
Proceedings of the 2001 IEEE
International Conference on Robotics 8 Automation

Seoul, Korea. May 21-26, 2001

T ow ards a Meta Motion Planner B: Algorithm and Applications

Aniit Adam Ehud Rivlin Ilan Shimshoni
Dept. of Mathematics

a m i 1, a,Qt,x. tec hnion . ac. il
Dept. of Computer Science

ehudr@cs.technion .ac.il
Dept. of Industrial Engineering

i 1 a m @ie . t ec hni on. ac. il

Technion - Israel Institute of Technology
Haifa 32000 - Israel

Abstract

In ci componioiz paper [l] we have developed a frame-
,work fo,r rating 01‘ comparing navigation packages. For
a giuen enuir.onment a navigation package consists of
(I motion planner and a sensor to be used during nau-
igation. The cibility to rate or measure a navigation
package is aniportant in order to address issues like sen-
sor custom%zution for an environment and choice of a
m.otion plarumr in an environment.

In this poper ‘we present th.e nlgorathm. irhich, we use
i n or.der to rate a given navigation package. Under the
franiezuo,rk ,which was presented in [l], a partially ob-
servable Markov decision process (POMDP) is defind.
The algorrtlim searches for an optimal policy to be em-
ployed in this decision process.

We briefly reriiew the problem and the framework, de-
velop the crlgor~ith~m, an,d present experimental results.

1 Introduction

The navigation problem consists of planning and exe-
cuting a path between two different points in,an environ-
ment. Many different factors are iiivolved in this prob-
lem, of which two important ones are the motion planner
and the sensors which will be used by the robot. In a
companion paper [l] we have raised and discussed the
probleni of choosing between different possible combina-
tions of motion planners and sensors. Solving this prob-
lem would enable for example to choose among different
sensor customizations - for example different placement
of visual landmarks in the environment. We have pre-
sented a framework in which the basic idea was that
each combination of motion planner and sensor (which
we have termed a “navigation package”) defines a par-
tially observable Markov decision process or POMDP.
The navigation package is then rated by the expected
payoff wliich can be obtained in the decision process,
while acting under the best possible policy (i.e. the pol-
icy which maximizes the expected papff).

0-7803-6475-9/01/$10.000 2001 IEEE 291

This paper complements [l] by introducing a simple
reinforcement learning algorithm which finds a suitable
policy for a given POMDP. We present the algorithm,
some results which were obtained by using it and a con-
cluding discussion of the work.

2 Appro xiiiiating an Optimal Fblicy

Following [l] each navigation package defines a
POMDP. The state space consists of a quantization of
the eiiviroiinieiit. The possible actions are movement
in different directions, update of the position (by invok-
ing a sensor) or stopping. After every action a reward
is collected, the amount of which depends both on the
state the robot was in and on the action taken. At each
state there is a preferred action (leading to a maximal
reward) which is movement in the direction specified
by the nominal motion plan. Howver, since the robot
is unsure of its position, it cannot always choose this
preferred action. At all times a belief function b (.) is
maintained by the robot. This function is the probabii-
ity distribution of the current state. It is updated after
each step ha.sec1 on tlhe dynamics of t,he robot, (where
it moved) and on the observations which are generated.
In our model an observation is generated only when the
robot invokes its sensor.

Our goal now is to develop an algorithm for finding a
policy which will maximize the expected payoff. A pol-
icy is a mapping which associates an action with each
belief function. Let us begin with the way we represent
the policy. A standard way of representing a policy is
through its value function or &-values (details may be
found in [3] for example). The function & (b (.) , a) rep-
resents the total reward the agent may expect if it per-
forms the action a and then continues optimally, when
the current state is distributed by b(.) . This is a very
convenient representation for a policy: using the value
function Q, an agent with a current belief function b (.) ,
chooses the optimal action simply b y

a* = argmaxaEA&(b(.), a)

(A i s the set of possible actions).
When using the value function approach to represent

a policy, we have to address two issues. The first is the
issue of storing and representing the value function Q.
The second issue is how to actua,lly compute the value
function.

