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Abstract 

In  ci  componioiz paper [l] we have developed a frame- 
,work fo,r rating 01‘ comparing navigation packages. For 
a giuen enuir.onment a navigation package consists of 
(I motion planner and a sensor to be used during nau- 
igation. The cibility to rate or measure a navigation 
package is aniportant in order to  address issues like sen- 
sor custom%zution for  an environment and choice of a 
m.otion plarumr in  an environment. 

In this poper ‘we present th.e nlgorathm. irhich, we use 
i n  or.der to rate a given navigation package. Under the 
franiezuo,rk ,which was presented in  [l], a partially ob- 
servable Markov decision process (POMDP) is defind. 
The algorrtlim searches for  an optimal policy to be em- 
ployed in this decision process. 

We  briefly reriiew the problem and the framework, de- 
velop the crlgor~ith~m, an,d present experimental results. 

1 Introduction 

The navigation problem consists of planning and exe- 
cuting a path between two different points in,an environ- 
ment. Many different factors are iiivolved in this prob- 
lem, of which two important ones are the motion planner 
and the sensors which will be used by the robot. In a 
companion paper [l] we have raised and discussed the 
probleni of choosing between different possible combina- 
tions of motion planners and sensors. Solving this prob- 
lem would enable for example to choose among different 
sensor customizations - for example different placement 
of visual landmarks in the environment. We have pre- 
sented a framework in which the basic idea was that 
each combination of motion planner and sensor (which 
we have termed a “navigation package”) defines a par- 
tially observable Markov decision process or POMDP. 
The navigation package is then rated by the expected 
payoff wliich can be obtained in the decision process, 
while acting under the best possible policy (i.e. the pol- 
icy which maximizes the expected papff). 
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This paper complements [l] by introducing a simple 
reinforcement learning algorithm which finds a suitable 
policy for a given POMDP. We present the algorithm, 
some results which were obtained by using it and a con- 
cluding discussion of the work. 

2 Appro xiiiiating an Optimal Fblicy 

Following [l] each navigation package defines a 
POMDP. The state space consists of a quantization of 
the eiiviroiinieiit. The possible actions are movement 
in different directions, update of the position (by invok- 
ing a sensor) or stopping. After every action a reward 
is collected, the amount of which depends both on the 
state the robot was in and on the action taken. At each 
state there is a preferred action (leading to a maximal 
reward) which is movement in the direction specified 
by the nominal motion plan. Howver, since the robot 
is unsure of its position, it cannot always choose this 
preferred action. At all times a belief function b ( . )  is 
maintained by the robot. This function is the probabii- 
ity distribution of the current state. It is updated after 
each step ha.sec1 on tlhe dynamics of t,he robot, (where 
it moved) and on the observations which are generated. 
In our model an observation is generated only when the 
robot invokes its sensor. 

Our goal now is to develop an algorithm for finding a 
policy which will maximize the expected payoff. A pol- 
icy is a mapping which associates an action with each 
belief function. Let us begin with the way we represent 
the policy. A standard way of representing a policy is 
through its value function or &-values (details may be 
found in [3] for example). The function & ( b ( . ) ,  a )  rep- 
resents the total reward the agent may expect if it per- 
forms the action a and then continues optimally, when 
the current state is distributed by b( . ) .  This is a very 
convenient representation for a policy: using the value 
function Q, an agent with a current belief function b ( . ) ,  
chooses the optimal action simply b y  

a* = argmaxaEA&(b(.), a )  



( A  i s  the set of possible actions). 
When using the value function approach to represent 

a policy, we have to address two issues. The first is the 
issue of storing and representing the value function Q. 
The second issue is how to actua,lly compute the value 
function. 

Representing the Q-function is not straight forward 
since one of the arguments Q accepts is a belief func- 
tion which comes from an infinite space. Therefore we 
cannot store the values Q obtains on every possible pair 
( b ( . ) ,  a )  of belief function and action. Instead, we dis- 
cretize the belief space into a finite set of beliefs 

B d  = { h ( ‘ ) , . . . , i ) N ( ’ ) }  

and store the values Q obtains on the finite set Bd x A.  
In other words, Q is represented by a finite lookup table. 

