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Abstract:

The Science Autonomy System (SAS) is a hierarchical
control architecture for exploration and in situ science
that integrates sensing, navigation, classification and
mission planning. The Nomad robot demonstrated the
capabilities of the SAS during a January 2000 expedition
to Elephant Moraine, Antarctica where it accomplished
the first meteorite discoveries made by a robot. In this
paper, the structure and functionality of the three-tiered
SAS are detailed. Results and lessons learned are
presented with a focus on important future research.
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1. Introduction
The Science Autonomy System (SAS) was developed
for the Nomad robot (Fig. 1) in response to
the Robotic Search for Antarctic Meteorites project, which
has developed technologies and strategies for autonomous
meteorite search [1]. The SAS is a control architecture for
exploration and in situ science that integrates sensing,
navigation, classification and mission planning, enabling a
meteorite searching robot to autonomously find and study
surface samples while performing an exhaustive patterned
search. Once an interesting new sample has been found,
the SAS handles the deployment of sensors capable of
discriminating terrestrial rocks from meteorites. Bayesian
network classification software then calculates its
confidence in the sample being a meteorite as well as
metrics estimating the benefit of taking additional sensor
data.

As the project’s final demonstration, Nomad was sent to
Elephant Moraine, Antarctica to perform autonomous
meteorite searches. Nomad operated between January 10
to 30, 2000. Over this time, ten individual demonstrations
were performed along with many experiments and data
gathering efforts. During the demonstrations, Nomad
classified 42 samples with spectrometry. Of these samples,
three meteorites were correctly classified. An additional
two meteorites were correctly classified during tests
performed without patterned searches. The SAS

autonomously acquired new targets with a 79% success
rate and deployed Nomad’s manipulator arm with a 72%
success rate. These results prove the concept that the SAS
enables autonomous exploration robots.

2. Science Autonomy System Design

2.1. Approach
Although the SAS was developed specifically for
autonomous meteorite search, it is designed as a control
architecture for a more general class of autonomous
scientific exploration missions. Scientific exploration
tasks may require vastly different types of sensors,
actuators and data understanding algorithms. Scientific
goals in the SAS are framed as classification problems.
Given a set of sensor readings, objects are classified as
belonging to certain known exemplar classes. Note that
the details of how classification is performed should be
abstracted from the rest of the system. The goal of the SAS
is therefore to classify as many objects in the world as
possible. This brings about the need for directed,
exhaustive searches.

Different sensors on a robot are deployed with varying
time and energy costs. For instance, imagery generally
requires less time and energy to collect than reflection

Figure 1. The Nomad robot searching for meteorites in 
Elephant Moraine, Antarctica
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spectrometry. It is therefore beneficial to intelligently
select sensor usage because most field robots operate with
limited time and energy resources. Different objects can
often be classified with varying degrees of difficulty. For
instance, a majority of meteorites are small and dark-
colored. Chances are good that a costly spectrometer
reading will only reinforce the fact that a large, white rock
is terrestrial. To achieve intelligent sensor selection, the
SAS utilizes the following approaches:

• Deploying sensors must be associated with some kind
of a cost such as energy, time or digital storage space.

• The target classifier must provide an estimate of the
information that would be gained by deploying all
sensors in the system. This quantity, referred to as
information gain, is weighed against sensor
deployment costs to create action plans.

With this framework, the SAS decomposes scientific
exploration tasks into directed search, sensor selection and
classification tasks (Fig. 2).

2.2. System Architecture
Three-tiered architectures typically distinguish control,
sequencing and planning in a hierarchical structure [2].
Similarly, the SAS is comprised of the control layer, the
sequencing layer and the planning layer; but outside each
layer lies the scientific knowledge base, which contains the

system’s scientific capability. Figure 3 shows the SAS
architecture.