Representing the Q-function is not straight forward
since one of the arguments Q accepts is a belief func-
tion which comes from an infinite space. Therefore we
cannot store the values Q obtains on every possible pair
(b (.) , a) of belief function and action. Instead, we dis-
cretize the belief space into a finite set of beliefs

B d = { h (‘) , . . . , i) N (’) }

and store the values Q obtains on the finite set Bd x A.
In other words, Q is represented by a finite lookup table.

The second issue which we now address is how to ac-
tually compute the function Q. When the state space is
not very small, exact computation of the optimal value
function is computationally infeasible (see [3, 21 for ex-
ample). Therefore we strive to approximate the value
function. By finding an approximate value function and
using i t , we obtain not the optimal policy but an approx-
imation for the optimal policy. We have chosen to use
reinforcement learning in order to compute an approxi-
mation for the value function.

The reinforcement learning a1g;orithm starts with an
initial approximation Q for the vslue function Q. Each
iteration of learning involves simulation of actions which
were chosen on the basis of the current approximation
Q. The “empirical” rewards obtained in the simulation
are used to update the expected value of taking the
action - in other words to update the current approxi-
mation Q. More specifically, each learning iteration has
the following structure:
A Learning Iteration Starting from Belief bo(.)

0 Let Q be the current approximation of the value
function

0 Draw a random state s distributed according to
bo(.)

0 Let b (.) = bo(.)

0 Repeat 1 times:

1 . T,et b d (.) be the discretixed value of 6(.)
2. Based on the current belief b(.) and the cur-

rent value function Q, choose the best action
a*.

3. Based on simulation, update the current value
of Q (b d (.) , a*) .

4. From the current, state s Jump to a new state
with probabilities governed by the current
state s and the action a*. Let s now denote
the new state.

5. Obtain an observation 0.
6. Based on the action taken and the obsyvation

made, update the belief function. Let b (.) now
denote the updated belief function.

7. Return to step 1 (loop 1 times).

Let us elaborate on some of the steps.
Step 2: By default we choose the best action based

on our current belief and current value function:

a* = argmaxaEaQ(bd(.), a)

However, recall that Q is not the true value function.
Therefore we sometimes (say with a 0.1 probability)
choose a random action instead. By doing this we main-
tain a constant “exploring” behaviour.

Step 3: In this step we learn the value of Q (b d (.) , a*).
This is done by simulating the action U* at states s
which are drawn from the distribution b (.) . By simulat-
ing the action from a state, we get an immediate reward
R(s , a*) . In addition we obtain an observation 0. Based
on o we update the belief function. Using the updated
belief we can look up the expected optimal future re-
ward, based on the current &. We add this value to
the immediate reward we got, and this is the empiri-
cal value obtained from acting a* while the belief was
b (.) . We repeat this simulation of acting a* a number
of times, and take the average of empirical values we
have obtained. This average value is the updated value

The above learning iteration is repeated, each time
beginning with the same bo(.) . By doing this we obtain
updates of the values of 0, mostly in those areas of the
belief space. that will actually be traversed when we use
the resulting value function. This is a result of the fact
that we choose at each step the best action based on
the current approximation Q.

The reinforcement learning algorithm which we have
used is rather standard [5]. Reinforcement learning has
been applied in various other works on POMDPs in-
cluding [4, 6, 71. Although we have used a very basic
version of this algorithm, we have obtained very reason;
able policies as will be shown in section 3.

Quantizing the Belief Space and Initializing
the Value Function Recall that we have to quantize
the belief space to a finite set Bd of beliefs. We have
found the following quantization useful. For a given be-
lief function we first compute the expected state and
check what is the probability of being in that state (re-
call that our world is represented by a grid of possible

-

of Q (b d (9 , a*) .

292

positions). We then compnte the probability of being
in a neighboring state to the expected state. The two
probabilities, namely the probability of being in the ex-
pected state and the probability of being in a neighbor-
ing state, are quantized and serve as a representation
of the belief function. In the experiments which will be
described below, we used 10 quantization levels for each
probability.