The second issue which we now address is how to ac- 
tually compute the function Q. When the state space is 
not very small, exact computation of the optimal value 
function is computationally infeasible (see [3, 21 for ex- 
ample). Therefore we strive to approximate the value 
function. By finding an approximate value function and 
using i t ,  we obtain not the optimal policy but an approx- 
imation for the optimal policy. We have chosen to use 
reinforcement learning in order to compute an approxi- 
mation for the value function. 

The reinforcement learning a1g;orithm starts with an 
initial approximation Q for the vslue function Q. Each 
iteration of learning involves simulation of actions which 
were chosen on the basis of the current approximation 
Q. The “empirical” rewards obtained in the simulation 
are used to  update the expected value of taking the 
action - in other words to update the current approxi- 
mation Q. More specifically, each learning iteration has 
the following structure: 
A Learning Iteration Starting from Belief bo( . )  

0 Let Q be the current approximation of the value 
function 

0 Draw a random state s distributed according to 
bo( . )  

0 Let b ( . )  = bo( . )  

0 Repeat 1 times: 

1 .  T,et b d ( . )  be the discretixed value of 6(.) 
2.  Based on the current belief b( . )  and the cur- 

rent value function Q, choose the best action 
a*.  

3.  Based on simulation, update the current value 
of Q ( b d ( . ) ,  a* ) .  

4. From the current, state s Jump to a new state 
with probabilities governed by the current 
state s and the action a*.  Let s now denote 
the new state. 

5. Obtain an observation 0. 
6. Based on the action taken and the obsyvation 

made, update the belief function. Let b ( . )  now 
denote the updated belief function. 

7. Return to step 1 (loop 1 times). 

Let us elaborate on some of the steps. 
Step 2: By default we choose the best action based 

on our current belief and current value function: 

a* = argmaxaEaQ(bd(.), a)  

However, recall that Q is not the true value function. 
Therefore we sometimes (say with a 0.1 probability) 
choose a random action instead. By doing this we main- 
tain a constant “exploring” behaviour. 

Step 3: In this step we learn the value of Q ( b d ( . ) ,  a*).  
This is done by simulating the action U* at states s 
which are drawn from the distribution b ( . ) .  By simulat- 
ing the action from a state, we get an immediate reward 
R(s ,  a* ) .  In addition we obtain an observation 0. Based 
on o we update the belief function. Using the updated 
belief we can look up the expected optimal future re- 
ward, based on the current &. We add this value to 
the immediate reward we got, and this is the empiri- 
cal value obtained from acting a* while the belief was 
b ( . ) .  We repeat this simulation of acting a* a number 
of times, and take the average of empirical values we 
have obtained. This average value is the updated value 

The above learning iteration is repeated, each time 
beginning with the same bo( . ) .  By doing this we obtain 
updates of the values of 0, mostly in those areas of the 
belief space. that will actually be traversed when we use 
the resulting value function. This is a result of the fact 
that we choose at each step the best action based on 
the current approximation Q. 

The reinforcement learning algorithm which we have 
used is rather standard [5]. Reinforcement learning has 
been applied in various other works on POMDPs in- 
cluding [4, 6,  71. Although we have used a very basic 
version of this algorithm, we have obtained very reason; 
able policies as will be shown in section 3. 

Quantizing the Belief Space and Initializing 
the Value Function Recall that we have to quantize 
the belief space to a finite set Bd of beliefs. We have 
found the following quantization useful. For a given be- 
lief function we first compute the expected state and 
check what is the probability of being in that state (re- 
call that our world is represented by a grid of possible 

- 

of Q ( b d ( 9 ,  a*) .  
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positions). We then compnte the probability of being 
in a neighboring state to the expected state. The two 
probabilities, namely the probability of being in the ex- 
pected state and the probability of being in a neighbor- 
ing state, are quantized and serve as a representation 
of the belief function. In the experiments which will be 
described below, we used 10 quantization levels for each 
probability. 

