
Approved for public release; distribution unlimited.

1

Learning Momentum: Integration and Experimentation

J. Brian Lee, Ronald C. Arkin

Mobile Robot Laboratory
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

Email: blee@cc.gatech.edu, arkin@cc.gatech.edu

Abstract
We further study the effects of learning momentum as

defined by Clark, Arkin, and Ram[1] on robots, both
simulated and real, attempting to traverse obstacle fields
in order to reach a goal. Integration of these results into a
large-scale software architecture, MissionLab, provides
the ability to exercise these algorithms in novel ways.
Insight is also sought in reference to when different
learning momentum strategies should be used.

1. Introduction
In 1992, Clark, Arkin, and Ram [1] presented a paper

proving the validity of a concept called “learning
momentum,” where the parameters determining a reactive
robotic control system’s behavior are modified at runtime
depending on a robot’s prior success in navigating
random environments. The robot stores a short history of
items such as the number of obstacles encountered, the
distance to the goal, and other relevant data. The robot
uses this history to determine which one of several
predefined situations the robot is in and alters its
behavioral gains accordingly.

Learning momentum can be considered a crude form
of reinforcement learning, where if the robot is doing
well, it should keep doing what it's doing and even do it
more. Conversely, if it's doing poorly, it should try
something different. Other examples of reinforcement
learning applied to robotics include Q-learning (e.g.,
[3,6]), and statistical methods [5] among others.

This previous work provided a proof of concept, but
more work needed to be done to fully demonstrate the
utility of this approach. Until now, learning momentum
had only been demonstrated in simulation; it needed to be
shown viable on actual robots. Further it had only been
considered as an isolated component of a robotic system.
Full scale integration with a complete system architecture
yet waited.

Another item of interest is when different learning
momentum strategies should be used. Two strategies
were previously described: ballooning and squeezing.
Ballooning consists of increasing the sphere of influence
(SOI) when the robot makes little or no progress towards
achieving its goal. This action allows the robot to take
more obstacles into account sooner (reactively) and adjust
its path to navigate out of myopic situations, such as box
canyons. Squeezing, on the other hand, causes the SOI to
be reduced while increasing the goal's attractiveness when
the robot's progress is impeded. If the robot doesn’t pay

attention to nearby obstacles until they are closer, the
robot has a greater chance to “squeeze” between objects
that are in close proximity to each other.

This paper addresses these questions. Descriptions of
experiments and their respective results are provided
along with conclusions drawn from the tests.

This research is being conducted as part of a larger
robot learning effort funded under DARPA's Mobile
Autonomous Robotic Software (MARS) program. In this
program, 5 different variations of learning, including
learning momentum, are being integrated into a well-
established software architecture (MissionLab - described
in the next section). These learning mechanisms, which
include reinforcement learning and case-based learning,
are not only to be studied in isolation, but the interplay
between these methods will be investigated as well.

2. Software Framework
The algorithms used are essentially the same as in the

previous work [1] (reproduced in Appendix 1), where
attention was given to three primary behaviors (schemas)
[2]: move-to-goal, avoid-obstacles, and wander. Each
behavior contributes an independent motion vector for the
robot to execute. The robot weights, adds, and
normalizes these vectors, and the result is transmitted to
the robot for execution. The vector weights (gains)
comprise three of the five parameters that are altered
using the learning momentum algorithm. Another
parameter is the avoid-obstacle’s SOI, which defines the
radius of an imaginary circle around the robot. The robot
reacts to objects inside the circle and ignores those
outside of it. The final parameter is the wander vector’s
persistence. Lower persistence will result in changing the
wander direction more frequently, while a larger value
will result in the same compass direction being followed
for a longer period of time. One example set of
adjustments made to the parameters is given in Table 1.

Goal Obstacle Noise
Gain Gain Sphere Gain Persist.

No
movement

-0.1 to
0.0

-0.1 to
0.0

-0.5 to
0.0

0.1 to 0.5 0 to 1

Progress 0.5 to 1.0 -0.1 to
0.0

-0.5 to
0.0

-0.1 to 0.0 -1 to 0

No Prog.
w/ Obst.

-0.1 to
0.0

0.1 to
0.5

0.0 to
0.5

0.0 to 0.1 0 to 1

No Prog.
w/out Obst.

0.0 to 0.3 -0.1 to
0.0

0.0 to
0.5

-0.2 to 0.0 -1 to 0

Table 1. Ranges of values used to alter parameters in
different situations.

2

Goal gain Obstacle
gain

Obstacle
sphere

Wander
gain

Wander
Persist.

Upper 2.0 5.0 5.0 5.0 15
Lower 0.5 0.1 0.01 1

Table 2. Upper and lower bounds for parameter values.

