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Abstract 
This  paper describes a method of modeling the mo- 

t ion uncertainty of moving obstacles and ats applica- 
t ion t o  mobile robot motion planning. The method ex- 
plicitly considers three sources of motion uncertainty: 
path ambiguity, velocity uncertainty, and observation 
uncertainty. The model is represented by a probabilis- 
t ic  distribution over  possible position on a path of a 
moving obstacle. Using this model, the best robot mo- 
t ion is selected which minimizes  the expected t ime of 
reaching the destination. B y  considering not  the range 
but the distribution of the uncertainty, more efficient 
behaviors of the robot are realized. 

1 Introduction 
Motion planning is one of the fundamental functions 
of mobile robots. As mobile robots extend their appli- 
cation areas from factory to office or home, they have 
to cope with moving obstacles such as human or other 
robots. Therefore, mobile robot motion planning in 
dynamic environments has recently been studied ex- 
tensively [I]. 

In the case where a robot cannot communicate with 
moving obstacles, the robot needs to predict the future 
motion of them. Most of past research can be classi- 
fied, in terms of the knowledge of obstacle motion, 
into two categories. In one category, the obstacle mo- 
tion is completely unknown, thus, a reactive motion 
selection is only reasonable way for a robot to cope 
with moving obstacles [2]; not the optimality but the 
safety of robot motion is an important issue there. In 
the other category, the obstacle motion is completely 
known; thus, an optimal motion can be generated by 
employing a planning in space-time[3]. In [4], for ex- 
ample, the robot predicts future motion of obstacles 
by assuming that they will continue to move at  the 
current velocity, and plans the next best action in the 
space-time. Such prediction and planning are repeat- 
edly performed. Fiorini and Shiller [5] proposed a local 
motion planning method using the concept of velocity 
obstacles. 

In between these categories, several works consider 
the uncertainty in obstacle motion. Most of them, 
however, consider only the range of uncertainty (e.g., 

obsracle obstocle 

0 rritmr 0 robot 

(a) Avoid all possible (b) Avoid only probable 
obstacle movement. obstacle movement. 

Fig. 1: An example case where considering the bias 
in the motion uncertainty is effective. 

[6][7]); the robot generates a plan which is safe regard- 
less of the actual obstacle motion. Such an uncertainty 
modeling may result in an inefficient robot motion if 
the positional distribution of an obstacle is not uni- 
form within the range (see Fig. 1 for an example). 

In order to model the motion uncertainty of obsta- 
cles, we hierarchically decompose it into two levels: 
the ambiguity in path selection and the motion un- 
certainty on each path. This is analogous to “path- 
velocity” decomposition [8] in motion planning. 

First, let us consider the path ambiguity. In a usual 
environment where both static and moving obstacles 
exist, we can predict the motion of moving obstacles 
to some extent. They never move randomly; each has 
its own start and goal points and the path connecting 
them should be generated in some rational manner 
(e.g., by a minimum-length criterion). In a typical 
office environment, for example, flow of people is re- 
stricted by the placement of walls, doors, furniture, 
and so on. To enumerate possible paths of a moving 
obstacle, we use the tangent graph [ 9 ] .  Using the given 
knowledge of static obstacles, a tangent graph is gener- 
ated. Each path is represented as a set of consecutive 
segments on the graph. 

Concerning the motion uncertainty on a path, let us 
consider the following simple example. Suppose you 
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are going to cross a street and a car is approaching 
you. You have to decide when to begin crossing the 
street (i.e., before or after the car passes). When the 
car is far away] predicting when the car will pass in 
front of you suffers from a large uncertainty because 
it is a prediction of a far future, and because the ob- 
servation uncertainty is large for a far object. As time 
advances, however, the situation will be more certain 
and, at some time point, you will be able to make a de- 
cision with confidence. As seen from this example, for 
modeling motion uncertainty, we consider two sources 
of uncertainty: the velocity uncertainty of an obstacle 
and the observation uncertainty of the robot. 

