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A bst rack 

This paper introduces a hybrid scheme for  simulating 
rigid bodies in contact. W e  use (cm adaptive strategy for  
handling two different contact situations, 'bouncing' and 
'steady'. To handle contact f o r  rigid bodies, we use two 
impulse-based methods to  explicitiy or implicitly compute 
impulses due to  collision impact. These two methods are 
used so that different impulse methods are applied adap- 
tively depending on the contact situations. Our experi- 
ments show that our simple adaptive simulation scheme 
enables efficient and physically-correct dynamic simulation 
involving rigid- body contacts with Coulomb friction. This 
adaptive scheme was incorporated into our dynamic simu- 
lator, called I-GMS, which supports various types of sim- 
ulations. W e  demonstrate the simulation results of our 
scheme using a ball falling on a flat surface in three di- 
mensions. 

1 Introduction 

This work is concerned with simulation of rigid 
body dynamics in contact with Coulumb friction. 
Rigid body contact problems occur in many engineer- 
ing applications in which deformations due to  contacts 
could be ignored. Also, it is gaining increasing atten- 
tion from the VR, graphics, and robotics communities, 
since most existing simulators do not handle well the 
situations which involve many contact interactions due 
to frequent loss and gain of multiple contacts between 
the objects. 

In previous work, Baraff [a] and Lotstedt [3] ap- 
ply complementarity theory using a pivoting method 
such as Lemke's algorithm. Trinkle e t  al. [13] takes 
an instantaneous point of view and uses Linear Com- 
plementary Problem (LCP) formulation to compute 
the forces and accelerations. However, these instan- 
taneous formulae do not always; have solutions. This 
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is because the use of Coulomb's friction law with the 
principles of classical rigid body dynamics introduces 
mathematical inconsistencies. 

To overcome these limitations, Song et  al. [9] used 
a compliant contact model to derive stability criteria 
that yield a unique solution in terms of accelerations 
and forces for planar systems. While it is possible 
to model elastic bodies as a system of springs and 
masses, the level of detail in the model and the stiff- 
ness of the involved differential equations makes this 
approach computationally expensive. Also, while the 
compliant contact model overcomes some of the incon- 
sistency problems occurring during simulation, it is 
appealing to use simpler and more efficient rigid body 
models whenever the rigid body dynamics solution is 
unique and stable. 

Mirtich developed an impulse-based algorithm us- 
ing Newton and Poisson impact hypothesis, which 
predicts an increase of the kinetic energy for com- 
plex collision model, and Strong's hypothesis, which 
conserves energy [5]. Moreau [6], Marques [4], and 
Stewart [ll] use a method which does not deter- 
mine the impulse directly. Instead, they use a 
velocity-based time-stepping method which employs 
the integrals of the forces over each time step to in- 
corporate impulses. These velocity-based methods 
avoid the nonexistent solution problem that plagues 
acceleration-based methods. 

Since no existing method deals with efficient simu- 
lation of all cases of contact situations without nonex- 
istence solution problems, in this paper we intro- 
duce a hybrid method for simulating rigid bodies in 
contact with friction. Our method has the capabil- 
ity to  adaptively change contact dynamics depending 
on contact situation. This hybrid scheme combines 
the impulse-based method by Mirtich [5] and implicit 
time-stepping method by Stewart [ll, 121 to efficiently 
deal with two common types of contact situations such 
as 'bouncing' and 'steady'. This hybrid scheme has 
been incorporated into our dynamic simulator, I-GMS 
[7][8], so that the appropriate niethod is selected adap- 
tively during real-time simulation. 
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2 Our Approach 3 Rigid-Body Contact Model 

Our adaptive scheme handles two different contact 
situations, ’bouncing contact’ and ’steady contact’, 
which commonly occur during simulation of a system 
of rigid-bodies. In reality, a bouncing contact will be 
gradually diminished to a ’steady contact’ after slid- 
ing and rolling, where it is considered that no more 
bouncing occurs. In simulation, we consider bouncing 
to have ended when the bounces are so small that, nu- 
merically, the contact is steady state. Correctly track- 
ing these changes in contact situations and applying 
appropriate contact dynamics is very important for 
physically-correct motion simulation. Unfortunately, 
no single existing method handles all these contact 
situations well. 