The obstacle gain’s lower limit was the sum of the current
goal and wander gains. A random value was chosen
within the specified range. To implement the squeezing
strategy, a range of -0.5 to 0.0 was used for the SOI
value in the case of “no progress with obstacles”.

2.1 Adjustment Rules
After the robot has taken a certain number of steps,

Hsteps, the adjuster tries to determine what situation the
robot is in. The adjuster looks at the robot’s average
movement, M, the average movement to the goal, Mgoal,
and the number of obstacles encountered, Ocount. The
robot’s progress, P, is defined as Mgoal/M. A movement
threshold, Tmovement, is defined, along with a threshold for
progress, Tprogress, and an obstacle threshold, Tobstacles. A
robot’s possible situations are defined as follows:

1. no progress with obstacles
M < Tmovement

2. movement toward goal
M > Tmovement;
P > Tprogress

3. no progress with obstacles
M > Tmovement

P < Tprogress

Ocount > Tobstacles

4. no progress without obstacles
M > Tmovement

P < Tprogress

Ocount < Tobstacles

These situations are used to choose value ranges for
each parameter (see Table 1). To each parameter a
random value from that parameter’s respective range is
then added.

2.2 Integration into MissionLab
All experiments described here used the MissionLab

system developed by the Georgia Tech Mobile Robot Lab
[4]. The MissionLab system, already possessing
capabilities to task and control simulated or real robots
with reactive behaviors, was expanded to include learning
momentum. Test runs on simulated robots were carried
out using MissionLab’s simulator, and the real robotic
experiments described below also were controlled directly
using MissionLab.

The integration of the new algorithms into MissionLab
was relatively simple. First, the relevant behaviors were
modified to use the robot’s global variable space for
parameter values instead of using hard-coded values at

run-time. Functionality was then added to save relevant
history information, which was mainly the robot position,
distance from the goal, and the number of obstacles
encountered. Once that foundation was set up, all that
was required was to write a routine to extract the situation
from the history, extract the parameters from the robot’s
global variable space, alter the values as dictated by the
learning momentum rules, and replace them in the global
variable space. A call to this routine was inserted at the
end of the robot’s cycle, so the parameters are adjusted
every time the robot moves Hsteps steps.

3. Experiments in Simulation
This section discusses the methods used in simulation

testing of these ideas and their results.

3.1 Simulation Environment
In the first phase of this work, MissionLab was used to

gather data on simulated robots to test both the integration
and provide reasonable parameters for use on physical
robots. MissionLab’s automatic obstacle generation
capability was used to produce obstacle fields measuring
150m x 150m. The robot, starting at the coordinates
(10m, 10m), where (0m, 0m) is the lower left corner of
the field, was instructed to move 153m to coordinates
(140m, 90m). Initially, four obstacle fields were created,
two with 15% obstacle coverage and two with 20%
obstacle coverage. All obstacles were circular and 1m in
diameter. Robots using learning momentum, both
squeezing and ballooning, were sent through the obstacle
field at least fifty times each while their progress and
position were logged. Robots without learning
momentum were also sent through the obstacle field. For
the non-learning robots, the goal and obstacle gains were
both 1.0, the SOI was 1.0m, and the wander persistence
was 10. Three series of runs were made for each obstacle
field with wander gains of 0.3, 0.5, and 1.0, respectively.
This was the first set of tests. See Figures 10 and 11.

For further testing, four more obstacle fields were
created. The field size, start position, and end position
were the same as in the earlier fields. Again, two fields
were created with 15% obstacle density, and two were
created with 20% obstacle density, but this time the
obstacles ranged in size from 0.38m to 1.43m. Robots
with the same learning momentum values were then sent
through the obstacle field again to assess the difference
that varying obstacle sizes would make.

Different learning momentum values were tested
throughout the experiment to try and assess how their
modification would affect the robot behaviors. In one
instance, the wander persistence ceiling was lowered from
15 to 10, and in another, the growth of the wander gain in
the “no progress with obstacles” situation was
accelerated. The range of values used to change the
wander gain in the “no progress with obstacles” situation
was increased from [0.0, 0.1] to [0.0, 0.5]. The best
resulting parameters were used in the real robotic
experiments as derived from a simulated robot moving
through a world patterned after the real world the physical
robot would traverse.

3

3.2 Simulation Results
After running the simulations, two immediate results

presented themselves: 1) learning momentum has the
capacity to greatly increase a robot’s ability to
successfully traverse an obstacle field, and 2) successful
completion comes at the expense of time.

Completion rates of obstacle fields with uniform
obstacle sizes and varying obstacle sizes are given in
figures 1 and 2, respectively. Sets A – D refer to tests
where obstacle size was not changed, and sets E – H refer
to tests where obstacle size varied within the
environment. Also, average steps to completion are given
in Figures 3 and 4.