Using the proposed model, the robot can enumerate 
points on its path where it may meet each moving ob- 
stacles, and can calculate the probabilistic distribution 
of the moving obstacle coming to such a point. This 
distribution is used for the robot to estimate the ex- 
pected time to the destination. The best robot motion 
is then selected which minimizes the expected time. 

2 

2.1 Modeling Velocity Uncertainty 
We assume the following on the motion of obsta- 

cles: each moving obstacle has the possible range of 
its velocity, represented as [umin, um,,]; it changes the 
velocity at every tame s tep AT; the velocity for a time 
step is constant] and is randomly and independently 
selected within the above range‘. 

Under these assumptions, we can predict the future 
position of a moving obstacle as follows. Let xo and U: 
be the current position and the variance of an obstacle 
and wk be the velocity at the kth time step. Then the 
position xi after i steps is given by: 

Modeling Motion Uncertainty on a 
Path 

i 

xi = x o  + uk AT. (1) 
k=l 

Since every v k  follows the same but independent uni- 
form distribution within the above velocity range, the 
distribution of xi can be approximated by a normal dis- 
tribution (by central limit theorem [IO]); the variance 
u : ~ ~  of the motion added by one step is calculated 
as t i a t  of uniform distribution of width U,,, - Vmin, 
which is (U,,, - ~, i , )~ /12 .  The probability density 
function p ( x ;  i) of the obstacle being at x after moving 
for i steps is then given by 

%i = x o  + i i j A T ,  
U; = U; + iu,2ttep, 

where 6 = (wma, + wmin)/2 is the mean velocity of the 
obstacle. 

‘More constraining knowledge could be used depending on 
the actual environment and the problem settings. 

D / ““la, 

0 1 time 

Fig. 2: Prediction of arrival time. 

2.2 Predicting the Arrival Time of Mov- 
ing Obstacle at a Crossing 

Motion of an obstacle affects that of the robot near 
the crossings of their paths. Thus it is necessary for 
the robot to calculate the distribution of the arrival 
time of the obstacle at a crossing. Using the velocity 
uncertainty model described above, the distribution is 
calculated as follows (see Fig. 2).  

In the figure, the vertical axis indicates the mov- 
ing distance of the obstacle from the current position; 
the horizontal axis indicates the time (or time step). 
Derossing is the distance to a specific crossing on the 
path. Since the positional distribution of the obstacle 
at some time point is calculated by eq. (2), the proba- 
bility P( i )  of the obstacle reaching the crossing at the 
ith time step can be approximated by: 

P( i )  = ap(Derossing; i ) ,  (3) 
where cx is a normalization constant. 
2.3 Modeling Observation Uncertainty 

Another source of uncertainty in predicting obstacle 
motion is the observation uncertainty. We suppose 
a vision-based mobile robot which uses stereo vision 
to  detect obstacles and to measure their position and 
velocity. We use the uncertainty model of stereo vision 
that we have previously developed [ll]. The model 
uses a normal distribution to represent the positional 
uncertainty of an object due to vision uncertainty. 

Every time the robot measures the position of an 
obstacle, the position data is statistically integrated 
with the previous data to reduce the uncertainty. Here 
we explain how to estimate the positional uncertainty 
of an obstacle after observation at the next step. 

Let N ( p 0 ,  U:) be the predicted distribution of ob- 
stacle position x before the next observation; this dis- 
tribution is calculated from the current distribution 
and the predicted motion uncertainty added by the 
next step. Let xobs be the position measured by the 
next observation. Assuming that the variance u , ” ~ ~  of 
xobs is constant regardless of the true value of x ,  xobs 
follows N ( p 0 , a ;  + U,”,,) .  From these values, mean ~1 

and variance U: of the distribution after integrating 
the next observed data are estimated as follows; U ;  is 
given by u~u,”,, /(u; + U,”, , ) .  p1 cannot be predicted 
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Fig. 3: Reduction of prediction uncertainty. 

deterministically; instead, its distribution can be esti- 
mated as N(po,oz/(u: +. o,",,)). Refer to [ll] for the 
details. We use this distribution of pi  to enumerate a 
set of possible states after the next step. 

