Acquiring hand-action models by attention point analysis
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Abstract

This paper describes our current research on learning
task level representations by a robot through observation of
human demonstrations. We focus on human hand actions
and represent such hand actions in symbolic task models.
We propose a framework of such models by efficiently in-
tegrating multiple observations based on attention points;
we then evaluate the produced model by using a human-
form robot.

e propose a two-step observation mechanism. At the
first step, the system roughly observes the entire sequence
of the human demonstration, builds a rough task model and
also extracts attention points (APs). The attention points
indicate the time and the position in the observation se-
guence that requires further detailed analysis. At the sec-
ond step, the system closely examines the sequence around
the APs, and obtains attribute values for the task mode,
such as what to grasp, which hand to be used, or what is
the precise trajectory of the manipulated object.

We have implemented this system on a human form
robot and demonstrated its effectiveness.

1 Introduction

One of the most important issues in robotics is how to
program robot behaviors. Several methodologies for pro-
gramming robots have been proposed. We can classify
theminto the following three categories: static textual pro-
gramming, manipulation by a human through a control de-
vice, and automatic programming. The former two meth-
ods require human intervention throughout the entire task.
In contrast, automatic programming is intended to reduce
human aid and to generate an entire robot program auto-
matically. Given the necessary initia knowledge, robots
try to acquire their behavior automatically from observa-
tion, simulation or learning.

Our research goal is automatic acquisition of robot be-
havior, in particular, hand-actions, from observation based
on the automatic programming approach. We divide the
acquisition process of human tasks into two levels: task
level, e.g, what-to-do and behavior level, e.g., how-to-do
it. This paper covers the former one, task level acquisi-
tion, while the latter oneis presented in [4]. In Chapter 2,
we discuss the necessity of integration of multiple observa-
tions. In Chapter 3, we introduce the concept of attention
points and present a method for constructing a task model
by two kinds of attention point (AP) analyses. In Chapters
4 and 5, we describe implementation detail s for each atten-
tion point analysis. In Chapter 6 we present experimental
results. Chapter 7 contains our conclusions and remarks on
future work.

2 Acquisition of human task

Ikeuchi, Suehiro and Kuniyoshi et a. studied vision
based task acquisition [1, 2]. In their research, the acqui-
sition system observed a human performing an assembly
task and constructed high-level task models. Then, using
those constructed model s, arobot performed the same task.
Kimura et al. proposed task models which could be used
to realize cooperation between a human and a robot [3].
In this scheme, the robot first observes sequential human
operations, referred to as events, by vision and analyzes
mutual event dependencies (pair of pre-conditions and re-
sults) in the tasks. Therobot is able to change its assistant
behavior according to the current event observed and the
knowledge of what is to be done next, derived from the
task model, and to generate a large number of cooperative
patterns from a single task model. However, these models
depend on one (typically asingle camera) or afew sensors
and are constructed through one-time observation, there-
fore they are not suitable for close analysis.



Our approach utilizes multiple observations which vary
in sensor variety and granularity for efficient analysis. By
analyzing each observation sequentially or repeatedly, we
can determine the necessary part in the human demonstra-
tion where the level of detail in the subsequent analysis
should be changed and can then accumulate each result to
build the task model efficiently. Integration of observations
enables usto build heterogeneous task models in which ac-
curacy is enhanced locally. We introduce the concept of
attention point (AP) as a key of integration and propose a
two-step analysis based on APs as a method of construct-
ing a human task model.

3 Attention point
3.1 Two-step analysis

Integration of multiple observetions is accomplished by
two-step analysis. At the first step, the system roughly an-
alyzes the input modalities and recognizes the outline of
the entire human demonstration (rough task model). At the
same time, the system aso extracts APs. APs, which re-
quire close observation to learn a particular behavior, are
defined around specific time and position along a sequence
of a human demonstration.

At the second step, the system closely examines the
demonstration around each AP to enhance the task model.
This sequence can be the same observation data or another
one. In the latter case, the system synchronizes two ob-
servation data which are derived from different demonstra-
tions of the same task.

We employ a type of task models similar to Ikeuchi’s.
We decomposed a hand-action task as a sequence of dis-
crete hand-actions, during which a human performs some
action by manipulating objects, and we symbolized pos-
sible hand-actions as “Action Symbols’, which indicate
what-to-do information. The task model a so includes sev-
erd attributesfor “Action Symbol”, detailed information to
achieve that “action,” such as which hand to use or which
object to grasp (Table 1). In the proposed two-step ap-
proach, this “Action Symbol” is obtained from the rough
analysis at the first step. Then, from the detailed analysis
around the APs previously determined, those attributes are
obtained at the second step.