The modules of the SAS primarily use client / server
interprocess communication. A client / server model is
appropriate because science-driven autonomous functions
require a sequential passing of information to create
exploration plans. Interprocess communication has been
implemented on Nomad using Network Data Delivery
Service (NDDS) [3]. Each layer of the architecture makes
requests to the layer directly below it and responds to
requests from the layer above. Figure 4 describes the flow
of information from sensor hardware up to the planning
layer. In contrast Figure 5 indicates how commands
created with this information are passed back down,
eventually affecting the real world through the robot’s
actuators.

All interfacing with the mobility platform is accomplished
through the autonomous navigation system, a self-
encapsulated architecture described in [4].

2.2.1. The Control Layer

The control layer is the lowest layer of the SAS,
containing the robot’s sensors and actuators. It allows the
SAS to interact with the world. Control loops between
software, sensors and actuators create primitive behaviors.
In the SAS, primitive behaviors include:

• Sensor calibration
• Sensor deployment
• Acquisition of sensor readings
• Sensor diagnostics
• Stowing the sensor
• Returning sensor cost and workspace parameters

The sensor driver interface defines available primitive
behaviors and abstracts sensor hardware specifics from the

Figure 2. Scientific exploration task decomposition
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Figure 3. Science autonomy system as a modified three-tiered architecture
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sequencing layer. The primitive behaviors return
descriptive status values to the sequencing layer so
appropriate actions can be taken to handle error situations,
such as calibrating an uncalibrated sensor [5]. They are
also responsible for resolving device usage conflicts if
multiple modules request simultaneous action. Finally,
sensor drivers maintain constant values describing sensor
deployment costs and workspaces.

The control layer waits for the completion of hardware
operations as the primitive behaviors are executed.
Whether these operations are blocking is dependent on
device and operating system specifics. The raw data from
hardware devices is converted into formats that the
sequencing layer can understand. Additional sensor meta-
data are created such as rock size estimates. The
sequencing layer awaits completion of the control layer’s
behaviors before it can finish executing a command
sequence. Requests to the control layer are blocking to
simplify implementation.

2.2.2. The Sequencing Layer

Raw data sensed by the control layer are utilized for two
operational modes: acquisition and identification. In
acquisition mode, the SAS searches for new science
targets in the world. In identification mode, study and
classification of a target takes place. Multiple sensors may
be coordinated to carry out both types objectives. The
sequencing layer realizes this type of coordination by
creating sequences of sensor or mobility commands. For
instance, sensor calibration, deployment and data
acquisition may be performed in response to a single
“deploy sensor” command from the planning layer.

This layer is comprised of three modules: the target
acquisition manager, the sensor manager and the
navigation manager. The target acquisition manager uses
target acquisition drivers to discover new targets while
abstracting sensor-specific data processing methods from
the rest of the system. Similarly, the sensor manager uses
sensor manager drivers to successfully collect data on a
given target while encapsulating knowledge of sensor

Figure 4. Flow of information in the SAS
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specifics. The navigation manager is responsible for
executing search patterns and performing maneuvers by
commanding the robot’s autonomous navigation system.

New targets found, sensor data processed and calculated
sensor deployment costs are sent to the planning layer.
Although the sequencing layer should calculate real sensor
deployment costs based on the current robot pose and
target position, the present implementation on Nomad
simply passes the constant values maintained by the
control layer (see Section 4 for more discussion).

2.2.3. The Planning Layer

The highest level, the planning layer, considers the results
of the sequencing layer such as newly acquired targets,
sensor deployment costs and processed sensor data, and
creates a plan that will optimize mission variables such as
energy costs and scientific information gains [6].
Commands are sent to the sequencing layer to deploy
sensors and construct navigation plans. The planning layer
is therefore responsible for merging navigation and
science within the SAS. The mission planner module
comprises the planning layer.

Unlike typical three-tiered architectures, the planning
layer of the SAS interfaces with both the sequencing layer
and another layer, the scientific knowledge base. Many
interactions are blocking, similar to those between the
sequencing and control layers. Other non-blocking
interactions exist that enable re-planning while the
sequencing layer carries out commands. For instance, the
mission planner does not block until the navigation
manager finishes its pattern. Furthermore, the mission
planner must listen for published notification messages
from the target database that announce the existence of
new targets, sensor data or classifier results.

