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Abstract 

Recently it has been recognized that robust motion 
planners should take into account the varying perfor- 
mance of localization sensors across the configuration 
space. Although a number of works have shown the ben- 
efits of using such a performance map, the work on ac- 
tual computation of such a performance map has been 
limited and has addressed mostly range sensors. Since 
vision is an important sensor for  localization, it is im- 
portant to have performance maps of vision sensors. 
In  this paper we compute the performance map of a 
vision-based sensor. We show that the computed map 
accurately describes the actual performance of the sen- 
sor, both on synthetic and real images. The method we 
present (based on [6]) involves evaluating closed form 
formulas and hence as very fust. Using the performance 
map computed by this method jor  motion planning and 
for devising sensang strategies will contribute to more 
robust navigation algorithms. 

1 Introduction 

External sensors such as video cameras, laser range 
finders and sonar are being routinely used for mobile 
robot localization. Recently [lo, 5, 7, 8, 11, 91 it has 
been recognized that the accuracy of the localization 
obtained by invoking the sensor, will in general depend 
on the configuration the robot is in. In other words, 
the combination of sensor and environment defines some 
kind of map which describes the quality of localization 
obtained at each configuration by using the sensor. We 
will refer to this map as the Sensory Uncertainty Field 
(SUF) which was coined in [lo]. 

Existence of the SUF has led to some interesting 
higher level problems. A natural idea is to have the 
motion planner use the information in the SUF to plan 
routes which will pass in regions where the sensor works 
well, i.e. the sensory uncertainty is low. Such works 

may be found in [lo], [5],[7]. In [8] a related notion 
is the information content of the environment at each 
configuration. Another similar idea motivated by vi- 
sual servoing is described in [9]. Another use of the 
SUF map is demonstrated in [ll], where the question 
of choosing the proper landmarks for localization is ad- 
dressed. Celinski and McCarragher [3, 41 addressed the 
problem of sensing management - for example choosing 
the appropriate sensor to be used at each configuration. 
An SUF type of map is some of the input required for 
addressing such issues. 

Although these higher level works illustrate the util- 
ity and importance of using and having an SUF, there 
has been limited work on actual computation of the 
SUF. The above mentioned works [10],[8],[7] all used a 
range sensor. The basic method of computing the SUF 
is to actually simulate the sensing algorithm at each con- 
figuration. The output of the algorithm on noisy mea- 
surements results in dispersed answers, and the SUF is 
some measure of this dispersion. Such a method for 
computing the SUF is time consuming because the sim- 
ulation has to be run for each configuration in the con- 
figuration space. Therefore, various simplifications had 
to be employed in [10],[8]. 

In this work we use a fast method to compute a SUF 
for a vision sensor. This method does not involve simu- 
lation of the sensing. Instead we use a closed form for- 
mula which gives a direct estimate of the sensing output 
covariance matrix. Thus the method is much faster. To 
test this method, we compare the predicted covariance 
matrix with the actual scattering of results obtained 
by invoking the sensor many times (i.e. simulation), 
and show that the predicted covariance matrix indeed 
describes well this dispersion. This is shown both on 
synthetic and real images. 

In the next section we describe the localization algo- 
rithm based on input from a vision sensor. Afterwards 
we describe the general method to estimate the covari- 
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ance matrix of the sensor output, and apply it to our 
specific case. Section 4 describes how we statistically 
tested the validity of our predicted covariance matrix. 
In section 5 we present comparison of the predicted vs. 
actual covariance matrices obtained in different scenes 
and configurations. The last section summarizes and 
concludes this paper. 

2 Localization Algorithm 

For localization we use a vision based sensor. We 
assume a camera is mounted on the robot. Assume a 
base image was taken from a known configuration. A 
second image is taken from the current configuration 
and a third image is taken after a small translation from 
the current configuration. By computing the camera 
egomotion between these three images we may deduce 
the current configuration. More details may be found 
in [2]. 

Our goal now is to predict the covariance matrix of 
the motion estimate we obtain. In this work we focused 
on the estimate of direction of translation, or focus of 
expansion (FOE). 