Table 1. Task Model
Attributes | Priority | Value |
Action Symbol | 3(high) | Power Grasp, Precision Grasp
Release, Pour, Hand Over
Shape and Color histogram

Object Model | 3

Hand 2 Right, Left, Both
Position 1 Absolute Position in 3D space
Time Stamp 1(low) Absolute Time

(start and stop time)

We propose two different kinds of AP analyses in the
following sections.

3.2 Integration of sensors separated in space
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Fig. 1. Two Steps Analysis using Attention Point

When severa input sensors are available simultane-
oudly, it is generaly ineffective to precisely analyze all the
data along the entire human demonstration. So the system
temporally records all the raw data available and employs
atwo-step analysis of a human task (Fig.1).

To realize the two-step analysis, we utilized the short-
term memorization method. At one observation sequence,
the system first analyzes the input data given by the set
of modalities that require the cheapest computation. It ex-
tracts “action symbol,” and APs as the boundaries of each
segmented action while recording all the data around each
AP on storage devices.

After an observation sequence completed, i.e., after
one demonstration was finished, the system acquires the
recorded data corresponding to each AP from the storage
devices and applies a detailed analysis on them off-line.
This process obtains the remaining attributes in the task
model.

3.3 Integration of sensors separated in time

The method described above requires temporal sets of
recorded input data; as the number of sensors and work
time increases, the amount of unused data expands. And
also, for some sensors, it is ot advisable to adopt a specific
sensor configuration at all times because of range, speed,
precision trade-off.

So we propose another two-step analysis in which the
system requires quantitative evaluations of a number of
demonstrations for the sametask. The system roughly ana-
lyzes the demonstration and extracts APs at the first obser-
vation. Then the system changes the sensor configuration if
necessary and examines the second demonstration around
the APs to enhance the task model. For the synchroniza-
tion issues, the system can predict the hand motion from



the first observation and, by watching for the appearance
of the predicted motion at each AP in the second observa-
tion, the multiple observations can be synchronized.

4 AP analysisfor sensors separated in space

Our system employs a pair of data gloves and a 9-eye
real-time stereo vision system. We can acquire depth and
color images from the stereo vision system and can acquire
hand motion (finger shape, absolute position and orienta-
tion) from the data gloves. The image processing is much
more time-consuming as opposed to the processing of the
data gloves; thus we adopted the AP analysis described in
Section 3.2. We utilized the data gloves to extract APs and
“action symbols;.” then, to determine attributes of the task
model, the system analyzes depth and color images around
those Aps.

Fig.2 and Fig.3 show the flow of the AP based two-step
analysis. The subsequent sections describe the outline of
the analysis. Please refer [5] for details.

4.1 Rough analysis by gesture spotting

We set up atask domain for a specific hand-action task
and built afinite set of “action symbols,” which represents
all the possible hand motions that appeared in that task do-
main. “Action symbols’ are combinations of finger actions
and local hand motions. For now, we classify possible fin-
ger actions into three actions: " Power Grasp”, " Precision
Grasp”[6] and "Release,” and described human hand ac-
tions as a finite set of “Action Symbols’ which are com-
binations of above finger actions and local hand motion.
By excluding hand actions composed of independent fin-
ger motion, we can segment the entire hand-action task into
meaningful “Action Symbols’.
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Fig. 2: Rough Analysis by Gesture Spotting

To obtain “Action Symbols’ in the task model, we aim
to spot human gestures from hand-actions performed by a
human demonstrator as shown in Fig.2. In this experiment,
we chose “transferring content of container” as a task do-
main and selected five gestures as possible hand actions
(Table2). APs are defined as the starting point of each ges-
ture. To extract these “Action Symbols,” we employ data-
gloves and a gesture spotting technique based on Hidden
Markov Models (HMMs).

Table 2: Gesture definitions

Gesture Primitives Action

Grip clstsp Power-grasp from open
position

Pick prc+sp Precision-grasp from
open position

Pour clstroll+sp Power-grasp, and roll
the wrist

Hand-over  prc+forw+sp  Precision-grasp, move
forward, and back

Release opn+sp Open agrasp hand

Garbage gb A filler model for spotting

Start,End sl Silence at the start and end

We utilize a pair of data gloves (CyberGlove 18-DOF
each), and 6-DOF position sensors (Polhemus) asinput de-
vices for the HMM-based gesture spotting module. So, 24
dimensionsand their differentials aretheinput to the HMM
module for each hand. The second column of Table2 indi-
cates the defined HMM primitives for each gesture. Each
primitive isdefined as 5-stateleft-right HMMs.sil isasilent
state used at the time of training, sp is a short pause which
tends to occur at the end of the gesture corresponding to
an action symbol, and gb is a garbage collector trained on
arbitrary non-gesture movement. By sharing primitives,
each action symbol requires a small number of training
data with better efficiency.