Finally, what function serves as the initial Q with 
which we start the reinforcement learning iterations? 
Let us first define Q o p t ( s )  to be the value which may be 
obtained by a robot with perfect control which starts 
at  state s and moves to the goal according to the mo- 
tion plan. 111 other words, we assume that the robot 
always ends u p  in the position it intended to reach af- 
ter a movement command. In this case sensing actions 
are not needed. Now, for a belief function b which after 
quantization has probability 1 at  a given state s, the ini- 
tial value of Q(b,  a )  is Qopt(s )  assuming that a is indeed 
movement according to the motion plan. If a is another 
action, then we take Q ( b , a )  to be 0. If the belief b has 
probability p at the expected state after quantization, 
then we take the initial value to be Q ( b , a )  = pQOpt 
for the motion-plan action a and 0 for other actions. 
This value function is even more optimistic than MDP- 
based approximations for the POMDP value function, 
which are sometimes used [a ] .  Let us call this initial 
approximatioil for the value function the ‘(perfect robot 
value function”. Note that this initialization is clearly 
dependent on the underlying motion planner: the func- 
tion describes the values obtainable by a perfect robot 
which acts according to the nominal motion plan. 

3 Results 

We now present results that were obtained by us- 
ing the algorithm which we have now described. The 
results we present were obtained for different environ- 
ments, sensors and motion planners. Each environment 
is represented by a grid. Some of the squares in the grid 
are obstacles. The robot moves between the free cells in 
the grid. At each time step it may move one square to 
the left, to the right, up or down. With each movement, 
position uncertainty grows, since with a probability of 
20% the robot ends up in a square which is nearby the 
square it intended to reach (see Fig. 1). 

’ The robot may invoke its sensor a t  any time. The 
sensor returns a grid position which is the estimated 
current position. The accuracy of this estimate may 
vary and depends on the actual position of the robot. 
We have used 3 accuracy levels, depicted in Fig. 2. 

For every scenario tested, a value function was com- 
puted using the reinforcement learning algorithm de- 

Outcome of a “move right” action 

10% f 
% 

10% 

Figure 1: Position uncertainty resulting from a move- 
ment to the right. Similar uncertainty develops from 
movements in other directions 

Figure 2: Sensor performance. The robot is in the mid- 
dle square. The sensor estimates the current position 
with the probabilities depicted. We use three sensor 
accuracy levels. 

scribed previously. The policy resulting from this value 
function was used in 1000 runs of the simulated robot. 
In all runs the robot started in the initial configura- 
tion, with the belief function being the initial configura- 
tion with probability 1 (i.e. no uncertainty in position). 
Each run consisted of 30 steps of action/observation. 
This number of steps is sufficient to permit reaching the 
goal. The results we show for each scenario are based 
on the results collected in those 1000 runs. 

We start with the environment shown in Fig. 3.  The 
asterisk marks the initial configuration and the + marks 
the goal configuration. A roadmap-based motion plan- 
ner has been used to plan paths from every free configu- 
ration to the goal position. The directions of motion in 
each configuration as determined by this motion planner 
are shown in part (a) of the figure. 

Let us first present the consequences of moving with- 
out any updates. We let the robot use the “perfect 
robot” value function. The policy associated with this 
value function is to perform a sequence of motions and 
then stop, without ever invoking the sensor. Fig. 4 
presents the results from 1000 runs using this policy. 
In part (a) of the figure we see a histogram of the ac- 
tions performed at  each time step. We see that in all 
1000 runs we had 14 motion actions and then the robot 
stopped for the next 16 time steps. Due to inaccurate 
control, this policy has led to the goal configuration in 
only about 20% of the runs. This is shown in part (b) 
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Figure 3: First environment. (EL) Roadmap-based mo- 
tion plannrr. (b) Visibility gra,pli ba.sed motion planner 

of the figure. Part (c) of the figure shows the average 
number of time steps (per run) the robot has spent in 
every configuration. Note that in the initial configura- 
tion this number is 1. Then due to inaccurate control 
the presence of the robot is “spread out” on a wide strip 
around the nominal path. Notice that around the goal 
configuration the spread is rather wide. 