To overcome the difficulties arising in simulat- 
ing rigid bodies in contact, we have developed a 
hybrid method which uses two impulse-based algo- 
rithms, Mirtich’s impulse-based [5] and Stewart’s im- 
plicit time-stepping algorithms [ll, 121. This adaptive 
simulation scheme appropriately handles the transi- 
tion between coiitact situations by enabling adaptive 
application of the appropriate contact dynamics. In 
this way, we are able t o  maintain real-time capability, 
while at the same time achieving physically-correct 
motion. We do pay a cost in efficiency for the case of 
’steady contact’, in the presence of contact transition. 

To deal with bouncing contact interactions between 
bodies, we have used the impulse-based approach in- 
troduced by Mirtich [ 5 ] .  In this scheme, all types of 
contacts (colliding, rolling, sliding, and resting) are 
modeled as a series of collision impulses between the 
bodies in contact. Hence, this method is simpler and 
faster than the constraint-based approach where a 
non-penetration constraint is enforced for each con- 
tact. Mirtich’s impulse-based method handles well 
only the case of a bouncing-ball, since the system 
cannot be solved beyond the finite time taken for the 
ball come to rest. In general, these situations do not 
handle the case where forces are instantaneously un- 
bounded, but are not impulsive. 

To deal with ’steady contact’, we use an implicit 
time-stepping method for simulating systems of rigid 
bodies developed by Stewart and Trinkle [Ill. Un- 
like other methods which take an instantaneous point 
of view [13], this relatively new method does not ex- 
plicitly identify impulsive forces. Instead, the method 
uses the integrals of the forces over each time step, 
which are finite even if there are impulsive forces. 
However, this method handles only ’steady contact’ 
because it impilcitly assumes a zero coefficient of resti- 
tution [Ill. 

In this section, we present the fundamental math- 
ematical model for three dimensional rigid-body dy- 
namics with Coulomb frictional contact. At each time 
step of the continuous-time problem, the model must 
be formulated and solved to  determine the velocities of 
the bodies. The velocities are then used to update the 
positions. After the update, the bodies are checked for 
collisions, upon which an impulse-based model would 
be applied. Then, this process would repeat. 

In this paper, we describe only the relatively new 
’implicit time-stepping’ algorithm by Stewart [Ill 
which is used as a component of contact dynamics 
in our hybrid dynamic simulator. The basic idea of 
this method is as follows. At each time step, the 
system’s motion equations are formulated as a Non- 
linear Complementarity Problem (NCP) in body po- 
sitions and/or velocities. This NCP can be solved 
as a sequence of Linear Complementarity Problems 
(LCPs). Then, this velocity-based method avoids 
the problem of solution nonexistence that plagues 
acceleration-based methods. Mirtich’s impulse-based 
contact model is described in [5]. 

3.1 Rigid-Body Dynamics with Contact 

The mathematical formulation for the continuous 
problem is based on measure  differential inclusions by 
Moreau e t  al. [6]. To obtain a mathematical formula- 
tion, the derivation begins with a formulation of rigid 
body dynamics without contact. This is done using a 
Lagrangian formulation with generalized coordinates 
q ( t )  and generalized velocities w ( t ) .  Contact is as- 
sumed to be represented by a function f ( q )  so that 
if f ( q )  > 0 there is no contact. If f ( q )  = 0 then there 
is contact, and if f ( q )  < 0 then q is an inadmissible 
configuration. The set of admissible configurations is 
defined by 

where V f ( q )  # 0 whenever a configuration q lies in the 
boundary d of C in a generalized coordinate system, 
Rn. 