We will now describe how we estimate the FOE us- 
ing point matches between two images related by pure 
translation. Let (p; ,p: )  = (zi,yi,z:,yi) be the noise 
free (or pure) matches between the two views. Let 
( p i ,  p i )  = (& , yi, i t : ,  $) be the measured correspon- 
dences. Let us assume the error in each coordinate is a 
Gaussian random variable with zero mean and U’ vari- 
ance. Let S = { ( p i , p i ) }  be called the pure scene and 
let S = {(pi,?:)} be called the measured scene. 

Denote by L(SlS)  the likelihood of the scene S be- 
ing the true correspondences, given the measured scene 
S.  By the Gaussian assumption on the measurement 
noise, and by assuming independence between pixels 
and views, we obtain 

Thus we think of the measures scene S as being a noise 
corrupted version of some true scene S ,  and the likeli- 
hood for each S is given by equation (1). 

Assume that a certain point ( U ,  w) is the FOE. Then 
it is well known that the segments s; = (p i , p : )  in the 
pure scene all lie on lines meeting a t  the point ( U ,  v) .  
Thus we are led to the following definition: 

Definition: The scene S = { ( p i , p : ) }  supports the 
point ( U ,  w) if the lines through the pairs (pi, p i )  all meet 
at the point ( U ,  w). 
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Figure 1: Possible supporting scenes for the point E 

It is now natural to define the likelihood of the point 
( U ,  w) being the FOE, given the measured scene S as 

LC(Sl9) (2) 
supports (U,.)} 

L(.u, U) = is,s 
This definition is illustrated in figure 1. SI and S2 are 
two possible scenes which support the fact that the point 
E is the FOE. Clearly given the measured scene S, scene 
SI is much more likely. 

It is clear that an infinite number of scenes may sup- 
port the fact that a point (U,.) is the FOE. However, 
given a specific measured scene, the majority of these 
possible supporting scenes are very unlikely. In other 
words, the integrand in (2) nearly vanishes for the ma- 
jority of the supporting scenes. Still, obtaining a good 
approximationof (2) may not be trivial. (See [12] for re- 
lated work in which actual computation of simpler, one 
dimensional integrals resembling the integral in equa- 
tion (2), was carried out in the context of curve fitting). 

We chose to approximate (2) by taking only the 
largest integran? into account. For a point ( u , v )  we 
find the scene S that supports (u,w) and that is also 
the most likely scene given S (with respect to all other 
scene supporting ( U ,  w)): 

and then we approximate (2) by 

q(u, w) = L(S1S) (4) 

Finding the point ( U ,  U) which maximizes the function q 
is our method for estimating the FOE, and we call this 
the approximate maximum likelihood (AML) estimate. 

It remains to show how we can compute the scene 
3 that-is the most likely scene which supports ( u , v ) ,  
given S .  Let us look at a specific segment ( @ i , p : )  from 
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Figure 2: Definition of the function q 

S. We would like to move the points pi and p;  as little 
as possible to points pi and p i ,  such that ( U ,  U), pi and 
pi will all be colinear. The less we move @j and f i : ,  the 
higher the likelihood of the new segment (pi  , p i ) .  This is 
illustrated in figure 2. Thus, given the points fi  = (i, y) 
and p’ = (2’) $’), the geometric solution is as follows: 
pass a line through the point ( u , v )  such that the sum 
d: + d; of the distances from fi  and fi’ to the line, will 
be minimal. By simple calculus and geometry it may 
be verified that the line we are seeking creates an angle 
B with the 2 axis such that 

B = - arctan 
1 
2 

2 ( ( f  - U ) ( Q  - v) + (2  - U ) ( #  - v)) 
(i - U ) 2  + (2’ - U ) 2  - (6 - v)2 - (g - v)2 

(5) 
where the arctangent is chosen in the range [ 0 , 2 ~ )  ac- 
cording to the signs of the iiumerator and denominator 
(as in the atan2 function). 

Since the segments of the scene are independent, we 
may find for each measured segment the most likely 
( U ,  v)-supporting segment. The collection of these most- 
likely segments is the required scene S .  The value of 
q(u , v )  is the sum of squared distanc_es from the mea- 
sured pixels to the line segments in S (actually this is 
the logarithm of q up to a scale factor). 