Next we used the value function which was computed 
using the reinforcement, 1ea.rning algorithm for 100000 
learning iterations. We assumed perfect sensing capa- 
bility across the environment. Fig. 5 shows the results. 
Part (a) of the figure shows that the policy executed con- 
sists of movement actions for 8 sl;eps and then the robot 
invokes its sensor. Part (b) of th’a figure shows that now 
the goal has been reached in almost all of the runs. In 
part (c) we see the “presence” of the robot along the 
path. Compare this figure with with Fig. 4(c). Part 
(d) shows the positions in which the sensor was invoked. 
Note the effect of position update on the “presence” of 
the robot as seen in part (c) of the figure. Near the final 
goal the policy calls for an update since stopping in a 
non-goal position is much less rewarding than stopping 
in the goal. Part (e) of the figure shows a histogram 
of the number of times an obstacle was hit during a 
run. This, together with the histogram in part (b), are 
“operational” criteria which might be of interest. 

We now change the sensor in this scenario. A sensor 
which does not operate properly in part of the envi- 
ronment is introduced in Fig. 6. We now have a new 
navigation package, consisting of the first environment 
with the roadmap-based motion planner (see Fig. 3),  
and the new non-perfect sensor which we have now de- 
fined. 

The results for this environment are shown in Fig. 7. 
Notice in parts (a) and (d) of the figure how the policy 
has changed to invoke the sensor earlier in the path. 
This is due to the fact that it makes no sense to invoke 
the sensor where it performs poorly. 

Figure 4: Results of using the “perfect robot” value 
function on the first environment. (a) Histogram of the 
actions performed in each time step. (b) The time it 
took to reach the goal. Note that in nearly 80% of 
the runs the goal was not reached. (c) The average 
“presence” of the robot along the path. 

For the same environment and sensor, we now con- 
sider changing the motion planner. Fig. 3(b) shows 
a second motion planner for this environment. .4 new 
navigation package is now defined and a value function 
was computed for it. Results of using this value function 
are presented in Fig. 8. 

We see that the time in goal and the chances of reach- 
ing the goal are quite similar (compare Figs. 8(b) and 
5(b)). However, the chances for colliding with an ob- 
stacle are higher when using the second motion planner 
(Figs. 8(e) and 5(e)). Therefore, we might conclude the 
first navigation package is better than the second. 

Fig. 9 shows a different environment with two motion 
plans. The firsl is based on a potential field planner and 
the second on the visibility graph. The sensor we have 
used on this environmenl (with both motion plans) is 
abstractly represented by the performance map shown 
in Fig. 10. I 

The first navigation package on this environment 
used the potential-field based motion plan (depicted in 
Fig. 9(a)).  The results obtained by using this navi- 
gation package are shown in the top row of Fig. 11. 
The bottom row shows the results for the second mo- 
tion plan. We can see that when using the potential-field 
based planner, the robot had a chance of approximately 
8% of not reaching the goal. When it did reach the goal; 
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(4 (b) (cl (4 
Figure 7: First environment, sensor as in Fig. 6. (a) Hist0gra.m of the actions performed in each time step. Notice 
earlier sensing as compared with Fig. 5(a). (b) The time it took to reach the goal. (c) The average "presence" of 
the robol along the path. (d) Places where the sensor was invoked. Compare with Fig. 5(d). 

I 
Figure 8: First environment with a second motion planner (as in Fig. 3(b)). (a) Histograin of the actions performed 
in each time sl,ep. (b) The time it took to reach the goal. (c) The average "presence" of the robot along the path. 
l(d) Places where tjhe sensor was invoked. (e) Histogram of the number of times an obstacle was hit along the path. 
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Figure 9: Second environment with two motion plans on 
it,. (a) Potsentid field based motion p1a.n. (b) Visibility 
graph based motion plan. 

Figure 10: Sensor used on the second environment 

Figure 5: First environment with perfect sensing. (a) 
Histogram of the actions performed in each time step. 
(b) The time it took to reach the goal. Note that now 
in almost all of the runs the goal was reached. (c) The 
average "presence" of the robot along the path. (d) 
Places where the sensor was invoked. (e) Histogram of 
the number of times an obstacle was hit along the path. 