Finally, what function serves as the initial Q with
which we start the reinforcement learning iterations?
Let us first define Q o p t (s) to be the value which may be
obtained by a robot with perfect control which starts
at state s and moves to the goal according to the mo-
tion plan. 111 other words, we assume that the robot
always ends u p in the position it intended to reach af-
ter a movement command. In this case sensing actions
are not needed. Now, for a belief function b which after
quantization has probability 1 at a given state s, the ini-
tial value of Q(b, a) is Qopt(s) assuming that a is indeed
movement according to the motion plan. If a is another
action, then we take Q (b , a) to be 0. If the belief b has
probability p at the expected state after quantization,
then we take the initial value to be Q (b , a) = pQOpt
for the motion-plan action a and 0 for other actions.
This value function is even more optimistic than MDP-
based approximations for the POMDP value function,
which are sometimes used [a] . Let us call this initial
approximatioil for the value function the ‘(perfect robot
value function”. Note that this initialization is clearly
dependent on the underlying motion planner: the func-
tion describes the values obtainable by a perfect robot
which acts according to the nominal motion plan.

3 Results

We now present results that were obtained by us-
ing the algorithm which we have now described. The
results we present were obtained for different environ-
ments, sensors and motion planners. Each environment
is represented by a grid. Some of the squares in the grid
are obstacles. The robot moves between the free cells in
the grid. At each time step it may move one square to
the left, to the right, up or down. With each movement,
position uncertainty grows, since with a probability of
20% the robot ends up in a square which is nearby the
square it intended to reach (see Fig. 1).

’ The robot may invoke its sensor a t any time. The
sensor returns a grid position which is the estimated
current position. The accuracy of this estimate may
vary and depends on the actual position of the robot.
We have used 3 accuracy levels, depicted in Fig. 2.

For every scenario tested, a value function was com-
puted using the reinforcement learning algorithm de-

Outcome of a “move right” action

10% f
%

10%

Figure 1: Position uncertainty resulting from a move-
ment to the right. Similar uncertainty develops from
movements in other directions

Figure 2: Sensor performance. The robot is in the mid-
dle square. The sensor estimates the current position
with the probabilities depicted. We use three sensor
accuracy levels.

scribed previously. The policy resulting from this value
function was used in 1000 runs of the simulated robot.
In all runs the robot started in the initial configura-
tion, with the belief function being the initial configura-
tion with probability 1 (i.e. no uncertainty in position).
Each run consisted of 30 steps of action/observation.
This number of steps is sufficient to permit reaching the
goal. The results we show for each scenario are based
on the results collected in those 1000 runs.

We start with the environment shown in Fig. 3. The
asterisk marks the initial configuration and the + marks
the goal configuration. A roadmap-based motion plan-
ner has been used to plan paths from every free configu-
ration to the goal position. The directions of motion in
each configuration as determined by this motion planner
are shown in part (a) of the figure.

Let us first present the consequences of moving with-
out any updates. We let the robot use the “perfect
robot” value function. The policy associated with this
value function is to perform a sequence of motions and
then stop, without ever invoking the sensor. Fig. 4
presents the results from 1000 runs using this policy.
In part (a) of the figure we see a histogram of the ac-
tions performed at each time step. We see that in all
1000 runs we had 14 motion actions and then the robot
stopped for the next 16 time steps. Due to inaccurate
control, this policy has led to the goal configuration in
only about 20% of the runs. This is shown in part (b)

293

I * 1 1 s s 7 I/ * (0

IoYrce sowrs

(a) (b)

Figure 3: First environment. (EL) Roadmap-based mo-
tion plannrr. (b) Visibility gra,pli ba.sed motion planner

of the figure. Part (c) of the figure shows the average
number of time steps (per run) the robot has spent in
every configuration. Note that in the initial configura-
tion this number is 1. Then due to inaccurate control
the presence of the robot is “spread out” on a wide strip
around the nominal path. Notice that around the goal
configuration the spread is rather wide.

Next we used the value function which was computed
using the reinforcement, 1ea.rning algorithm for 100000
learning iterations. We assumed perfect sensing capa-
bility across the environment. Fig. 5 shows the results.
Part (a) of the figure shows that the policy executed con-
sists of movement actions for 8 sl;eps and then the robot
invokes its sensor. Part (b) of th’a figure shows that now
the goal has been reached in almost all of the runs. In
part (c) we see the “presence” of the robot along the
path. Compare this figure with with Fig. 4(c). Part
(d) shows the positions in which the sensor was invoked.
Note the effect of position update on the “presence” of
the robot as seen in part (c) of the figure. Near the final
goal the policy calls for an update since stopping in a
non-goal position is much less rewarding than stopping
in the goal. Part (e) of the figure shows a histogram
of the number of times an obstacle was hit during a
run. This, together with the histogram in part (b), are
“operational” criteria which might be of interest.