Once we have computed 0 = B(u, v, x, 9, PI, 8’) the 
distances d l ,  d2 to the line are 

2 

2 
d ,  = (-sinB(P - U )  + cose( i  - v ) ) ~  
d2  = ( - s inB( i ’ -u)+cos0( i ’ -v) )2  ( 6 )  

(-sine(i;  - U) + - v ) ) ~ }  (7) 

3 Covariance Estimation 

We now want to estimate the dispersion of the es- 
timated ( u , v )  at a certain configuration. Our es- 
timate is based on a first order approximation de- 
rived in [6]. The input from the point matching algo- 
rithm is the set of correspondences i i  = ( i ? i , y i , i i , $ )  
which are the noise corrupted versions of si = 

and X = (z1,31, xi, , . . . , $k)t the pure and noisy sets 
of matches. Let 0 = (u ,v)  be the correct FOE and 
6 = (G) be the estimated FOE. Then we have: 

h 

( z i , y i , z i , d ) .  Denote by X = (z~r~~,zi,d,...,ylp)~ 

0 = a rgminF(O,X)  

6 = argminoF(O,X) 
0 

Let 
f3F 

g ( 0 , X )  = V o F  - 
8 0  

Since 6 minimizes F(,O, X )  and 0 minimizes F ( 0 ,  X ) ,  
we have that both g ( 0 , X )  and g ( 0 , X )  are equal to 0. 
By using first order Taylor expansion, in [6] it is shown 
that this leads to 

-(6, 89 X)(6 - 0)  = --(6, 89 X ) ( X  - X )  a0 d X  

which leads to the following approximation of the co- 
variance matrix of 0 : 

= ME* M~ (9) 

where 

Ex = E [ ( X - X ) ( X - x ) t ]  

M = (ax)  as - 1  as 

In our case we have 

= (:) 
89 - Fuu F u v  

- m - ( Fvu Fvv ) 
Since all segments are independent of each other, in - 8s = ( Fuel Fugl . . .  Fug; 

OX Fv*l Fvtj, . . .  Fvgb order to find the AML FOE estimate we have to mini- 
mize w.r.t. ( U ,  v )  the function 

The matrix M is evaluated at  the estimated 6 and 
the measured X .  Since equations (.5,7) are closed form 
equations for F ,  we may obtain a closed form expression 
for M and hence for Eb. 

F ( u , v , P ~ , . .  .,$,) = 
P E{(- sin qfi - U )  + cos e(eZ - v))’ + 

i=l 
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4 Testing the Accuracy of the Predicted 
Covariance Matrix 

The matrix 26 = M C % M t  obtained in the previous 
section predicts the dispersion of results 6 we would 
obtain from dispersed values X of the pure matches X. 
In order to check the accuracy of this prediction, we 
obtained actual values 0 1 , .  . . , O N ,  and compared their 
dispersion with the predicted covariance C6.  We now 
describe two methods of comparison. 

4.1 Statistical Hypothesis Testing 

The first method is to perform an hypothesis test. 
The hypothesis we are testing is the following: 

Hor the observations 6 1 , .  . . , 6 ~  come from a nor- 
mal rundom variable N ( p ,  E), and C = p 2 g 6  for  some 
unspecified ,O 

This hypothesis may be tested by using a likelihood 
ratio test (see [l] page 262 for details). We first compute 
the statistic matrix 

N 

B = c(e; - o)('; - o)t (10) 
i=l  

where = 6 ; / N  is the sample mean. Then we com- 
pute the ratio 

where d is the dimension of the samples ( d  = 2 in our 
case). A is the maximal likelihood of the observed sam- 
ples under the assumption Hol divided by the maximal 
likelihood of the observed samples under no restrictions. 
(By the maximal likelihood we mean the likelihood un- 
der the choice of p ,  C that maximizes this likelihood). If 
this ratio is lower than some threshold A0 then we reject 
the hypothesis Ho. 

The threshold A0 may be selected to yield signifi- 
cance level Q as follows. Under the assumption Ho, the 
random variable 

w = ANI2  (12) 

(13) 

is distributed with cumulative distribution function 
N-2 

Pr(W < w) = w 2  

Therefore, if we require the hypothesis Ho to be mis- 
takenly rejected when it is true with probability a, we 
should choose A0 to satisfy 

When the hypothesis is true, an estimate of the scale 
factor p2 is given by 

t r (B2g ' )  
d N  

p2 M 

4.2 Geometric Evaluation 

The covariance matrix describes through its eigenvec- 
tors and eigenvalues the dispersion of a random variable 
in terms of directions of dispersion and magnitudes of 
dispersion. In some cases we are able to accurately esti- 
mate the direction of dispersion of the FOE estimates, 
but we cannot expect to get an accurate estimate of 
the the magnitude of dispersion. This happens when 
the FOE estimates are scattered on a line. The covari- 
ance matrix then is close to singular. For these cases 
and in addition to the previous test described, we will 
now describe how to test the quality of our covariance 
prediction by a direct geometric comparison. 