2.2.4. The Scientific Knowledge Base

Outside each layer lies the scientific knowledge base,
composed of the target database and target classifier. New
targets and their sensor data are input into the scientific
knowledge base, which stores them into its database.
When new sensor data appear for a target, the target’s
classification is updated in the database along with new
information gain estimates. Whenever the database state is
altered, it publishes a notification message that reflects the
changes. Many other modules in the SAS listen to this
message, providing system-wide data synchronization
without polling. The planning layer uses these messages to
adjust its plans to deploy sensors and perform patterned
searches.

2.3. Technologies for Autonomous Meteorite 
Search

2.3.1. The Nomad Robot

Autonomous search and in situ classification was made
possible through the use of the Nomad robot, an
autonomous planetary-rover prototype with specialized
mechatronic and cognitive systems appropriate for this
class of polar exploration missions (Fig. 1). Nomad's
unique combination of in-wheel propulsion, deployable
chassis and four-wheel rocker bogie suspension are major
contributors to the robot's superior terrainability and
robust autonomous navigation [7]. Nomad's navigational
autonomy utilizes laser range finding and robot pose
measurements to detect hazards and assess the quality of
its state. The execution of autonomous science functions is
carried out by a high-resolution camera mounted on the
rover's sensor mast (Fig. 6a), and a manipulator arm that
carries a reflection spectrometer (Fig. 6b).

2.3.2. Sensors

The SAS on Nomad contains two sensor drivers: a high-
resolution camera sensor driver and a manipulator arm
sensor driver. The camera sensor driver controls a 3-CCD
color camera, lens and pan / tilt unit. The driver’s
deployment method converts estimated differential GPS
(DGPS) coordinates of a target to pan and tilt angles. The
data acquisition method stores the image from the CCD
along with the pixel coordinates of any rocks in the image.
The hardware has no real need to perform calibration. 

Nomad’s manipulator arm sensor driver contains multiple
sensors and actuators, all of which are encompassed by the
arm sensor driver. Deployment involves coordination
between three axes of a motion control board and a color
CCD camera mounted on the wrist of the arm to visually
servo the wrist down to the potential meteorite target [8].
Again, estimated DGPS target coordinates are passed into

Figure 6. (a) Nomad’s high-resolution camera, mounted on
a sensor mast, is used both to acquire new targets and
investigate them. (b) The spectrometer mounted on
Nomad’s manipulator arm (the small probe in the
picture near the lamp) is critical to differentiate rocks
from meteorites. 

(a) (b)
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the deployment method and errors in these estimates are
overcome by visual servoing. Data acquisition involves
storing spectrometer data and images from the wrist-
mounted camera. Calibration of the spectrometer is
performed after every fourth spectrum taken. This
involves placing the wrist so the spectrometer is directly
above a calibration target.

2.3.3. Target Acquisition

The high-resolution camera was ths basis for Nomad’s
target acquisition driver. Images from this camera are
processed to segment rocks from background ice (Fig. 7).
A linear combination of blue and green color ratios is
calculated for each pixel in an image window. Pixels with
a low blue-green ratio are designated as rock. Shadows in
parts of an image generally create areas of noticeably
different blue-green color ratios. A high standard
deviation of these ratios therefore initiates an intensity-
based shadow compensation routine. Coefficients used in
this segmentation method were experimentally determined
using images obtained from the project’s 1998 expedition
to Patriot Hills, Antarctica. Additional validation came
from testing near McMurdo Station and Elephant Moraine
before Nomad’s meteorite searches officially began.
Rocks as small as 1 cm in diameter can be detected by
Nomad’s high-resolution camera using this approach. This
requirement is important to detect meteorites of this size,
which are commonly encountered.

