not consider here.
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