LM Strategy Wander Gain Wander Upper Limit
Bar 1 None 0.3 NA
Bar 2 None 0.5 NA
Bar 3 None 1.0 NA
Bar 4 Ballooning NA 15
Bar 5 Ballooning NA 10
Bar 6 Squeezing NA 15

Table 3. Differences between parameters with uniform
obstacle size.

LM Strategy Wander Gain Wander Delta Range
Bar 1 None 0.5 NA
Bar 2 None 1.0 NA
Bar 3 Ballooning NA 0.0 – 0.1
Bar 4 Ballooning NA 0.0 – 0.5
Bar 5 Squeezing NA 0.0 – 0.1
Bar 6 Squeezing NA 0.0 – 0.5

Table 4. Difference between parameters with varying
obstacle sizes.

For sets E – H, the wander delta range corresponds to
the range of values from which a random value is picked
to change the wander gain in the case of “no progress
with obstacles.”

The first observation is that the robot has a more
difficult time traversing the fields with smaller obstacles.

Second, robots with learning momentum have a greater
completion rate in nearly all tested situations than robots
without it, but with an accompanying increase in time.
The robots without learning momentum that were

successful on average took much less time than robots
with learning momentum.

On average the ballooning strategy took less time than
the squeezing strategy. This is due to the fact that
ballooning and squeezing are geared toward different
situations, both of which occurred in all of the simulated
environments. Ballooning works best with box canyon
situations, while squeezing works better while moving
between many closely spaced obstacles. While the robots
did well in the situations for which their strategies were
developed, difficulty arose when robots using one
strategy encountered situations best suited for the other.
If a robot allowed its SOI to get large enough to balloon
out of a box canyon situation, then it found great
difficulty moving through closely spaced obstacles. It
had a tendency to settle in areas of locally less dense
obstacles. If a robot using the squeezing strategy found
itself in a box canyon situation, it has a hard time getting
out because of its reduced SOI. On average, it takes
longer for a squeezing robot to move out of a box canyon
than it does for a ballooning robot to move through

0

20

40

60

80

100

120

Set

A

Set

B

Set

C

Set

D

Figure 1. % complete with uniform obstacle size.

0

10

20

30

40

50

60

70

80

90

100

Set

E

Set

F

Set

G

Set

H

Figure 2. % complete with varying obstacle sizes.

Set
A Set

B Set
C Set

D

0

2000

4000

6000

8000

10000

12000

14000

no LM

ballooning

squeezing

Figure 3. Average steps to completion with uniform
obstacle size. Bars correspond to Table 3 and are

numbered left to right, and front to back.

Set
E Set

F Set
G Set

H

0

5000

10000

15000

20000

25000

30000

no LM

ballooning

squeezing

Figure 4. Average steps to completion with varying
obstacle sizes. Bars correspond to Table 4 and are

numbered left to right, and front to back. Values set to
zero represent no successful runs.

4

closely spaced obstacles, hence the average lower time for
the ballooning robots.

After the simulated results had been assessed, a
simulation environment was created to approximate the
real robot experimental environment. As before, robots
utilizing ballooning, squeezing, and no learning
momentum were allowed to traverse the environment.
The results are given in figures 5 and 6.

As before, an increase in completion with learning
momentum occurs, but the accompanying increase in time
was also present. The difference between ballooning and
squeezing is very small here; this similarity probably
arises from the fact that the world had a relatively low
obstacle density, as shown in Figure 7.

4. Robot Experiments
4.1 Experiment Setup

After the simulation tests, a real robot was tested. A
Nomad 150 robot was used with sonar rings for obstacle
detection. The experimental area was approximately 24m
x 10m with various obstacles arranged to reflect the
simulated tests (see Figure 8). The robot’s start place was
at (1m, 5m), where (0m, 0m) was the lower left corner of

the test area (see Figure 7). The MissionLab system was
used to control the robots directly from off-board
computers using wireless serial links.

The robot was sent through the obstacles repeatedly
until results from four successful ballooning runs and four
successful squeezing runs were obtained. Failures when
using learning momentum were determined to be caused
by sonar failures instead of algorithmic failures due to the
fact that the robot’s safety margin was never altered and
from visual representations of the sonar readings when
collisions occurred. If the robot ran for ten minutes
without a collision or without reaching the goal, that run
was considered a failure. Four runs without learning
momentum were also performed. Both runs had a value of
1.0 for the move-to-goal and avoid-obstacle gains. Two
runs had a wander gain of 0.3 and two had a wander gain
of 0.5. All had 3.0m SOI and 0.5m safety margin.