Left and right single-hand gestures are spotted sepa-
rately in a paralel manner, while two-handed gestures are
spotted by combining results from the analysis of both
hands. Our system can sample the data from a pair of data
glovesin 30Hz and can spot gestures corresponding to ac-
tion symbolsin parallel without delay.

4.2 Attention point analysis by vision
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Fig. 3: AP analysisby vision

Computation time for image processing is rather time-
consuming. So we first record al the raw data from the
vision system around APs. These recorded data are syn-



chronized with the data-glove analysis and the correspon-
dence between them is easily made. After thefirst analysis
is finished and extracts APs, the system fetches the cor-
responding images and extracts the information about the
manipulated objects (Fig. 3).

By analyzing just before each AP, we can obtain the
images in which the target object is not occluded by the
hand. The object ismodeled by cal culating shape and col or
histograms.

We assume that a human task is demonstrated on a ta-
ble whose geometric information is known. By extracting
depth regions corresponding to each object on thetable, we
calcul ate shape histogram as alist of goodness of matching
between an object extracted in the depth image and each
object model in the database. This goodness of matching
is obtained by using the 3D Template Matching(3DTM)[7]
technique.

3D Template Matching, a technique for localization,
finds the precise position and orientation of the target ob-
ject in depth data. This processis calculated by projecting
the corresponding 3D model into the 3D space generated
from a depth image and calculates goodness of matching
between the 3D model and the 3D data by summing up
weighted distance between each center point of the meshes
in the template model and the closest 3D point. 3DTM
adopts M robust estimator to eliminate the effect of out-
liers.

Color histogram is calculated as a normalized hue his-
togram which counts pixels with large saturation value
among the area of the object on the color image. These
depth and color images are produced at 5 fps (up to 30
fps) synchronously by the 9-eye multi-baseline stereo vi-
sion system.

The system registers this histogram information in the
attribute slot of the task model.

5 AP analysisfor sensorsseparated in time

In the previous chapter, we described the hand-action
mode in terms of classified gestures. This model gives a
good notion of hand motion and the type of the manipu-
lated objects, but tells nothing about the manipulated ob-
ject’'s motion.

In oder to model the delicate motion of the manipul ated
object or to judge the success/failure of the task performed
by the robot automatically, atask model must contain some
information about precise position and orientation of the
manipulated object at particular parts in the entire task.

We developed an efficient method to acquire the pre-
cise trgjectory based on repeated observations and APs. In
this chapter, we present the method, which uses the zoom
Sdreo Rigaeatestadhiser vation

To acquire the precise trgjectory of the object, we com-
bined two kinds of two-step analyses as shown in Table3.

Table 3: Process of repeated observation
Zoom | Model | Time [ description |

1] x1 Coarse | 0.6s extraction of APs
2 | x2 Coarse | 1.4s | tracking the object in rea-time
3| x3 Fine 2.0s | tracking the object in off-line
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Fig. 4. 3D Model

Process 1— 2 adopts the method described in Section 3.2
(repeated observation), while Process 2 — 3 adopts the
method described in Section 3.1.

Fig.4 shows the object and its CAD model used in this
experiment.

5.1.1 Extraction of APs

At first, the zoom configuration is set to x1(default) and
the system roughly tracks the object for each hand action
using the 3DTM method. To estimate the initial position
and time of the object to be tracked, we utilized data-gloves
used in the previous chapter; the gloves were enhanced by
tactile sensors to classify the grasping. The system can
detect the grasping motion directory from tactile sensors,
so it roughly estimates the initial object position (from the
polhemus sensor) at the time of grasping.

We used the coarse object model during tracking, be-
cause precise position and orientation is not important. The
system gets the rough trajectory and also gets the APs as
theinitial position and time of the tracking.

Fig.5 shows the tracking result (intensity images over-
laid with the wire-frame modéd).

5.1.2 Trackingin repeated observation

At this stage, the system demands the repeated demonstra-
tion of the same task. In this stage, the doubly zoomed
cameras cannot put the entire action in sight in afixed ori-
entation; therefore, driving of the pan/tilt moving mecha
nism synchronized with image processing in real-time is
necessary to track the target object to be kept in the center
of the view.

All the depth and intensity images are recorded during
tracking. Theseimagesare used in the third process bel ow.



Fig. 6: Tracking at the second stage

This tracking is aso processed by 3DTM with the coarse
object model, because precise localization is not important.

Fig.6 shows the tracking result (intensity images over-
laid with the wire-frame model).

5.1.3 Estimation of the precisetrajectory

At the third stage, the system fetches the recorded images
and localizes the object in each scene to estimate the pre-
cise trgjectory with the fine model. Thisimage fetchingis
the same technique as that described in chapter 4.