We now change the sensor in this scenario. A sensor
which does not operate properly in part of the envi-
ronment is introduced in Fig. 6. We now have a new
navigation package, consisting of the first environment
with the roadmap-based motion planner (see Fig. 3),
and the new non-perfect sensor which we have now de-
fined.

The results for this environment are shown in Fig. 7.
Notice in parts (a) and (d) of the figure how the policy
has changed to invoke the sensor earlier in the path.
This is due to the fact that it makes no sense to invoke
the sensor where it performs poorly.

Figure 4: Results of using the “perfect robot” value
function on the first environment. (a) Histogram of the
actions performed in each time step. (b) The time it
took to reach the goal. Note that in nearly 80% of
the runs the goal was not reached. (c) The average
“presence” of the robot along the path.

For the same environment and sensor, we now con-
sider changing the motion planner. Fig. 3(b) shows
a second motion planner for this environment. .4 new
navigation package is now defined and a value function
was computed for it. Results of using this value function
are presented in Fig. 8.

We see that the time in goal and the chances of reach-
ing the goal are quite similar (compare Figs. 8(b) and
5(b)). However, the chances for colliding with an ob-
stacle are higher when using the second motion planner
(Figs. 8(e) and 5(e)). Therefore, we might conclude the
first navigation package is better than the second.

Fig. 9 shows a different environment with two motion
plans. The firsl is based on a potential field planner and
the second on the visibility graph. The sensor we have
used on this environmenl (with both motion plans) is
abstractly represented by the performance map shown
in Fig. 10. I

The first navigation package on this environment
used the potential-field based motion plan (depicted in
Fig. 9(a)). The results obtained by using this navi-
gation package are shown in the top row of Fig. 11.
The bottom row shows the results for the second mo-
tion plan. We can see that when using the potential-field
based planner, the robot had a chance of approximately
8% of not reaching the goal. When it did reach the goal;

294

(4 (b) (cl (4
Figure 7: First environment, sensor as in Fig. 6. (a) Hist0gra.m of the actions performed in each time step. Notice
earlier sensing as compared with Fig. 5(a). (b) The time it took to reach the goal. (c) The average "presence" of
the robol along the path. (d) Places where the sensor was invoked. Compare with Fig. 5(d).

I
Figure 8: First environment with a second motion planner (as in Fig. 3(b)). (a) Histograin of the actions performed
in each time sl,ep. (b) The time it took to reach the goal. (c) The average "presence" of the robot along the path.
l(d) Places where tjhe sensor was invoked. (e) Histogram of the number of times an obstacle was hit along the path.

295

Figure 9: Second environment with two motion plans on
it,. (a) Potsentid field based motion p1a.n. (b) Visibility
graph based motion plan.

Figure 10: Sensor used on the second environment

Figure 5: First environment with perfect sensing. (a)
Histogram of the actions performed in each time step.
(b) The time it took to reach the goal. Note that now
in almost all of the runs the goal was reached. (c) The
average "presence" of the robot along the path. (d)
Places where the sensor was invoked. (e) Histogram of
the number of times an obstacle was hit along the path.

Figure 6: Sensor performance in t8he first environment.

it usually took over 20 time steps. However, when using
the visibility graph based planner, the robot had only
a 2% chance of not reaching the goal, and when it did
reach the goal, it usually took less time steps. Look-
ing at the chances of colliding with an obstacle, we see
that using the visibility graph planner our chances of
colliding are above 60% (in less than 400 runs of the
1000 there were no collisions), while the potential field
planner gives us a chance of collision of approximately
45%. Depending on our preferences, we may now de-
cide which of the motion planners should be used in
this environment with this specific sensor.