Using the pose of the robot and an assumption that the
ground is a flat plane near the robot, the DGPS coordinates
of each target are estimated and placed in the target
database. By representing target locations in world
coordinates, the SAS need not track an object to later
identify it. Instead, the planning layer can consider other
actions and possibly revisit the target at a later time,
perhaps when rover resources are not as strictly
constrained. This flexibility comes at a cost however,
since the terrain near the robot always deviates slightly
from a flat ground plane. Therefore when the planning
layer decides to deploy a sensor, the sensor manager
drivers must be robust to uncertainty in target position.

2.3.4. Sensor Manager Drivers

Similarly to its sensor drivers, Nomad uses two sensor
manager drivers: one for its high-resolution camera and
one for its manipulator arm. The camera sensor manager
driver only communicates directly with the sensor driver
of the same name. It is a fairly simple object; sensor
manager commands are basically passed directly to the
camera sensor driver. 

The manipulator arm sensor manager driver is more
complex. It communicates with both the camera and the
arm sensor drivers. Before the arm is deployed, the camera
takes a new image of the target to provide an improved
location estimate. This method compensates for
inaccuracies in the robot’s pose that introduce errors in the
initial transformation of target location to world
coordinates. The arm then visually servos to and gathers
spectral information about the target.

2.3.5. Navigation Manager

The navigation manager converts high-level mobility
plans from the planning layer to steering arcs passed to the
autonomous navigation system every second. A separate
obstacle detection module simultaneously sends desired
steering commands to the navigation system, which
arbitrates between the two inputs and sends a command to
the robot designating a steering direction and a speed,
which is currently set at 15 cm/s. The navigation manager
follows a search path chosen by the planning layer using
the pure pursuit path tracking algorithm [9]. When
executing patterns, it dynamically updates the robot’s next
waypoint. This lookahead distance enables the robot to
quickly return to the path after avoiding obstacles or
examining targets without creating oscillations around the
path.

The navigation manager also enacts pre-planned
maneuvers provided by the planning layer, sending
steering commands one-by-one to the navigation system.
Such maneuvers may be necessary to put desired targets
into the workspace of the robot’s sensors. In this mode,
any obstacle avoidance module input is ignored, as the
maneuvers are generally performed in limited locations
that are already known to be clear of obstacles. This
prevents the obstacle avoidance module from interfering
with the pre-planned sequence of maneuvering steps.

2.3.6. Mission Planner

The mission planner initiates a search pattern by notifying
the navigation manager and the target acquisition
manager. New targets found by the target acquisition
manager are added to a list. Considering each target in this
list in combination with each available sensor, the mission

Figure 7. (a) Raw and (b) segmented images processed by
the high-resolution camera acquisition driver.

(a) (b)
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planner requests an estimate of the information that could
be gained by additional sensor data. If the estimated
information gain for a particular target / sensor pair is
below a threshold, then that pair is ignored and no further
cost calculations are performed.

If at least one target / sensor pair passes this first test,
sensor deployment costs are calculated. The distance to
the target from the robot, the time cost of using the sensor
and the need for maneuvering the robot into the sensor’s
workspace are all considered. These costs are compared
for each target / sensor pair, and the lowest cost target is
selected for investigation.

Upon a decision to investigate, the mission planner may
request a maneuver to move the robot’s sensors into range
of the target. Maneuver planning is performed using the
A* algorithm [10] and a model of how the robot responds
to a discrete set of steering commands to speed the
planning process. The model also contains state
information about the previously commanded move.
Although A* ensures an optimal plan, the mission planner
augments it with heuristics to decrease average execution
time. It checks if the robot will need to back up first if
another approach could more accurately place the robot.
This maneuver plan is then passed to the navigation
manager to execute.

When complete, the mission planner activates the sensor
manager, requesting the desired data on the chosen target.
New sensor data are placed in the target database and then
classified. The mission planner re-analyzes its target list to
determine if additional target / sensor pairs should be
selected at the current time.