4.2 Experiment Results
The robots that traversed the obstacle field performed

as predicted. The robots using learning momentum that
didn’t have sonar failures all reached the goal. None of
the robots without learning momentum completed the
task. This lack of any completions probably arose from
the small number of trials. The results of the real tests are
summarized in Figure 9.

0

10

20

30

40

50

60

70

80

90

100

No LM No LM ballooning squeezing

Figure 5. % complete for simulated environment

0

100

200

300

400

500

600

700

800

No LM No LM ballooning squeezing

Figure 6. Average steps to completion for simulated
environment

Figure 7. A sample run of a simulated real-world
environment.

0

200

400

600

800

1000

1200

1400

No LM No LM ballooning squeezing

Figure 9. Average steps to completion for a real
environment. Trials with no successful runs were given

the largest value on the graph.

Figure 8. A typical test run where a robot traverses a
simple obstacle field similar to the one in Figure 7.

5

The results for squeezing were very close to the
simulated results, while the ballooning took a bit longer
than expected. The possibility does exist that with more
test runs, the average could drop so that the difference
between simulated and real results is not as large. During
the experiments, the robots without learning momentum
did seem to make faster progress up to the point where
they got stuck, which would be consistent with the
simulation results.

5. Conclusion
Learning momentum has been shown to work both in

simulation and on actual robots, and it seems to have both
pros and cons when applied to obstacle avoidance and
navigation. It can greatly increase a robot’s ability to
successfully an obstacle field, but those successful runs
come at a price of time. The different strategies also seem
to work both for and against the robot, depending on the
situation. Ballooning robots can move around obstacles
and get out of box canyon situations easily, but they may
get stuck in front of holes they should obviously be able
to move through. Squeezing robots move between
closely spaced obstacles, but they get stuck in box canyon
situations. If knowledge of the terrain is available
beforehand, an appropriate strategy can be chosen, but if
the terrain is totally unknown, ballooning would probably
be the better choice since robots using it seem to be able
to overcome its problem situations a little quicker than
robots using the squeezing strategy.

Future work focuses on allowing the robot to choose
appropriate strategies at run time and to recognize when
large changes need to be made to its parameters. Case-
based reasoning or a higher level set of learning
momentum rules could be used, and if successful, the
time it takes for a robot to negotiate an obstacle field
should be reduced significantly without sacrificing
success rates.

Acknowledgments
This research is supported under DARPA's Mobile
Autonomous Robotic Software Program under contract
#DASG60-99-C-0081. The authors would also like to
thank Dr. Douglas MacKenzie, Yoichiro Endo, Alex
Stoytchev, William Halliburton, and Dr. Tom Collins for
their role in the development of the MissionLab software
system.

References
[1] Arkin, R.C., Clark, R.J., and Ram, A., “Learning

Momentum: On-line Performance Enhancement for
Reactive Systems”, Proceedings of the 1992 IEEE
International Conference on Robotics and Automation,
May 1992, pp. 111-116.

[2] Arkin, R.C., ``Motor Schema-Based Mobile Robot
Navigation'', International Journal of Robotics
Research, Vol. 8, No. 4, August 1989, pp. 92-112.

[3] Asada, M., Noda, S., Tawaratasumida, S., and
Hosoda, K., "Vision-Based Reinforcement Learning
for Purposive Behavior Acquisition", Proc. IEEE
International Conference on Robotics and
Automation, May 1995, pp. 146-53

[4] MacKenzie, D., Arkin, R.C., and Cameron, R.,
``Multiagent Mission Specification and Execution'',
Autonomous Robots, Vol. 4, No. 1, Jan 1997, pp. 29-
52.

[5] Maes, P. and Brooks, R., "Learning to Coordinate
Behaviors", Proc. AAAI 1990, Boston, MA, August
1990, pp. 796-802.

[6] Mahadevan, S., and Connell, J., "Automatic
Programming of Behavior-based Robots Using
Reinforcement Learning", Proc. 9th AAAI, Anaheim,
CA, July 1990, pp. 768-773.

Appendix 1 - Pseudocode for Learning Momentum
Algorithm

M = movement threshold
P = progress threshold
Obs = obstacle threshold

steps is initialized to zero the first time

if (steps == HISTORY_INTERVAL)
calculate the average movement and progress of the
 robot

motion ratio = progress / total movement
if (average movement < M)

situation = no movement
else if (motion ratio > P)

situation = progress
else if (obstacle count > Obs)

situation = no progress w/ obstacles
else

situation = no progress w/out obstacles

for each learning momentum parameter
get the range of numbers used to alter the
 parameter given the current situation
get a random number within the range
add the random number to the parameter

steps = 0

steps++

6

Figure 10. 15% coverage - ballooning

Figure 11. 15% coverage - squeezing