2.4 Gradual Reduction of Prediction Un- 
certainty 

By combining the velocity and the observation un- 
certainty, we can model the gradual reduction of pre- 
diction uncertainty, which is described by an example 
in Sec. 1. Fig. 3 shows the current probability dis- 
tribution of an obstacle arriving a t  a crossing, and 
a set of predicted probability distributions (weighted 
with its occurrence probability) to be obtained after 
one time step passes and the new observation result is 
integrated'. The set of distributions covers all possible 
situation which is represented by the current distribu- 
tion. Only one of which, however, will actually occur. 
The variance of each distribution in the set is smaller 
than that of the current one, that is, the situation will 
become more certain. 

3 Motion Planning for Fixed Path 

3.1 Planning the Next Motion 

Moving Obstacle 

The robot basically follows a path on the tangent 
graph to  minimize the moving distance to  the desti- 
nation as long as there is no influence from moving 
obstacles. If the robot has to consider avoidance of 
collision with them, the robot selects a certain num- 
ber of nodes as the candidates of an intermediate goal 
and enumerates a set of candidate motions which cover 
the directions to the candidate nodes (see Fig. 4). Af- 
ter each time step, the robot observes obstacles, esti- 
mates their positional uncertainty, and performs one- 
step look-ahead search for the next motion. Once a 

Fig. 4: Generating candidate motions. 

minimization 

weighting 
with probability 

minimization 

7'ij (expected time to god point) 

Fig. 5: Se!ecting the next motion. 

node is known to be far superior to the others, the 
commitment is made to the node. 

The detailed planning algorithm is as follows (see 
Fig. 5). For each motion i ( i  = 1 , .  . . , N ) ,  the 
robot first predicts the set of possible states {Sij Ij = 
1,. . . , M }  with their probability Pij, which are to be 
obtained after the motion, as described in the previous 
section. Then for each state Sij , the robot calculates 
the expected time Tf  of reaching the destination when 
selecting candidate node k (k = 1, . . . , L)3  and selects 
the best (minimum-time) candidate node as: 

Ir . .  
k*. = arg min Ti3 

$3 k=l (4) 
Then the expected time Ti of reaching the destination 
when taking candidate motion i is given by 

M 

Ti = c P . . T i l  $3 k , j  . (5) 
j=1 

Finally the best motion i* is selected as: 
N 

z = l  
i" = arg min Ti. 

3.2 Calculating Expected Time to Desti- 
nation 

Collision Avoidance by Stopping We set a safety 
distance L,, je  and controls the robot so as not to enter 

'Note that  t h e  velocity range of t h e  obstacle  i s  discret ized 
w i t h  some granularity for a computat iona l  purpose .  

3The n e x t  subsec t ion  wil l  exp la in  h o w  t o  ca lcu la te  t h e  ex -  
pected t ime .  
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(a) Pass before the obstacle. (b) Pass after the obstacle. to - D$e/Vo 

Fig. 6: Conditions for collision avoidance by stopping. Fig. 7 :  Expected time to  wait. 

within L,,je from any obstacles. Basically the robot 
moves at  a constant speed on the shortest path. If the 
path of the robot and that of an obstacle intersect, 
and if the robot knows the obstacle will come to the 
distance less than L,,,,, the robot stops before the 
intersection point (crossing) and waits for the obstacle 
to  pass by4 
Calculating Waiting Time The period during 
which the robot has to wait is calculated as follows. 
Let us consider Fig. 6. The two paths intersect at pe 
with angle e. The robot waits at point po whose dis- 
tance to  the path of the obstacle is L, , je .  Let t o  be the 
time at which the robot reaches pa .  To calculate,the 
waiting period, we first calculate two distances, DiEj e 

and D,O:j,. D:Eje indicates the distance of the obsta- 
cle to  the crossing p c  such that the robot can pass the 
crossing before the obstacle if the obstacle is further 
than DfEfe at t o  (see Fig. 6(a)). D,OZj, is the dis- 
tance from the crossing such that the robot can pass 
the crossing after the obstacle if the obstacle is further 
than D,OZ), at t o  (see Fig. 6(b)). Assuming that near 
the crossing, the obstacle and the robot moves at  con- 
stant speed U, and U, respectively, these two distances 
are given by: 