This process is executed off-line. To localize the object
precisely, we developed a method to combine the 3DTM
and 2DTM. 3DTM isamethod for localizing the 3D model
in the 3D points obtained from the depth data[7]. 2DTM is
the edge-based localization method between the 3D model
and the estimated 3D edges of the contour of the object,
which are derived from the intensity image[7].

2DTM issensitiveto the edgesin the image background
and does not offer a good guess about z position (parallel
to the viewing direction) of the model because of the ap-
proximation of z position of the 3D edge. But, at the final
stage of the localization, 2DTM offers a good guess about
the position and orientation perpendicular to the viewing
direction.

So, we first adopt the 3DTM only to localize the object
to the approximate position and then we adopt 2DTM &
3DTM combined method to localize the object to the exact
position as shown in Table4.

2DTM and 3DTM are calculated in the same 3D space
by M-estimator (Lorentzian) with different weight. Sigma
is the parameter to reduce the effect of the outliers.

Fig.7 shows the tracking result. The upper row shows
the intensity images and the lower row shows the disparity
images. The contour of the object’s model is overlaid in

Fig. 7: Tracking at the third stage

Table4: 2DTM & 3DTM combined localization

[ Method | Sigma[mm] |
3DTM 10.0
3DTM 4.0
3DTM 2.0
3DTM & 2DTM 2.0

2DTM 1.0

each image.
5.2 Experimental result

Our stereo vision consists of zoom lens cameras. This
isactually digital zooming but, when capturing images, the
stereo system re-samples each pixel at the ratio of one-
guad, so we can expect that to doubling the power of zoom-
ing value will not reduce the quality of the image captured
by our stereo system.

Stereo processing is done on a hardware chip and the
system can acquire a depth image and the corresponding
intensity image (280 x 200) in 15fps at most.

The average tracking rate of the first stage is 0.6
[sec/frame] on our Pentium3 500MHz PC. Similarly, the
tracking rates of the second stage and third stage are 1.4
[sec/frame] and 2.0 [sec/frame], respectively.

The difference in the rate between the first and the sec-
ond stagesis mainly dueto the construction time of the Kd-
tree used in localization. We restricted the search area of
3DTM to be very close to the object, theinside of the rect-
angle shown in Fig.5 and Fig.6, so the search area of the
first stage is relatively smaller and the construction timeis
short.

Thedifferencein frame-rate between the second and the
third stages is due to the difference in the number of iter-
ations in the localization process and the level of detail of
the model.

6 Performance by robot
We have developed a human-form robot as an experi-
mental platform for learning and performing human hand-



action taskg[9]. Therobot hassimilar capabilities and body
parts to those of humans, including vision, dual arms and
upper torso.

When the robot is to perform the same task after con-
structing a task model, it searches for objects on the table
and, for each object, it cal culates mean square distance be-
tween the shape and color histogram of the object on the
table and those in the model database. The smallest value
determines the best matching objects. Inthisway, therobot
recognizes the object. Once the recognition of the current
environment is done, the robot sequentially executes the
action corresponding to each “Action Symbol” in the task
model adapting to the current environment condition.

Fig.8 shows the experimental result in which the robot
performed the same task successfully.
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Fig. 8: Experiment

7 Conclusion

We proposed a novel method of constructing a human
task model by attention point (AP) analysis. Attention
points relate and integrate multiple observations and con-
struct alocally enhanced task model of human demonstra-
tion. AP analysis consists of two steps. In the first step,
action segment and APs are extracted. Then, at the sec-
ond step, by closely examining human demonstration only
around APs, the system extracts the attribute values and
improves the model.

By reducing unnecessary analysis, the system can con-
struct the task model efficiently. Efficiency is important
when we consider human-robot cooperation tasks in which
the robot must respond to the action taken by both a human
and the robot itself in relatively short time.

We presented two kinds of AP analyses, onefor integra-
tion of sensors available simultaneously and the other for
integration of sensors derived from different observations
of the same task by repeated demonstration.

To redlize the first AP analysis, we proposed a short-
term memorization method, which records all the raw in-
put data around each AP to be processed at the second step.
And also, we proposed a |localization method which com-
bines 2DTM and 3DTM to track and localize a moving
object robustly.

The future work is to solve the problem of integrating
the trgjectory information into the current task modd for
training the robot itself automatically. We are also plan-
ning to combine this task level acquisition with the behav-

ior level acquisition method [4]. First, the task level acqui-
sition constructs task models to perform the entire task to
be adapted to the environment. It also extracts special APs
that require behavior level acquisition. Second, the behav-
ior level acquisition analyzesthose APs closely and obtains
a suitable motion sequence (sub-skill). This two-layer ap-
proach should extend the capabilities of the learning robot
that can acquire a human task through observation.
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