For a contact constraint f ( q )  2 0, if there is no 
contact ( f ( q ( t ) )  > 0)) then the contact forces must be 
zero ($( t )  = 0). Also, since the contact is not adhe- 
sive, the contact force cannot be directed outwards, so 
$( t )  2 0. Thus, f ( q ( t ) )  2 0 ‘v’ t .  This interpretation 
gives a differential version of a Nonlinear Complemen- 
tarity Problem (NCP) which has the following form of 
Newton-Euler equations for unilateral constraints: 
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Here, M ( q )  is the positive definite and symmetric in- 
ertia matrix, k ( q ,  w) represents a pseudo force such as 
centripetal, Coriolis, and external generalized forces, 
and p ( t )  are the total forces, consisting of the normal 
contact force $( t )V f (q ( t ) )  plus the generalized fric- 
tion force. This corresponds to the complementarity 
formulation: Given g : Rn + Rn, find z such that 

z 2 0,  g(z )  2, zTg(2:) = 0.  ( 5 )  

3.2 Incorporation of Calulomb Friction 

When two bodies are in contact, friction may exist, 
in which case, there are equal and opposite tangential 
forces acting on the two bodies in contact. If the bod- 
ies are sliding against each other, the friction forces 
must oppose the slip. The magnitude of the friction 
forces (ct) is bounded by pn where p > 0 is the coeffi- 
cient of friction and n is the normal component of the 
contact force. More specifically, if there is slippage, 
the frictional force must have exactly this magnitude 
(for isotropic friction), and if there is no slippage, any 
equal and opposite function forces within this bound 
are admissible. 

The Coulomb friction forces are defined in terms of 
a friction cone which contains the sums of the normal 
and frictional contact forces. This is usually given for 
a point q on the boundary of the admissible region 
C c R3 as the subset 

where n is the normal vector of C at q pointing to 
the admissible region, c, and c:t are the normal and 
friction forces respectively, and p > 0 is the coefficient 
of friction. 

To linearize Equation (6), W I Z  use a polyhedral ap- 
proximation to the friction corle (E) which defines 
the Coulomb friction forces at the contact as follows: 

where e = [l, 1,. . . , 1IT is in hr', IC is the number of 
edges of the polyhedral approxi:mation, c, denotes the 
magnitude of the normal contact force, and n is an un- 
transformed normal vector at the contact. (Note that 
if there is only one moving body, then, n can be the 6- 
dimensional unit wrench of the normal component of 
the contact force.) D is a matrix the columns of which 
are direction vectors d j  that positively span the sub- 
space on which the friction forces act. (It is assumed 
that for every i there is a j such that di = -d j . )  The 
vector ,8 is used as a weighting vector for the direction 
vectors di .  An example of this approximation for the 
case k = 8 is given in Figure 1 

Figure 1: Polyhedral approxiination of friction cone 
(k=8) 

3.3 Complementarity Formulation of 
Time-Stepping 

We cast the Newton-Euler equation, nonpenetra- 
tion constraints, and a friction law as a linear com- 
plementarity problem in a discrete-time form used in 
simulation. The approach taken here is to construct a 
time-stepping method which uses integrals of the ap- 
plied forces to compute integrals of contact forces over 
small time intervals. The time-stepping formulation is 
a variant of the well-known implicit Euler method for 
ODE'S. 

The formulation of the time-stepping is then to ap- 
proximate the position qt+' and velocity ut+' and the 
associated variables c,, p, and X in Equation (4). This 
yields discretized equations: 

This yields the complementarity conditions 

where the additional variable A is an approximation to 
the magnitude of the relative contact velocity, c, and 
Dp represent the impulses of the normal contact force 
and the friction force a t  the contact over the period 
of one time step, respectively. Here, Xe + DTwtf l  > 0 
constrains the friction force to the facet of the En- 
earized friction cone, nTqt+l 2 a0 is the approxima- 
tion of the nonpenetration constraint ( f ( q )  2 0) by a 
half-space, and [pc, - eT/3]X 0 constrains the con- 
tact force not to go outside the friction cone. 
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Sreodj Contact 
Breaking of Contact 