I 

If the obstacle is within the range [Pc - DfEje,pc + 
D$,] at  t o ,  the robot has to wait for the obsta- 
cle exiting from the range. From this condition, we 
can obtain the following. (1) If the time of the ob- 
stacle arriving at the crossing is within the range 
[ to  - D ~ ~ ) , / u , , t o  + D ~ ~ f e / u , ] ,  the robot has to wait. 
(2) In addition, for arrival time t within the range, the 
robot has to wait for the duration of t-(to-D,O~j,/u,) 

*Other avoidance methods such as potential methods can 
be used instead, by adopting the corresponding procedure of 
calculating the expected time to reach the destination. 

(see Fig. 7); this is explained as follows. If the ob- 
stacle arrives at p ,  at t ,  we know that it was at the 
distance of u,(t - t o )  to  p ,  at  time t o .  Thus the robot 
has to wait while the obstacle moves by the distance 
D,OZ), + u,(t - t o ) .  Dividing this distance by U, leads 
to  the above waiting time. 
Expected Time to Destination From the above 
result and the probability distribution P(i )  of the ob- 
stacle arriving at the crossing (see eq. (3)), we can 
calculate the expected time of the robot reaching the 
destination on a certain path. The expectation of the 
extra time needed for waiting, T w o i t ,  is calculated by: 

T w a i t  = ~ ( t ) ( t  - ( t o  - D,Oije/uo)), (9) 
t € [ t , , , , t , , , l  

tmin = t o  - D,O:je/uo, 

tmas = t o  + D t t j e / V o .  

The expected time to  the destination is then calcu- 
lated as the sum of T w a i t  and the time needed in the 
case where the robot encounters no obstacles. 

The motion uncertainty of the robot is not consid- 
ered in the above discussion. However, given that the 
uncertainty is represented by a probabilistic distribu- 
tion, it can be easily incorporated by further calculat- 
ing the expectation over the possible range of robot 
uncertainty. 

3.3 Simulation Result 
Fig. 8 shows a simulation result. There are a static 

obstacle and a moving obstacle in the environment; 
the robot considers two paths, among which the left 
one is shorter. The figure shows the movements of 
the robot and the obstacle until the robot reached the 
goal point. Since the left path is shorter, the robot 
started toward the left path; as the situation became 
more certain, the evaluation of the right path went 
up, while that  of the left one fell down. So the robot 
gradually shifted its direction towards the right path 
and, at time t = 17, it committed to the right path 
and followed it to  the goal point. The parameters 
used in this simulation are: obstacle velocity range 
is [4.5 f l.O][cm/s]; the robot velocity is 7.5[cm/s]; 
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Fig. 8: A simulation result. 

the variance of uncertainty in measuring distance is 
6.25e - 7 . d4 ( d  is the distance to  the obstacle); the 
length of the left and the right path are 317.0[cm] 
and 332.0[cm], respectively. The number of candidate 
motions is 5. 

4 Modeling Path Ambiguity 
This section deals with the case where there are mul- 
tiple possible paths for a moving obstacle. Suppose 
an obstacle is moving on a segment towards a node 
(branching point )  to which n possible paths are con- 
nected. Let P p a t h ;  ( j  = 1,. . . , n)  is the probability of 
taking the i th path; if the robot does not have any 
prior knowledge of obstacle motion, P p a t h ;  = l / n .  

To path ambiguity cases, we can also apply the mo- 
tion selection method described in Sec. 3.1 with a little 
modification. For each possible path, we can calculate 
the expected time z, when taking candidate motion 
i using eq. (5). Then the expected time of motion 
i is calculated by 

n 

Ti P p a t h j T i j .  (10) 
j = 1  

Finally the best action is selected using eq. (6). But 
this method may not be appropriate in some cases. 