2.3.7. Target Classifier

Once the robot has acquired a new target sample,
maneuvered into proper sensing position and gathered
sensor data, the target classifier is invoked. The target
classifier is responsible for deciding, based on sensor data,
the likelihood that a sample is either a meteorite or
terrestrial rock. To do so, it uses a Bayes network to
classify science targets as belonging to predefined classes
such as sedimentary, metamorphic, igneous,
extraterrestrial or “other,” generally meaning ice or snow.
Based on its current assumed knowledge of a target, it also
calculates the information gain that would result from
readings from each remaining sensor in the system. 

Nomad has multiple sensors which are not deployed all at
once. The classifier must therefore accept incomplete data
and compound evidence as more sensor data become
available. Moreover, the classifier should accept prior
evidence from other sources, including expert knowledge
on what to expect in a particular location. Rock classes are

often ambiguous, and the distinctions between certain
types fuzzy at best [11]. The classifier must handle this
ambiguity and indicate several likely hypotheses if a
definite classification cannot be achieved.

Nomad performs classification using imagery and spectral
data. A Bayes network, which encodes the statistical
distribution of image and spectral features for each rock
type along with their assumed prior probabilities,
computes the posterior probability of the rock type being
examined, given the current sensor data [12]. Image
features used include color and size. A fixed set of spectral
features is matched against Gaussian templates defined
throughout the range of spectra wavelengths. A detailed
discussion of the issues and implementation of the target
classifier can be found in [13].

The classifier works asynchronously whenever new sensor
data enter the database. Once receiving notice of this
event, it classifies the science target based on both the new
data received and data previously recorded in the database.
Therefore each new sensor reading enhances previous
classifications rather than replacing them.

3. Field Demonstration Results
During January 2000, Nomad's autonomous exploration
and in situ science capabilities were put to test in the
extreme environment of Elephant Moraine, Antarctica (76
deg 16' S, 157 deg 12' E). After a short period of
subsystem tests, such as target acquisition, arm servoing
and classification of planted samples, Nomad was set on
its own to pursue the discovery of new meteorites, the first
of which was found January 22, 2000 (Fig. 8). Through
the course of ten demonstrations that featured autonomous
patterned searches and persistent examination of targets in
the robot's course, Nomad found and correctly classified
three meteorites and more than forty terrestrial rocks. An
additional two meteorites were correctly classified during
tests performed without patterned searches. Sensor
deployment was performed with a high degree of
autonomy; the SAS autonomously acquired new targets
with a 79% success rate and deployed Nomad’s
manipulator arm with a 72% success rate. Image
segmentation required for target acquisition and
manipulator visual servoing proved capable in many
conditions, although its parameters had to be hand-tuned
for different lighting conditions that ranged from bright
direct sunlight to diffuse overcast conditions. Not
surprisingly, autonomously deployed sensor data quality
did not match that of human gathered training set data, but
it allowed effective discrimination of meteorites from
rocks. However, classification was systematically poor for
hydro-thermally altered dolerite and basalt rocks upon
which the robot had not been trained but were common at

1747



Elephant Moraine. During its autonomous searches

Nomad covered 2500 m2 of blue ice and snow, which
translates to about 1.25 km of linear distance. Nomad's
discoveries were made in 16 hours of productive searches
out of 10 full days of field operations. These two metrics
define the standard for autonomous search for meteorites.

Demonstrations were performed in two terrain types.
Eight demonstrations took place in open ice fields and
involved sample densities of about one sample every ten
square meters. Although sample densities were low, many
samples found were meteorites. Nomad spent 50.7% of the
time driving and performing target acquisition in this type
of area. 18 out of 23 arm visual servoing attempts were
successful; this 78% success rate shows that the study of
individual rock samples in this environment is practical.
Here high robot velocity is key to effective search with the
SAS.

Two demonstrations took place near the moraine proper.
Here Nomad saw sample densities of one to two samples
per square meter. However, far fewer samples were
meteorites. Therefore Nomad spent less time driving and
more time deploying its sensors. In fact, 48.7% of
Nomad’s time was spent deploying its manipulator arm.
However, only 69% of the 36 deployment attempts were
successful. The additional failures generally occurred
when multiple targets were found in close proximity.
Errors in the targets’ initial position estimates would cause
uncertainty in target select during visual servoing,
resulting in a failed arm deployment attempt. Therefore,
modifications such as more discriminating target
acquisition drivers would increase the speed and
robustness of the searches in moraine environments.