Figure 2: Control flow of adaptive contact simulation 

1. Equation (8) means that the friction force is op- 
posite to  tangential velocity. 

2. Equation (9) means that no contact means no 
contact forces. 

3.  Equation (10) means that if the tangential veloc- 
ity is non-zero, then the friction force is maxi- 
mized. 

These equations are nonlinear, since M ,  n, D, and 
k all depend on q ( t )  and v( t ) .  

However, if we let k = k(qt  + hwt/2) and M = 
M(qt + h d ) ,  we get a pure linear complementarity 
system as follows: 

DTMP1D DTAK1n e 
n T M P 1 D  n T M - l n  0 ] [ $ 1  + b =  [ ;] 2 0 ,  [ -eT P 0 

1 
d[ ;] ,U,[ ;] [ ;] = o  

[ 
D T ( d  + hlM-lk)  

(nTqt - aO)/h + nT(vt + h ~ - l k )  
0 

where b = 

T 

This problem formulation conforms to  the LCP as is 
given by Equation (5) and is solved in terms of the 
solution vector z = [p’ c ,  A]. This LCP is proven to  
have solution(s) which are unique for most problems 
although uniqueness is not guaranteed. However, An- 
itescue proved the existence of the solution(s) by a 
modification this LCP formulation [I]. 

4 Implementation Details 

4.1 Hybrid Scheme 

Our adaptive scheme for handling contact during 
simulation is represented in the state-transition dia- 
gram as shown in Figure 2. During simulation of rigid 

bodies, whenever a bouncing contact is detected, Mir- 
tich’s algorithm is applied, while Stewart’s method is 
applied to  cases of steady contact. A steady contact 
is detected when the bounces become so small that  it 
is considered that the bouncing has ended. We use a 
tolerance to  detect this during contact simulation. All 
these transitions in contact dynamics occur automati- 
cally during simulation using an adaptive scheme that 
keeps track of changes in the contact situation. 

The simulation for contact situations is driven by 
contacts. This means that a ‘Contact’ class is instanti- 
ated at each time step whenever a collision is detected 
and an explicit (via Mirtich’s algorithm) or implicit 
(via Stewart’s LCP algorithm) calculation of impulse 
is performed using all the kinematics and dynamic in- 
formation available within it. This approach provides 
scalability when it is applied to  the multiple contact 
case. The formulation for computing contact dynam- 
ics is correspondingly scaled in a natural manner in 
proportion to  the complexity of the number of con- 
tacts. 

The LCP formulations were solved using a numer- 
ical library developed based on Lemke’s algorithm 
which is a pivoting method similar to the simplex 
method for linear programming. Specifically, we have 
used the mathematical library, Meschach [lo], which 
is written in C. We call Meschach’s functions from I- 
GMS. 

4.2 System Architecture 

Our adaptive scheme for dealing with contacts has 
been incorporated into our general-purpose dynamic 
simulator, I-GMS [7]. I-GMS is an object-oriented dy- 
namic simulator which can simulate various types of 
bodies such as linkages and free bodies. Classical rigid 
body dynamics is used to  simulate free bodies with 
contact dynamics applied to  free rigid bodies when- 
ever contact occurs. The adaptive contact-handling 
scheme was implemented as a method available with 
the object class, FreeBody, which represents the rigid 
bodies. (This class itself is derived from another class, 
Body, which represents more general types of bodies.) 
This addition of contact dynamics to the system archi- 
tecture of the existing I-GMS is shown in the Figure 3.  