Figure 6: Sensor performance in t8he first environment. 

it usually took over 20 time steps. However, when using 
the visibility graph based planner, the robot had only 
a 2% chance of not reaching the goal, and when it did 
reach the goal, it usually took less time steps. Look- 
ing at the chances of colliding with an obstacle, we see 
that using the visibility graph planner our chances of 
colliding are above 60% (in less than 400 runs of the 
1000 there were no collisions), while the potential field 
planner gives us a chance of collision of approximately 
45%. Depending on our preferences, we may now de- 
cide which of the motion planners should be used in 
this environment with this specific sensor. 

The last example relates to the environment shown 

I in Fig. 12. We have used this environment and motion 
planner in conjunction with a perfect sensor. In this 
example we want to illustrate the effects of choosing 
different rewards. We have used two sets of rewards, 1 
where the second set penalizes more severely collisions 
with obstacles and uses of the sensor. The results from 
the first set of rewards are shown in parts (a)-(.) of Fig. 
13, while the results that were obtained with the second 
set of rewards are shown in parts (d)-(f) of the figure. 
As may be seen, the original motion plan has been used 
in part (a) of the figure, but it has been abandoned 
completely in the second case (part (d)) because it called 

I 
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/Figure 11: Second environment. Top row refers to a potential field planner and bottom row to a visibility graph 
(motion planner. (a),(e): The time it took to reach the goal. (b),(f): The average "presence" of the robot along the 
;path. (c),(g): Places where the sensor was invoked. (d),(h): Histogram of the number of times an obstacle was hit 
lalong the path. 

Figure 12: Third environment 

'for travel near an obstacle, which is very undesirable 
1 under this choice of rewards. 

4 Discussion and Conclusions 

j The navigation problem involves a number of differ- 
ent aspects and factors such as the environment, the 
sensors and the algorithms. We have chosen the term 
navigation package to denote a specific combination of 
these factors. In this paper and a companion paper [l] 
we have discussed the problem of comparing navigation 
packages. 

The algorithm we have presented in this paper uses 
a simple version of reinforcement learning. We have 

1 

I 

applied this simple algorithm to a number of test envi- 
ronments and have shown that it produces rather "rea- 
sonable" policies. 

Besides enabling the comparison of different naviga- 
tion packages, the POMDP framework allows us to aug- 
ment a nominal path with sufficient sensing. In contrast 
to other approaches, we recognize the fact that in some 
cases the robot may not need to know its exact posi- 
tion. An optimal policy will choose sensing actions only 
in cases where reduction of the position uncertainty is 
actually required. 

We believe that this work is a first step towards a 
meta-algorithm for choosing between different naviga- 
tion algorithms and/or sensors. In order to completely 
achieve this goal, more research is required. Firstly, the 
POMDP framework we have used can compare two dif- 
ferent navigation packages for navigating from a given 
initial position to a final position. If we want our meta- 
algorithm to customize a sensor for an environment for 
example, we must consider all possible combinations of 
initial and goal positions. Solving a POMDP for every 
possible combination is not feasible currently. Therefore 
our framework may not be used in a straight-forward 
manner for such tasks. 

Additionally, solving large POMDPs (thousands of 
states) even approximately is still beyond our capabil- 
ity. For larger environments techniques such as multi- 
resolution or division of the environment into sub- 
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Aversgellme in Every Parillon 

Figure 13: Using different rewards, environment as in Fig. 12. The bottom row shows the results of using a policy 
which was found for rewards which penalize collisions and position updates more severely. (a) ,(d): Paths taken. 
Notice in part (d) how the robot first moves to the left in order to keep a safe distance from the obstacle region. In 
part (a) thc robot “sticld to the nominal motion plan. (b),(e): Where thc sensor was invoked. (c),(f): Collisions 
with obstacles. 

environments may be required. Our future research will 
focus on these issues in order to enable the use of a meta 
algorithm for navigation in larger and more “real life” 
environments. 
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