Let 26 be the predicted covariance matrix, and let 
C, be the best unbiased estimate of the covariance ma- 
trix, obtained from the samples: 

The equi-(probability density) contours for the FOE 
are ellipses with axes in the direction of the eigenvectors 
of the covariance matrix. The lengths of these axes de- 
pend on the square root of the eigenvalues (the lower the 
probability density - the longer the axes). Let U, Ze be 
the unit eigenvectors corresponding t o  the larger eigen- 
values of 96, C, respectively. Let AI, A z ,  AI,, be the 
eigenvalues of these matrices. A geometric check of va- 
lidity of the prediction 26 is thus to look at the angle 
between the vectors ii and Z,, and at the ratios 

= 

However, one has to note the following exception. 
Suppose the dispersion described by the covariance ma- 
trix is close to circular. In other words, the value of 

A l / A 2  is not much larger than 1. Then the direction 
of the principal axis of the ellipse is rather arbitrary. 
In that case, we should not expect the angle between i 
and 3, to be close to zero. 

d- 
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5 Results 

Our SUF computation method was tested on syn- 
thetic and real images. We created a synthetic 3D scene 
with 20 points. These points were projected perspec- 
tively to yield the base image. The second image was 
then obtained by projecting these points on a translated 
screen. The direction and magnitude of the transla- 
tion vector was varied to show the different behaviour 
of the sensory uncertainty at different configurations of 
the robot. The projected points were corrupted with 
Gaussian noise with standard deviations os = oY = 2 
pixels (the focal length was taken as 1000). 

For each translation of the second screen w.r.t the 
first screen, we made made 50 different noise corrupted 
versions of the projected features. For each version we 
computed the FOE by minimizing the objective function 
given by equation (7). This gave us the actual dispersed 
values 01, . . . , ~ ) N + o .  Then we computed the predicted 
covariance matrix by using equation (9). (The ma- 
trix M was evaluated at an arbitrary sample 650 and 
at  the measured features X ) .  We tested the validity of 

with respect to the dispersed actual values obtained 
as described in the previous section. 

The coordinate system in which we worked is the 
standard normalized camera coordinates of the base im- 
age - i.e. the z axis is the viewing direction and the x, y 
axes are on the image plane. In the first case we will 
present, the second screen was translated along the x 
(i.e. left/right) axis and the z (i.e. forward/backward) 
axis, with respect to the base image position. Figure 3 
shows those configurations in which the hypothesis Ho 
had to be rejected (with significance level Q = 5%). It  
may be seen that apart from the cases where the trans- 
lation was nearly parallel to the screen, the hypothesis 
was almost always not rejected. Indeed, apart from mid- 
dle two lines, the hypothesis is rejected in 23 out of 440 
configurations which is very close to 5%. Figure 4 shows 
the distribution of the estimate given in equation (16) 
for the scale factor p2, for those configurations where 
the hypothesis was not rejected. It may be seen that 
the scale factor is close to 1, as expected. 

In the configurations where the z component of the 
translations was low, the hypothesis Ho was rejected. 
However, the predicted covariance matrix still gives a 
very good qualitative measure of dispersion. Figure 
5 shows the angular difference between the predicted 
and empirical principal axes of the dispersion ellipses - 
i.e. the angle between the eigenvectors. It may be seen 
that in the configurations that seemed in figure 3 to be 
“problematic”, the difference is actually very low. In 
the configurations with small 2 translation (i.e. those 
with FOE near the center of the screen) we now obtain 

Figure 3: Configurations in which the hypothesis is re- 
jected 

Figure 4: Histogram of scale factor in configurations 
where the hypothesis is not rejected 

large angular errors between predicted and empirical 
eigenvectors. This is a result of the circularity of the 
dispersion in those configurations, as is shown in figure 
6. The figure clearly shows that the large angular differ- 
ences are obtained in cases where the axes of the ellipse 
are nearly equal , and hence the direction of the princi- 
pal axis is arbitrary. On the other hand, figure 7 shows 
the distribution of angular difference between predicted 
and empirical eigenvectors, for configurations in which 
the dispersion was not circular: the square root of the 
ratio of empirical eigenvalues was more than 1.5. It is 
may be seen that the predicted directions of dispersion 
are very close to the actual dispersion obtained. 