5 Simulation Example 

A three dimensional ball with an initial velocity is 
thrown onto a flat rigid surface and it starts to  bounce, 
roll, slide, and eventually comes to  a stop after a pe- 
riod of ’steady contact’. Here, we consider the contact 
in steady state once the bounces become very small on 
the flat surface. 
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Free rigid bodie, 

Mirlich’s impulse-based method 

fSlewart’s time-sleuuia method 
i I .. I 

Linkage bodies 

Recursive Newton-Euler Dynamics 

Extended 
Recursive Newton-Euler Dynamics 

I-GMS’s rigid body dynamics 1 

for several different E values, after going through an 
initial transient period of bouncing. The duration of 
this transient period depends on E .  Generally, lower E 
values produce smaller transient periods, which con- 
forms to physical accuracy. Unlike Mirtich’s algo- 
rithm, Stewart’s algorithm assumes zero coefficient of 
restitution and this make it suited to dealing with 
’steady contact’ situations. Thus, it works well for 
the case when the ball comes to a rest, avoiding any 
possibility of an unstable system state as may occur 
in Mirtich’s algorithm. Note that we have used a low 
coefficient of restitution to prolong the duration of the 
sliding and rolling motion of the ball on the surface, 
which is eventually stabilized by our hybrid scheme 
into a steady state. 

Figure 3: Incorporation of contact dynamics into I- 
GMS 

6 Discussion and Future Work 

In our experiment, we have used various parame- 
ters to illustrate the change of the system’s behavior. 
These are the coefficient of friction ( p )  and the coef- 
ficient of restitution ( E )  which are used for Mirtich’s 
algorithm. We have also attempted to vary the coef- 
ficient of friction in Stewart’s algorithm. Recall that 
Stewart’s method assumes zero coefficient of restitu- 
tion. 

Note that in the plots (Figure 4) for the simulation 
results, we have shown only the z-direction position 
trajectories of the ball and the normal impulse trajec- 
tories to help illustrate the falling and bouncing sit- 
uations of the ball in three dimensions. In Mirtich’s 
method, the impulse calculated is the total impulse 
applied during compression and the restitution phases 
of the collision, whereas it is the integrals of the forces 
over each time step in Stewart’s method. 

In Figure 4(a), we show the r’esults of applying Mir- 
tich’ algorithm. A ball is colliding with the flat rigid 
surface around time step 40 and starts to slide and 
roll. As the plots show, setting the coefficient of resti- 
tution close to  ’1’ brings the s:ystem’s state into an 
unstable one, making the ball bounce forever without 
coming to rest after an initial period of fluctuation. 
We expect the ball to bounce for some initial tran- 
sient period until it rests in a steady state. Although 
we get more stable behavior as we decrease E ,  the ball 
continues to bounce. 

In our hybrid scheme (see Figure 4(b)), Mirtich’s 
algorithm is applied when the ball first hits the sur- 
face and then Stewart’s algorithm takes over the state 
evolution once bouncing becomes small enough to be 
regarded as ‘steady contact’. This transition in con- 
tact dynamics happens automakically during simula- 
tion using our adaptive transition scheme which checks 
bouncing status in real-time. Figure 4(b) shows the 
change of contact status from ’bouncing’ to ’steady’ 

We have developed a hybrid scheme to  simulate 
contact with Coulumn friction of a system of rigid 
bodies, which has been incorporated into our gener- 
alized motion simulator, I-GMS. In particular, this 
scheme has an adaptive capability to change over to 
appropriate contact dynamics depending on two con- 
tact situations, ’bouncing’ and ’steady’. Our hybrid 
scheme shows some potential for physically-correct 
simulation of rigid body cont.act, while maintaining 
real-time efficiency at the same time by using two 
impulse-based methods, Mirtich and Stewart’s algo- 
rithms. 

Still there are some stability issues remaining to be 
solved. Especially, dynamic simulation with contact 
involves fine step size tuning during simulation which 
requires applying an adaptive step size for correct sim- 
ulation without numerical failure. Extending the for- 
mulation to linked-body contact problems would be 
another issue that should be dealt with, if the hybrid 
scheme will be applied to general simulation environ- 
ments. 
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