The last example relates to the environment shown

I in Fig. 12. We have used this environment and motion
planner in conjunction with a perfect sensor. In this
example we want to illustrate the effects of choosing
different rewards. We have used two sets of rewards, 1
where the second set penalizes more severely collisions
with obstacles and uses of the sensor. The results from
the first set of rewards are shown in parts (a)-(.) of Fig.
13, while the results that were obtained with the second
set of rewards are shown in parts (d)-(f) of the figure.
As may be seen, the original motion plan has been used
in part (a) of the figure, but it has been abandoned
completely in the second case (part (d)) because it called

I

296

(f

/Figure 11: Second environment. Top row refers to a potential field planner and bottom row to a visibility graph
(motion planner. (a),(e): The time it took to reach the goal. (b),(f): The average "presence" of the robot along the
;path. (c),(g): Places where the sensor was invoked. (d),(h): Histogram of the number of times an obstacle was hit
lalong the path.

Figure 12: Third environment

'for travel near an obstacle, which is very undesirable
1 under this choice of rewards.

4 Discussion and Conclusions

j The navigation problem involves a number of differ-
ent aspects and factors such as the environment, the
sensors and the algorithms. We have chosen the term
navigation package to denote a specific combination of
these factors. In this paper and a companion paper [l]
we have discussed the problem of comparing navigation
packages.

The algorithm we have presented in this paper uses
a simple version of reinforcement learning. We have

1

I

applied this simple algorithm to a number of test envi-
ronments and have shown that it produces rather "rea-
sonable" policies.

Besides enabling the comparison of different naviga-
tion packages, the POMDP framework allows us to aug-
ment a nominal path with sufficient sensing. In contrast
to other approaches, we recognize the fact that in some
cases the robot may not need to know its exact posi-
tion. An optimal policy will choose sensing actions only
in cases where reduction of the position uncertainty is
actually required.

We believe that this work is a first step towards a
meta-algorithm for choosing between different naviga-
tion algorithms and/or sensors. In order to completely
achieve this goal, more research is required. Firstly, the
POMDP framework we have used can compare two dif-
ferent navigation packages for navigating from a given
initial position to a final position. If we want our meta-
algorithm to customize a sensor for an environment for
example, we must consider all possible combinations of
initial and goal positions. Solving a POMDP for every
possible combination is not feasible currently. Therefore
our framework may not be used in a straight-forward
manner for such tasks.

Additionally, solving large POMDPs (thousands of
states) even approximately is still beyond our capabil-
ity. For larger environments techniques such as multi-
resolution or division of the environment into sub-

297

Aversgellme in Every Parillon

Figure 13: Using different rewards, environment as in Fig. 12. The bottom row shows the results of using a policy
which was found for rewards which penalize collisions and position updates more severely. (a) ,(d): Paths taken.
Notice in part (d) how the robot first moves to the left in order to keep a safe distance from the obstacle region. In
part (a) thc robot “sticld to the nominal motion plan. (b),(e): Where thc sensor was invoked. (c),(f): Collisions
with obstacles.

environments may be required. Our future research will
focus on these issues in order to enable the use of a meta
algorithm for navigation in larger and more “real life”
environments.

Acknowledgment A. Adam and I . Shimshoni were
supported in part by Israeli Ministry of Science Grants
no. 9766 and no. 2104.

References

vironments: Scaling up. In Proc. of 12’th Int. Conf.
on Machine Learning, pages 362-370, 1995.

[5] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[6] R. Parr and S. Russell. Approximating optimal poli-
cies for partially observable stochastic domains. In
Proc. of ld’th IJCAI, 1995.

[7] S. Thrun. Monte Carlo POMDPs. In Proc. of NIPS,
1999.

A. Adam, E. Rivlin, and I. Shimshoni. Towards
a Meta Motion Planner A: Model and Framework.
Proceedings of ICRA 2001.

M. Hauskrecht. Planning and control in stochastic
domains with imperfect information. PhD thesis,
MIT, 1997.

1,. P. Kaelhling, M. T,. T,itt,man, and A . R.. Cassan-
dra. Planning and acting in partially observable
stochastic domains. Artzficial Intelligence, 101:99-
134, 1998.

M. L. Littman, A. R. Cassandra, and L. P. Kael-
bling. Learning policies for partially observable en-

298