In another synthetic scene the second image was ob- 
tained by translations with varying x, y components and 
fixed z component. In other words the camera was 
moved forward a fixed amount, and then sideways and 
up and down by varying amounts. We measured the 
dispersion of the FOE estimate obtained by the product 
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Figure 5: Angle between predicted and empirical eigen- 
vectors (degrees) 

Figure 6:  Ratio of axes lengths for configurations where 
angle between predicted and empirical eigenvectors was 
larger than 10 degrees 

which is proportional to the area of the ellipse 
determining the dispersion. Figure 8 shows both the 
predicted and the actual measures of dispersion that 
were obtained. I t  is seen that the prediction is quite 
accurate. 

In addition to various synthetic scenes, we have 
tested our method on real images. Figure 9 shows the 
base image and the images obtained after a right and 
forward translation respectively. Around 30 pairs of cor- 
responding points were found between the base image 
and each of the other two images. Based on these points, 
the FOE was computed and its dispersion predicted by 
our method. These predictions were then compared to 
the dispersion of FOE values obtained by minimizing 
the objective function on noised versions of the point 
correspondences. 

Figure 10 shows the actual dispersion of 50 FOE es- 
timates, and the dispersions described by the predicted 

Figure 7: Distribution of angular difference between 
predicted and empirical eigenvectors, where dispersion 
is not circular 

Figure 8: Measure of dispersion in FOE estimate (a) 
Predicted (b) Empirical 

and empirical covariance matrices, for localization after 
forward translation. The angle between the principal 
axes of the two ellipses is 11.9 degrees. The ratios of 

the lengths of axes ( d z , d G )  are 1.01 and 
1.08. As is evident by these numbers and by looking at 
the figure, the prediction is quite accurate. The likeli- 
hood ratio test also confirms the hypothesis with ratio 
X = 0.38 and with estimated scale factor p2 = 0.92. 

Localization using the second image is the case of 
localization after sideways translation. In this case the 
FOE is practically at infinity. The angular difference 
between the predicted and empirical eigenvectors was 
0.08 degrees. The actual empirical dispersion is very 
high in the direction of the principal axis. The predicted 
covariance matrix does indeed predict this with singular 
values ratio of 30000. Thus, in this case, the qualitative 
behaviour of the dispersion is predicted correctly by our 
method, and the quantitative behaviour is meaningless. 
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Figure 9: Real images used. (a) Base image (b) Second image - translation parallel to screen (c) Third image - 
forward translation 

Figure 10: Predicted vs. empirical dispersion 

6 Conclusions 

In recent years it has been recognized that in order 
to achieve robust motion planning and navigation algo- 
rithms, the varying capability of the sensors the robot is 
using should be taken into account. Having a mapping 
of sensor performance across the configuration space has 
been argued to be beneficial and important. However, 
despite the importance of vision as a localization sensor, 
there has been limited work on creating such a mapping 
for a vision sensor. In this work we have addressed this 
need. 

We have presented a new method to compute the di- 
rection of translation of the robot, and have shown that 
together with the estimated direction one may obtain 
an indication of the accuracy of this estimate - the co- 
variance matrix. The covariance matrix is computed by 
a closed form formula and hence its computation is fast. 
We have shown that the predicted covariance describes 
accurately the dispersion of estimates in different con- 
figurations. 

Having a reliable performance map, which describes 

the quality of the localization result given to us by our 
sensor, we may now address higher level problems. Fu- 
ture work will integrate the performance map into the 
motion planning stage: the motion planner should use 
the data in the map to plan paths along which the sensor 
is able to give accurate localization results. In addition, 
sensing strategies can be devised which use the perfor- 
mance map to decide at  which points along the path the 
sensor should be invoked to update the robot's position. 
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