In the case of Fig. 9(a), for example, the action to- 
wards the left path will be selected because this motion 
is apparently better than the other regardless of the 
actual path of the obstacle. In the case of Fig. 9(b), 
however, the above selection method is not effective; 
that is, each motion of the robot is good for one ob- 
stacle path but bad for the other. Since the motion is 
selected by one-step look-ahead search using the ex- 
pected time to the destination, and since any motion 
is not far superior to the others, the motion towards 

obstacle . Obstacle 

(a) Left route is much better. (b) Both routes are comparable. 

Fig. 9: Two cases of path ambiguity of obstacle. 
directly one of the candidate nodes may be selected. 
But such a motion is very inefficient when the obstacle 
happens to take the path on the same side. 

A reasonable strategy is, thus, to defer the com- 
mitment to  a path until the obstacle takes one of the 
possible paths. The problem is, however, that it can- 
not be deterministically determined when the obstacle 
comes to the branching point. To cope with this prob- 
lem, we calculate and use the probabilistic distribution 
of the obstacle reaching the point, just as in the case 
of the obstacle reaching a crossing (see Sec. 2.2). 

Let us examine the case where there is one moving 
obstacle and where there are two possible paths ( l e f t  
or right) from the next branching point for the obsta- 
cle. Let P l , f t  and P r i g h i  be the prior knowledge of 
the probability of the obstacle taking the left or the 
right path, respectively. Also let P ( i )  be the proba- 
bility that the obstacle arrives at the branching point 
at time step i (see eq. (3)) and tmin and t,,, be the 
earliest and the latest time of arrival, respectively. As- 
suming that the path of the obstacle is immediately 
determined when the obstacle passes the branching 
point, the probabilities P;e,t and P:ight of the robot 
detecting the obstacle on the left and the right path, 
respectively, at time step i are calculated as: 

p : e f i  = q e f t P ( i ) ,  P:ight = P r i g h l P ( i ) .  (11)  
Fig. 10 illustrates how the situation gradually be- 
comes certain as the time advances in this model. 

The expected time of the robot reaching the desti- 
nation is calculated as follows. Let T/eft and Trtight be 
the time of the robot reaching the destination when 
taking the best action against the left and the right 
path of the obstacle, respectively, after moving for the 
duration of i time steps without making commitment 
to  any path. Then the expected time T of this strategy 
is given by 

tmar  

i = t m , n  
= t m i n A T  + ( G g e f t q t f t  + P:ightTrdight). (12) 

This expected time is compared with that of the action 
selected by the previous, one-step look-ahead strat- 
egy (see Sec. 3.1) and the better action is selected. 
This formulation can be extended to a general, n-paths 
case. 
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5 Conclusions and Discussion 
We have proposed a method of modeling the motion 
uncertainty of moving obstacles to be used for robot 
motion planning. We consider three sources of the mo- 
tion uncertainty, path ambiguity, velocity uncertainty, 
and observation uncertainty, to construct a probabilis- 
tic uncertainty model. Using this model, we can rep- 
resent the gradual reduction of the uncertainty in mo- 
tion prediction, which we usually experience in many 
situations. Based on this probabilistic model, the mo- 
tion planner repeatedly selects the best motion in a 
decision-theoretic manner. 

Currently we assume that the robot can determine 
the path of an obstacle at a branching point just af- 
ter the obstacle passes the point. However, this as- 
sumption may not be effective in some cases, espe- 
cially when the branching point is far from the robot 
and the observation uncertainty is large. An extension 
to the current modeling is to consider the observation 
uncertainty in determining the path of the obstacle. 
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Fig. 10: Predicting probability of an obstacle taking 
each path. 
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Fig. 11: Simulation result for the case of path ambi- 
guity of a moving obstacle. 

Fig. 11 shows a simulation result for the case where 
the robot considers the path ambiguity of a moving 
obstacle. Until timet = 6, the robot moved toward the 
center of the two candidate nodes and at time t = 7 ,  it 
shifted to the left path because it detected the obstacle 
took the right path at that time. The parameters 
used in this simulation are: obstacle velocity range 
is [15.3 f l.O][cm/s]; the robot velocity is 7.5[cm/s]; 
the other parameters are the same as in the previous 
simulation shown in Fig. 8. 
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