Complete expedition results and discussion of outcomes
can be found in [14].

4. Critique and Future Work
The modularity of the SAS resulted in robustness and
manual adaptability to unforeseen problems. Individual
software modules experiencing problems could be
individually restarted without disabling the entire system,
implying that fault tolerance could be implemented in the
future. Alterations and bug fixes made to modules during
the mission did not require substantial changes to the rest
of the SAS.

In its present state, the SAS has no means to calculate the
quality of sensor data. It has no measure of confidence that
the data being classified are valid. This is especially
critical for spectrometer data that are very sensitive, not
only to sensor head placement but to random natural
features such as rock face angle. While these values are
difficult to sense, a confidence metric should be placed
into the system to be made available to the classifier. A
low confidence would suggest to the mission planner that
additional sensor readings are beneficial. New data quality
metrics created by the sequencing layer would enable this
improvement.

Further work could also be done in the realm of target
acquisition. Algorithms developed by the Onboard
Science Understanding Project at NASA Ames Research
Center could be used to autonomously detect interesting
geologic features and individual rocks using texture
segmentation [14]. Furthermore, there is only one target
acquisition driver currently used and there is no method in
place to fuse their data together. For instance, if an image
showed a rock on the ice and a metal detector being swept
in front of the robot found a signal, the system could only
recognize two new targets even if they were really the
same object seen by different sensors. A good way to
address this problem could be through the use of evidence
grids [15]. Not only would this allow fusion of data from
different sensors, but also multiple readings from a single
sensor could be combined to give a more accurate target
location. 

Similarly, several times during its demonstrations, Nomad
re-examined or ran over rocks it had already seen. While
this was mostly due to a very small search row width, the
robot often did have knowledge of the rock’s location as it
ran it over. These rocks could be designated as obstacles in
the mission planner’s global map and therefore not
repeatedly studied or even damaged.

Finally, the calculation of sensor deployment costs and
information gains still must be investigated to achieve the
efficiency gains that sensor selection may provide. The
deployment cost of a sensor is a combination of energy
and time costs. However, other cost metrics could be used
such as data storage requirements. Costs are currently

Figure 8. Nomad studying its first autonomously found
meteorite on January 22, 2000.
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defined as constants for each sensor in the system; cost has
no dependence on distance to the target, as it should. In the
case of some sensors, such as those on Nomad’s
manipulator, a cost could not be reliably calculated prior to
deployment because an unknown number of visual
servoing steps may be taken. Therefore statistical
techniques or fuzzy logic may be useful for cost estimation
and calculation, in both the sensors and the mission
planner.

5. Conclusions
Nomad's unprecedented discovery and in situ
classification of Antarctic meteorites is primarily
attributed to the effectiveness of the SAS. Built on a
paradigm of hierarchical control driven by science goals
and intelligent apportion of sensor management,
sequencing, and mission oversight, SAS is a prototypical
architecture for autonomous science robots. 

Although human scientists will always be preeminent, we
envision that robots with advanced SAS architectures will
transform exploration through the ability to search,
classify and make discoveries, especially in the context of
missions that prohibit frequent human oversight.
Examples include missions to the far side of planets,
extremely remote polar regions and hydrothermal springs.

The SAS implementation on Nomad has yielded useful
technical lessons. It is evident that autonomous search
strategies should take into account terrain and target
distribution information to dynamically update the pace of
search. Moreover, SAS must incorporate intelligence to
evaluate sensor data quality without any human input.
This observation implies the need for automatic
assessment of sensor placement quality. Finally, the
incorporation of metrics such as information gain should
have profound implications on the effectiveness of SAS
architectures. Our current work focuses on the
implementation of SAS on life seeking robots.
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